キタエフスピン液体における マヨラナ励起

求 幸年 (東大院工)

Contents

What is the quantum spin liquid? difficulty in search for quantum spin liquids

breakthrough: Kitaev model

rare example of exact quantum spin liquids spin fractionalization into Majorana fermions realization in spin-orbit coupled Mott insulators

fingerprints of Majorana excitations at finite T

comparison between theory and experiment on

- specific heat and entropy
- magnetic Raman scattering
- thermal conductivity
- inelastic neutron scattering

Fate of magnets

Quantum spin liquid

And to identify experimentally

- no symmetry breaking down to zero temperature
- no conventional order parameter

→ alibi (proof of absence) is impossible to prove

Proof positive of QSL?

topological order/degeneracy

usually well-defined only at zero temperature not local but global (long-range quantum entanglement) not easy to detect experimentally...

fractionalized excitations

fractionalized quasiparticles have their own energy scales

clear fingerprints on spin dynamics and thermodynamics

How does the fractionalization show up in QSLs?How can we observe the signatures in real compounds?

Breakthrough

Kitaev model (A. Kitaev, 2006)

exact solution for the ground state

• exact quantum spin liquids

0

• analytical expression for spin fractionalization

experimental realization in spin-orbit Mott insulators (G. Jackeli and G. Khaliullin, 2009)

• 4d and 5d electrons systems

explosive development in both theory and experiment during the past decade

Kitaev model

A. Kitaev, Ann. Phys. 321, 2 (2006)

Interactions for the second second

severe frustration: macroscopic degeneracy in the classical case

- NB1. The Majorana representation extends the Hilbert space; a projection to the original physical subspace is needed.
- NB2. Majorana representation of spins is not unique.
- by three Majorana (Tsvelik, 1992; Shastry and Sen, 1997; Biswas et al., 2011)
- by two Majorana (Chen and Hu, 2007; Feng, Chang, and Xiang, 2007; Chen and Nussinov, 2008)
 * We adopt the "two Majorana" representation in our numerical simulations.

A. Kitaev, Ann. Phys. 321, 2 (2006)

S=1/2 model

quantum many-body problem

Majorana fermions moving on localized Z₂ fluxes one-body problem

→ exact ground state is available as the flux free state: all $W_p=+1$

NB. The exact solution is limited to the cases to which the Lieb theorem is applicable.

Ground state

Majorana spectrum

 J_{χ}

- QSLs in the entire parameter space
 G. Baskaran, S. Mandal, and R. Shanker, PRL 98, 247201 (2007)
- Majorana excitations can be gapless or gapped depending on the parameters, while flux excitations are always gapped.

Experimental relevance

two requisites for realizing the Kitaev-type anisotropic interactions
 G. Jackeli and G. Khaliullin, Phys. Rev. Lett. 102, 017205 (2009)

spin-orbit Mott insulator with $J_{eff}=1/2$ Kramers doublet (e.g., Ir⁴⁺, Ru³⁺) 5*d* 0Dd $I_{eff} = 1/2$ ι_{2g} $\overline{J_{eff}} = 3/2$ B. J. Kim et al., PRL 101, 076402 (2008) spin down, I_z=1 spin up, $I_{z}=0$ isospin up G. Jackeli and G. Khaliullin, PRL 102, 017205 (2009)

Candidate materials

2D honeycomb

Na₂IrO₃, Li₂IrO₃,... M. J. O'Malley *et al.*, 2008 Y. Singh and P. Gegenwart, 2010 Y. Singh *et al.*, 2012, ...

α-RuCl₃

K. Plumb *et al.*, 2014 Y. Kubota *et al.*, 2015, ...

Li₂RhO₃ V. Todorova and M. Jansen, 2011 Y. Luo *et al.*, 2013, ...

 $H_3LiIr_2O_6$

K. Kitagawa et al., 2018

Candidate materials

🏺 2D honeycomb

3D extensions

 β -Li₂IrO₃ (hyper-honeycomb)

Output of the candidates show AF order at low T, indicating the existence of non-Kitaev interactions

dead end?

LiaBhOa	V. Todorova and M. Jansen, 2011
	Y. Luo <i>et al.</i> , 2013,

H₃Lilr₂O₆ K. Kitagawa *et al.*, 2018

Anticipated phase diagram

How to compute T > 0

S=1/2 model

quantum many-body problem

 Conventional numerical techniques suffer from the negative sign problem due to severe frustration.

itinerant Majorana fermions + localized Z₂ fluxes

one-body problem

 Our solution:
 avoid the negative sign problem by using a Majorana representation

NB. We adopt the "two Majorana" representation via the Jordan-Wigner transformation.

Methods

Quantum Monte Carlo (QMC)

- MC sampling on the gauge fields + exact diagonalization

J. Nasu, M. Udagawa, and YM, PRL 113, 197205 (2014)

- MC sampling on the gauge fields + Green function based kernel polynomial method P. A. Mishchenko, Y. Kato, and YM, PRB 96, 125124 (2017)

QMC + continuous-time QMC

J. Yoshitake, J. Nasu, and YM, PRL **117**, 157203 (2016) J. Yoshitake, J. Nasu, and YM, PRB **96**, 064433 (2017)

✓ free from biased approximations: numerically exact within the statistical errors

NB. We employed the maximum entropy method for analytical continuation of the dynamical quantities.

✓ free from finite-size effects: applicable to large enough clusters up to ~10³ sites

We have computed ...

- \checkmark specific heat and entropy \rightarrow thermal fractionalization
- ✓ magnetic susceptibility
- ✓ equal-time spin-spin correlation
- ✓ NMR relaxation rate $1/T_1$
- dynamical spin structure factor S(q, ω)
- ✓ magnetic Raman scattering intensity
- \checkmark thermal conductivity κ^{xx} and κ^{xy}

dichotomy between static and dynamical spin correlations

itinerant fermionic excitations

All the quantities exhibit peculiar *T* and ω dependences smoking guns for fractional spin excitations !

Specific heat and entropy

two crossovers: two-step release of the spin entropy

J. Nasu, M. Udagawa, and Y. Motome, Phys. Rev. B 92, 115122 (2015)

Thermal fractionalization

J. Nasu, M. Udagawa, and Y. Motome, Phys. Rev. B 92, 115122 (2015)

Thermal fractionalization

J. Nasu, M. Udagawa, and Y. Motome, Phys. Rev. B 92, 115122 (2015)

Thermal fractionalization

fermionic itinerant nature will be observable

NB. Anisotropy in J_x , J_y , J_z widens the T range of the "Majorana metal".

J. Nasu, M. Udagawa, and Y. Motome, Phys. Rev. B 92, 115122 (2015)

Specific heat and entropy: exp.

Stoad hump at high T in the specific heat, and step-like shoulder in the entropy around (1/2)log2

K. Mehlawat, A. Thamizhavel, and Y. Singh, PRB 95, 144406 (2017)

Specific heat and entropy: exp.

Solution broad hump at high T in the specific heat, step-like shoulder in the entropy around $(1/2)\log 2$, and T-linear in mid T?

Raman scattering at low T

anomalous incoherent component up to ~3J_{Kitaev}: signature of fractionalized excitations in the Kitaev QSL?

Raman scattering: experiment

anomalous incoherent component, whose T dependence is not explained by bosonic contributions

Raman scattering: theory

Theory mid energy: dominated by pair creation/annihilation $\sim (1-f)^2$ $(1-f)^2 \cdots$ low energy: dominated by creation & annihilation $\sim f(1-f)$ $(1-f)^2 \cdots = 0$ Boy energy: dominated by creation & annihilation $\sim f(1-f)$ $(1-f)^2 \cdots = 0$ $(1-f)^2 \cdots = 0$ (1

J. Nasu, J. Knolle, D. L. Kovrizhin, Y. Motome, and R. Moessner, Nat. Phys. 12, 912 (2016)

Raman scattering: comparison

emergent fermionic excitations from spin fractionalization in a wide temperature range from ~10K to room temperature

J. Nasu, J. Knolle, D. L. Kovrizhin, Y. Motome, and R. Moessner, Nature Physics 12, 912 (2016)

Raman scattering

Similar $(1-f)^2$ behavior was observed also in 3D iridium oxides

A. Glamazda et al., Nat. Commun. 7, 12286 (2016)

Thermal conductivity: theory

heat conduction below $T^{(high)} \sim J$ by itinerant Majorana fermions

J. Nasu, J. Yoshitake, and Y. Motome, Phys. Rev. Lett. 119, 127204 (2017)

Thermal conductivity: exp.

Seemingly consistent, but scattered data ... difficult to measure at high T, possibly due to contributions from phonons

cf. R. Hentrich et al., preprint (arXiv:1703.08623)

Inelastic neutron scattering

Solution continuum up to ~8 meV for both below and above T_N , persistent up to ~80 K (powder sample)

$S(\mathbf{q},\omega)$: theory

J. Yoshitake, J. Nasu, and Y. Motome, Phys. Rev. Lett. 117, 157203 (2016)
J. Yoshitake, J. Nasu, Y. Kato, and Y. Motome, Phys. Rev. B 96, 024438 (2017)
J. Yoshitake, J. Nasu, and Y. Motome, Phys. Rev. B 96, 064433 (2017)
cf. T. Suzuki *et al.*, Phys. Rev. B 92, 184411 (2015), Y. Yamaji *et al.*, Phys. Rev. B 93, 174425 (2016)

$S(\mathbf{q}, \omega)$: comparison

0

continuum up to ~12meV, persistent up to >100K (single crystal): fairly good agreement with our theory in (T, ω, q) dependences

S.-H. Do, S.-Y. Park, J. Yoshitake, J. Nasu, Y. Motome *et al.*, Nature Physics **13**, 1709 (2017) cf. A. Banerjee *et al.*, Nature Materials **15**, 733 (2016); Science **356**, 1055 (2017); npj Quantum Materials **3**, 8 (2018)

Summary: Majoranization

Majoranas w/ no flux Dirac-type semimetal fractionalized paramagnet Majoranas w/ disordered fluxes "Majorana metal"

many signatures of spin fractionalization

in physical observables

useful for identifying the Kitaev QSLs

Supplemental: dimension matters

J. Nasu, M. Udagawa, and Y. Motome, Phys. Rev. Lett. **113**, 197205 (2014) J. Nasu, M. Udagawa, and Y. Motome, Phys. Rev. B **92**, 115122 (2015)

Supplemental: "liquid-gas" transition

J. Nasu, M. Udagawa, and Y. Motome, Phys. Rev. Lett. 113, 197205 (2014)

NB. A similar transition was also observed on the hyperoctagon lattice. P. A. Mishchenko, Y. Kato, and YM, PRB 96, 125124 (2017)

Perspectives

□ Further comparison between theory and experiment

- detailed analysis for Kitaev and non-Kitaev signatures for further critical comparison

Search for other candidate materials

- intercalation, exfoliation, ...
- d^7 high-spin systems
- *f*-electron systems

K. Kitagawa *et al.*, Nature 554, 341 (2018)
M. Ziatdinov *et al.*, Nat. Commun. 7, 13774 (2016)
B. Zhou *et al.*, J. Phys. Chem. Solids, in press

H. Liu and G. Khaliullin: Phys. Rev. B 97, 014407 (2018) R. Sano, Y. Kato, and Y. Motome: Phys. Rev. B 97, 014408 (2018)

F.-Y. Li *et al.*, Phys. Rev. B **95**, 085132 (2017) J. G. Rau and M. J. P. Gingras: preprint (arXiv:1802.03024)

☐ effect of a magnetic field

R. Yadav *et al.*, Sci Rep. 6, 37925 (2016); I. A. Leahy *et al.*, Phys. Rev. Lett. 118, 187203 (2017);
U. B. Wolter *et al.*: Phys. Rev. B 96, 041405(R) (2017); S.-H. Baek *et al.*, Phys. Rev. Lett. 119, 037201 (2017);
J. Zheng *et al.*: Phys. Rev. Lett. 119, 227208 (2017); A. Little et al., Phys. Rev. Lett. 119, 227201 (2017);
S. Winter *et al.*, Phys. Rev. Lett. 120, 077203 (2018); R. Hentrich *et al.*, preprint (arXiv:1703.08623);
Y. Kasahara *et al.*, preprint (arXiv:1709.10286); Z. Zhu *et al.*, preprint (arXiv:1710.07595);
P. A. McClarty *et al.*, preprint (arXiv:1802.04283), ...

Perspectives

\Box experimental detection of the fingerprint of Z_2 fluxes

- so far, all the signatures are for itinerant Majorana fermions
- important toward quantum computations: how to generate and control the fractionalized excitations

□ further exotic transitions in 2D and 3D extensions

- transition to a chiral spin liquid
- other symmetry breaking?
- frustration in the Z_2 fluxes?

 \Box ... and more !

J. Nasu and YM, Phys. Rev. Lett. **115**, 087203 (2015) Y. Kato *et al.*, Phys. Rev. B **96**, 174409 (2017)

Lattice	Majorana metal	TRS breaking
(10,3)a	Fermi surface	Fermi surface
(10,3)b	Nodal line	Weyl nodes
(10,3)c	Nodal line	Fermi surface
(9,3)a*	Weyl nodes	Weyl nodes
(8,3)a	Fermi surface	Fermi surface
(8,3)b	Weyl nodes	Weyl nodes
(8,3)c*	Nodal line	Weyl nodes
(8,3)n	Gapped	Weyl nodes
(6,3)	Dirac cones	Gapped

K. O'Brien, M. Hermanns, and S. Trebst, Phys. Rev. B 93, 085101 (2016)

Collaborators

My group (Tokyo): Yasuyuki Kato Troels Bojesen Petr Mishchenko Junki Yoshitake Ryoya Sano

Former members of my group: Joji Nasu (TITECH) Masafumi Udagawa (Gakushuin)

Others:

Yoshitomo Kamiya (RIKEN) Johannes Knolle (Cambridge) Dmitry L. Kovrizhin (Cambridge) Roderich Moessner (MPIPKS)

Funding:

Experimental colleagues: Sungdae Ji, Kwang-Yong Choi, J.-H. Park (POSTECH, Seoul) Yasuhiro Shimizu, Masayuki Itoh (Nagoya) Yuji Matsuda, Kasahara Yuichi (Kyoto) Takasada Shibauchi (Tokyo) Minoru Yamashita (ISSP)

Acknowledgments:

Simon Trebst (Cologne), Maria Hermanns (Gothenburg) Hidenori Takagi, Kentaro Kitagawa (Tokyo, Max Planck) Kenneth Burch (Boston) Arnab Banerjee, Stephen Nagler (ORNL) Kenya Ohgushi, Shigeru Takagi (Tohoku) Cristian D. Batista (Tennessee) Kentaro Nomura (Tohoku), and others.

No. 15K13533, 16K17747, 16H02206, and 16H00987