Operational characterization of quantum nonlocality

Ryuhei Mori
Tokyo Institute of Technology
JST PRESTO

6 Mar. 2019

Motivation

- Quantum physics has a beautiful mathematical representation.
- But, we do not have any "explanation" for the quantum physics.
- We need to find postulates of quantum physics.

Postulate: Similar to axiom in math. But, it must be testable by experiments, e.g.,

- Information cannot be transmitted faster than light.
- A communication complexity is not always equal to 1 .

Quantum physics

- There is no concept of "quantum probability".
- A probability is always expressed by a tuple of non-negative values with sum 1.
- There are concepts of "state" and "measurement".
- State: Environment.
- Measurement: Operation to a state for getting an outcome.
- Probability of an output $a \in \mathcal{A}$ when a measurement $x \in \mathcal{X}$ is chosen is $P(a \mid x)$.

CHSH game [Bell 1964 12736]

[Clauser, Horne, Shimony, Holt 1969 6564]

Alice and Bob win iff $a \oplus b=x \wedge y$.

CHSH winning probability

- The maximum CHSH winning probability in classical physics is $3 / 4=0.75$.

b 1	\neq	a 1
॥	॥	
a 0	$=$	b 0

- The maximum CHSH winning probability in quantum physics is $(2+\sqrt{2}) / 4 \approx 0.854$ [Tsirelson 1980 1380].

Locality (Hidden variable model)

Joint preparation and independent measurements.
Probability distribution $P(a, b \mid x, y)$ is said to be local if

$$
P(a, b \mid x, y)=\sum_{\lambda} P(\lambda) P(a \mid x, \lambda) P(b \mid y, \lambda)
$$

Equivalently, there exists a joint distribution $P\left(a_{0}, a_{1}, b_{0}, b_{1}\right)$.

Quantum physics allow nonlocal behaviors.
[Einstein, Podolsky, Rosen 1935, 17516]

Two-party statistics

$$
P(a, b \mid x, y), \quad \forall a, b \in\{0,1\}, x, y \in\{0,1\}
$$

No-signaling condition

The marginal distribution of $a(b)$ cannot depend on $y(x)$, respectively.

$$
\begin{aligned}
\sum_{b \in\{0,1\}} P(a, b \mid x, 0)=\sum_{b \in\{0,1\}} P(a, b \mid x, 1), \quad \forall a, x \in\{0,1\} \\
\sum_{a \in\{0,1\}} P(a, b \mid 0, y)=\sum_{a \in\{0,1\}} P(a, b \mid 1, y), \quad \forall b, y \in\{0,1\} .
\end{aligned}
$$

The 8-dimensional linear space and no-signaling polytope

$$
\begin{aligned}
& \sum_{a \in\{0,1\}, b \in\{0,1\}} P(a, b \mid x, y)=1, \quad x \in\{0,1\}, y \in\{0,1\} . \\
& \sum_{b \in\{0,1\}} P(0, b \mid 0,0)=\sum_{b \in\{0,1\}} P(0, b \mid 0,1) \\
& \sum_{b \in\{0,1\}} P(0, b \mid 1,0)=\sum_{b \in\{0,1\}} P(0, b \mid 1,1) \\
& \sum_{a \in\{0,1\}} P(a, 0 \mid 0,0)=\sum_{a \in\{0,1\}} P(a, 0 \mid 1,0) \\
& \sum_{a \in\{0,1\}} P(a, 0 \mid 0,1)=\sum_{a \in\{0,1\}} P(a, 0 \mid 1,1)
\end{aligned}
$$

$16-8=8$-dimensional linear space.

No-signaling polytope

Local polytope

Deterministic choice

$$
a=A(x), \quad b=B(y)
$$

Local polytope
$\operatorname{conv}\left(\left\{\left\{P(a, b \mid x, y)=\delta_{(a, b),(A(x), B(y))}\right\}_{a, b, x, y} \mid A, B \in\{0,1\}^{\{0,1\}}\right\}\right)$.

No-signaling polytope and local polytope

CHSH inequality: Facets of the local polytope

$$
\begin{array}{ll}
\sum_{a \oplus b=x \wedge y} P(a, b \mid x, y) \leq 3, & \sum_{a \oplus b \neq x \wedge y} P(a, b \mid x, y) \leq 3 \\
\sum_{a \oplus b=\bar{x} \wedge y} P(a, b \mid x, y) \leq 3, & \sum_{a \oplus b \neq \bar{x} \wedge y} P(a, b \mid x, y) \leq 3 \\
\sum_{a \oplus b=x \wedge \bar{y}} P(a, b \mid x, y) \leq 3, & \sum_{a \oplus b \neq x \wedge \bar{y}} P(a, b \mid x, y) \leq 3 \\
\sum_{a \oplus b=\bar{x} \wedge \bar{y}} P(a, b \mid x, y) \leq 3, & \sum_{a \oplus b \neq \bar{x} \wedge \bar{y}} P(a, b \mid x, y) \leq 3
\end{array}
$$

CHSH inequality [Clauser, Horne, Shimony, Holt 1969 6564].
CHSH inequality is the only non-trivial facets [Froissard 1981 111], [Fine 1982 991].

No-signaling condition admits CHSH probability 1

$$
\begin{aligned}
& P(0,0 \mid 0,0)=P(1,1 \mid 0,0)=1 / 2 \\
& P(0,0 \mid 0,1)=P(1,1 \mid 0,1)=1 / 2 \\
& P(0,0 \mid 1,0)=P(1,1 \mid 1,0)=1 / 2 \\
& P(0,1 \mid 1,1)=P(1,0 \mid 1,1)=1 / 2
\end{aligned}
$$

[Popescu and Rohrlich 1994 1122]

No-signaling polytope, local polytope and

 quantum correlation

Question:
Why does quantum physics prohibits CHSH probability greater than $(2+\sqrt{2}) / 4 \approx 0.854$?

Topics

- $p_{\text {CHSH }}=1 \Longrightarrow$ Communication complexity (CC) of arbitrary function is 1 bit.
[van Dam 2013 (quant-ph/0501159) (Ph.D. thesis 1999) 106]
- $p_{\text {CHSH }}>(3+\sqrt{6}) / 6 \approx 0.908 \Longrightarrow$ CC of arbitrary function is 1 bit.
[Brassard, Buhrman, Linden, Méthot, Tapp, Unger 2006 291]
- $p_{\text {CHSH }}>(2+\sqrt{2}) / 4 \approx 0.854 \Longrightarrow$ Information causality is violated.
[Pawłowki, Paterek, Kaszlikowski, Scarani, Winter, Zukowki 2009 462]
- Brassard et al.'s result cannot be improved by generalizations of their techniques [Mori 2016].

Nonlocal box

Abstract device with two input ports and two output ports.

Isotropic nonlocal box

$$
P(a, b \mid x, y)= \begin{cases}\frac{p_{\text {CHSH }}}{2}, & \text { if } a \oplus b=x \wedge y \\ \frac{1-p_{\text {CHSH }}}{2}, & \text { if } a \oplus b \neq x \wedge y .\end{cases}
$$

This does not lose generality since

$$
\begin{aligned}
x \wedge y & =\left(x \oplus r_{1}\right) \wedge\left(y \oplus r_{2}\right) \oplus x \wedge r_{2} \oplus r_{1} \wedge y \oplus r_{1} \wedge r_{2} \\
& =a \oplus b \oplus e \oplus x \wedge r_{2} \oplus r_{1} \wedge y \oplus r_{1} \wedge r_{2} \\
& =\left(a \oplus x \wedge r_{2} \oplus r_{1} \wedge r_{2}\right) \oplus\left(b \oplus r_{1} \wedge y\right) \oplus e
\end{aligned}
$$

XOR game

Alice and Bob win iff $a \oplus b=f(x, y)$.

PR box gives a winning probability 1 [van Dam 2013 (arXiv 2005) (PhD. thesis 1999) 168] If the CHSH probability is 1 , a winning probability of any XOR game is 1 !

Any boolean function can be represented by a \mathbb{F}_{2}-polynomial.

$$
f(x, y)=\bigoplus_{i} A_{i}(x) \wedge B_{i}(y)
$$

Recall Alice and Bob have nonlocal boxes with

$$
\operatorname{Pr}(a \oplus b=x \wedge y)=1
$$

for any $(x, y) \in\{0,1\}^{2}$,

$$
\begin{aligned}
\bigoplus_{i} A_{i}(x) \wedge B_{i}(y) & =\bigoplus_{i}\left(a_{i} \oplus b_{i}\right) \\
& =\left(\bigoplus_{i} a_{i}\right) \oplus\left(\bigoplus_{i} b_{i}\right) .
\end{aligned}
$$

Bias

For a probability $p \in[1 / 2,1], \beta:=2 p-1 \in[0,1]$ is called a bias. In other word,

$$
p=\frac{1+\beta}{2} .
$$

Let β be a bias of the CHSH probability $\mathrm{p}_{\mathrm{CHSH}}$.

- $p_{\text {CHSH }}=3 / 4 \Longleftrightarrow \beta=1 / 2$.
- $p_{\text {CHSH }}=(2+\sqrt{2}) / 4 \Longleftrightarrow \beta=1 / \sqrt{2}$.
- $p_{\text {CHSH }}=1 \Longleftrightarrow \beta=1$.
- If X is ± 1 random variable, the bias (for a prob. of 1) is $\mathbb{E}[X]=\frac{1+\beta}{2}-\frac{1-\beta}{2}=\beta$.
- If X and Y are independent 0-1 random variables with bias (for a prob. of 0) β_{X} and β_{Y}, respectively, the bias of $X \oplus Y$ is $\beta_{X} \beta_{Y}$.

Constant winning probability

[Brassard, Buhrman, Linden, Méthot, Tapp, Unger 2006

$p_{\mathrm{CHSH}}>\frac{3+\sqrt{6}}{6} \approx 0.908 \Longleftrightarrow \beta>\sqrt{\frac{2}{3}}$
\Longrightarrow A winning probability of any XOR game is constant $\left(>\frac{1}{2}\right)$.
By using shared random bits $r \in\{0,1\}^{n}$ and Bob's private random bit $r^{\prime} \in\{0,1\}$,

$$
\begin{aligned}
& a=f(x, r) \\
& b= \begin{cases}0, & \text { if } y=r \\
r^{\prime}, & \text { otherwise. }\end{cases}
\end{aligned}
$$

$a \oplus b=f(x, y)$ with probability

$$
\frac{1}{2^{n}}+\left(1-\frac{1}{2^{n}}\right) \frac{1}{2}=\frac{1+2^{-n}}{2}
$$

Bias amplification by Maj_{3}

Bias amplification by noisy Maj_{3}

 $\operatorname{Maj}_{3}\left(z_{1}, z_{2}, z_{3}\right)=\frac{1}{2}\left(z_{1}+z_{2}+z_{3}-z_{1} z_{2} z_{3}\right)$$\mathbb{E}\left[y \operatorname{Maj}_{3}\left(z_{1}, z_{2}, z_{3}\right)\right]=\rho\left(\frac{3}{2} \epsilon-\frac{1}{2} \epsilon^{3}\right)$

Probability of succeeding of computation of Maj_{3}

$$
\operatorname{Maj}_{3}\left(z_{1}, z_{2}, z_{3}\right)=z_{1} z_{2} \oplus z_{2} z_{3} \oplus z_{3} z_{1}
$$

$$
\begin{aligned}
& \operatorname{Maj}_{3}\left(a_{1} \oplus b_{1}, a_{2} \oplus b_{2}, a_{3} \oplus b_{3}\right) \\
& =\left(a_{1} \oplus b_{1}\right)\left(a_{2} \oplus b_{2}\right) \oplus\left(a_{2} \oplus b_{2}\right)\left(a_{3} \oplus b_{3}\right) \oplus\left(a_{3} \oplus b_{3}\right)\left(a_{1} \oplus b_{1}\right) \\
& =\left(a_{1} \oplus a_{2}\right)\left(b_{2} \oplus b_{3}\right) \oplus\left(a_{2} \oplus a_{3}\right)\left(b_{1} \oplus b_{2}\right) \\
& \quad \oplus a_{1} a_{2} \oplus a_{2} a_{3} \oplus a_{3} a_{1} \\
& \quad \oplus b_{1} b_{2} \oplus b_{2} b_{3} \oplus b_{3} b_{1} \\
& =\left(\alpha_{0} \oplus \beta_{0} \oplus e_{0}\right) \oplus\left(\alpha_{1} \oplus \beta_{1} \oplus e_{1}\right) \\
& \quad \oplus a_{1} a_{2} \oplus a_{2} a_{3} \oplus a_{3} a_{1} \\
& \quad \oplus b_{1} b_{2} \oplus b_{2} b_{3} \oplus b_{3} b_{1} \\
& =\left(\alpha_{0} \oplus \alpha_{1} \oplus a_{1} a_{2} \oplus a_{2} a_{3} \oplus a_{3} a_{1}\right) \oplus\left(\beta_{0} \oplus \beta_{1} \oplus b_{1} b_{2} \oplus b_{2} b_{3} \oplus b_{3} b_{1}\right) \oplus e_{0} \oplus e_{1} . \\
& \quad \beta^{2}>\frac{2}{3} \Longleftrightarrow \beta>\sqrt{\frac{2}{3}} \Longleftrightarrow p>\frac{1+\sqrt{\frac{2}{3}}}{2}=\frac{3+\sqrt{6}}{6} \approx 0.908 .
\end{aligned}
$$

Generalization of Brassard et al's protocol

- Why Maj3 ?
- Replace Maj_{3} with arbitrary boolean function.
- Two important parameters:
- 2: Number of nonlocal boxes for the computation.
- 2/3: Threshold for the bias amplification.
- We showed that the Maj_{3} is the unique optimal function in a simple generalization [Mori, Phys. Rev. A 94, 052130, 2016].

Information causality

> [Pawłowki, Paterek, Kaszlikowski, Scarani, Winter, Zukowki 2009 462]

Information causality:

If Alice communicates \mathbf{m} bits to Bob, the total information obtainable by Bob cannot be greater than m.

Alice has 2^{n} bits. Bob wants to know one of Alice's 2^{n} bits. Alice doesn't know which bit Bob wants to know.

IC says that Alice has to send 2^{n} bits.

Above the quantum limit 0.854 , Alice only has to send 1.99^{n} bits.

Address function

$$
\operatorname{Addr}_{n}\left(x_{0}, \ldots, x_{2^{n}-1}, y_{1}, \ldots, y_{n}\right):=x_{y}
$$

where $y:=\sum_{i=1}^{n} y_{i} 2^{i-1}$.
Theorem ([Pawłowski, Paterek, Kaszlikowki, Scarani, Winter, Zukowski 2009 462]) There is an adaptive protocol of the XOR game for the address function with bias β^{n}.

Proof
Induction.
For $n=1$, from

$$
\operatorname{Addr}_{1}\left(x_{0}, x_{1}, y_{1}\right)=x_{0} \oplus y_{1}\left(x_{0} \oplus x_{1}\right)
$$

there is a non-adaptive protocol with bias β.

Address function

Proof (Cont'd).

$$
\operatorname{Addr}_{n}\left(x_{0}, \ldots, x_{2^{n}-1}, y_{1}, \ldots, y_{n}\right)=\operatorname{Addr}_{1}\left(z_{0}, z_{1}, y_{n}\right)
$$

where

$$
\begin{aligned}
& z_{0}:=\operatorname{Addr}_{n-1}\left(x_{0}, \ldots, x_{2^{n-1}-1}, y_{1}, \ldots, y_{n-1}\right) \\
& z_{1}:=\operatorname{Addr}_{n-1}\left(x_{2^{n-1}}, \ldots, x_{2^{n}-1}, y_{1}, \ldots, y_{n-1}\right) .
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Addr}_{1}\left(z_{0}, z_{1}, y_{n}\right)=\operatorname{Addr}_{1}\left(a_{0} \oplus b_{0} \oplus e_{0}, a_{1} \oplus b_{1} \oplus e_{1}, y_{n}\right) \\
& =\operatorname{Addr}_{1}\left(a_{0}, a_{1}, y_{n}\right) \oplus b_{y_{n}} \oplus e_{y_{n}} \\
& =a^{\prime} \oplus b^{\prime} \oplus e^{\prime} \oplus b_{y_{n}} \oplus e_{y_{n}} \\
& =a^{\prime} \oplus\left(b^{\prime} \oplus b_{y_{n}}\right) \oplus\left(e^{\prime} \oplus e_{y_{n}}\right) .
\end{aligned}
$$

This protocol has bias β^{n}.

Repetition

The 1 bit communication has error probability $\epsilon:=\frac{1-\beta^{n}}{2}$.
The m bits communication has error probability $\leq(2 \sqrt{\epsilon(1-\epsilon)})^{m}$.

From

$$
(2 \sqrt{\epsilon(1-\epsilon)})^{m}=\left(1-\beta^{2 n}\right)^{\frac{m}{2}}
$$

error probability goes to zero if

$$
m \gg \beta^{-2 n} .
$$

If $\beta>1 / \sqrt{2}$, then $\beta^{-2}<2$.

If CHSH probability is greater than the quantum limit,
1.99^{n} bits communication allows Bob to select arbitrary one bit from Alice's $\mathbf{2}^{\text {n }}$ bits.

Macroscopic locality

Nature should not exhibit nonlocal behaviour in macroscopic setting.

Microscopic experiment of nonlocality.

Macroscopic experiment of nonlocality (with precision $O(\sqrt{N})$). [Navascués, Wunderlich, 2009, 219]

Central limit theorem

For fixed x and y,
$\{(N(a ; x)-\mathbb{E}[N(a ; x)]) / \sqrt{N},(N(b ; y)-\mathbb{E}[N(b ; y)]) / \sqrt{N}\}_{a, b}$ weakly converges to the normal distribution. Assume

$$
\mathbb{E}\left[a_{x}\right]=0, \quad \mathbb{E}\left[b_{y}\right]=0, \quad \mathbb{E}\left[a_{x} b_{y}\right]=(-1)^{x \wedge y} \beta
$$

Then, the nonlocal box is macroscopically local if and only if $\exists \lambda \in[-1,+1]$ such that

$$
\Gamma(\lambda):=\left[\begin{array}{cccc}
1 & \lambda & \beta & \beta \\
\lambda & 1 & \beta & -\beta \\
\beta & \beta & 1 & \lambda \\
\beta & -\beta & \lambda & 1
\end{array}\right] \succeq 0
$$

This condition shows $\beta \leq \frac{1}{\sqrt{2}}$.

Toward characterizing the quantum correlation

Theorem ([Navascués and Wunderlich 2009, 219])
Quantum physics satisfies the macroscopic locality.
Theorem ([Navascués and Wunderlich 2009, 219])
There exists a macrospically local distribution with biased marginals attaining the Tsirelson bound. Hence, the macroscopic locality alone cannot characterize the quantum correlation.

Theorem
Macroscopic locality completely characterizes the bipartite quantum correlation with binary outputs with unbiased marginals.

