ランダムな 3 次元トポロジカル物質の相図とスケーリング則

Tomi Ohtsuki（大槻東巳）

Physics Division，Sophia Univ．，Tokyo

統計物理学想談会（第7回）
2019／3／5
－T．Ohtsuki and T．Ohtsuki：J．Phys．Soc．Jpn，85， 123706 （2016），86， 044708 （2017）．
－T．Mano and T．Ohtsuki：J．Phys．Soc．Jpn．，86， 113704 （2017）．
－S．Liu，T．Ohtsuki，R．Shindou：Physical Review Letters 116， 066401 （2016）．
－X．Luo，B．Xu，T．Ohtsuki，R．Shindou：Physical Review B 97， 045129 （2018）．
－X．Luo，T．Ohtsuki，R．Shindou：Physical Review B 98， 020201 （2018）．

Outline

- What are Chern insulators (CI)? \rightarrow 2D quantum Hall system
- Construction of 3D Weyl semimetal from 2D CI
- Phase diagram of 3DWSM
- Transfer matrix method
- Machine learning (cf. previous talk)
- Scaling behaviors
- Density of state scaling
- Unconventional scaling

Weyl semimetal

- $H=v\left(p-p_{0}\right) \cdot \sigma, E=v\left|p-p_{0}\right|$

- Many 3D examples have been discovered in the last few years. One possible realization is to stack two dimensional Chern insulator \rightarrow today's talk
- Effect of randomness?
- Scaling theory of semi-metal to metal transition induced by disorder
- Other unconventional scaling behaviors

Phase transition for layered Chern insulator

2D Chern Insulator

Weyl semimetal
$E=v k$

What are Chern insulators?

- Band gap insulator with peculiar edge states.
- (pseudo) magnetization is present, time reversal symmetry is broken.
- quantized Hall conductivity
- Belong to the quantum Hall universality class but without Landau levels.
- When stacked to the $3^{\text {rd }}$ direction, it shows rich phase diagram.

Model

- We start with a 2D spinless tight-binding model on a cubic (square) lattice, which comprises of s-orbital and $p_{+} \equiv p_{x}+\mathrm{i} p_{y}$ orbital. (is a Chern insulator with suitable parameters)
- We then pile it up along z-direction with an inter-layer coupling amplitude β.

2D Chern insulator

- proposed by Haldane, PRL. 61, 2015 ('88).
- Qi-Wu-Zhang model,PRB. 74, 085308 (‘06)

$$
\begin{array}{rlr}
\mathcal{H}= & \sum_{\boldsymbol{x}}\left(\left[\epsilon_{s}+v_{s}(\boldsymbol{x})\right] c_{\boldsymbol{x}, s}^{\dagger} c_{\boldsymbol{x}, s}+\left[\epsilon_{p}+v_{p}(\boldsymbol{x})\right] c_{\boldsymbol{x}, p}^{\dagger} c_{\boldsymbol{x}, p}\right) & \\
& +\sum_{\boldsymbol{x}}\left(-\sum_{\mu=x, y}\left(t_{s} c_{\boldsymbol{x}+\boldsymbol{e}_{\mu}, s}^{\dagger} c_{\boldsymbol{x}, s}-t_{p} c_{\boldsymbol{x}+\boldsymbol{e}_{\mu}, p}^{\dagger} c_{\boldsymbol{x}, p}\right)\right. & -W / 2<v_{s, x}, v_{\mathrm{p}, \boldsymbol{x}}<W / 2 \\
& +t_{s p}\left(c_{\boldsymbol{x}+\boldsymbol{e}_{x}, p}^{\dagger}-c_{\boldsymbol{x}-\boldsymbol{e}_{x}, p}^{\dagger}\right) c_{\boldsymbol{x}, s} & \varepsilon_{s}=-0.5 \\
& \left.-i t_{s p}\left(c_{\boldsymbol{x}+\boldsymbol{e}_{y}, p}-c_{\boldsymbol{x}-\boldsymbol{e}_{\boldsymbol{y}}, p}\right) c_{\boldsymbol{x}, s}+\text { h.c. }\right) & \varepsilon_{p}=0.5 \\
t_{s}=t_{p}=0.25 \\
t_{s p}=1 / 3
\end{array}
$$

$$
H_{\mathbf{k}}=a_{\mu} \sigma^{\mu} \text { with }\left\{\begin{array}{l}
a_{0}=0 \\
\left(a_{1}, a_{2}\right)=-\frac{2}{3}\left(\sin k_{y}, \sin k_{x}\right) \\
a_{3}=\frac{1}{2}-\frac{1}{2}\left(\cos k_{x}+\cos k_{y}\right)
\end{array}\right.
$$

$C h=\frac{1}{4 \pi} \iint d k_{x} d k_{y} \frac{\left(\partial_{x} a \times \partial_{y} a\right) \cdot a}{|a|^{3}}$

Hall conductivity

- $G_{x y} /\left(e^{2} / h\right)$
$=\operatorname{sgn}\left(\left(\varepsilon_{\mathrm{p}}-\varepsilon_{\mathrm{s}}\right) / 4 t_{\mathrm{sp}}\right)$ for $\left|\left(\varepsilon_{\mathrm{p}}-\varepsilon_{\mathrm{s}}\right) / 2\left(t_{\mathrm{s}}+t_{\mathrm{p}}\right)\right|<2$
$=0$

$$
G_{x y} /\left(e^{2} / h\right)=1
$$

$$
G_{x y} /\left(e^{2} / h\right)=0
$$

Introduce disorder \rightarrow Chern insulator to Anderson insulator transition

Stacking 2D Chern insulators

- finite region of diffusive metal regime appears with the increase of interlayer coupling

Cf. Layered quantum Hall system:
T. Ohtsuki et al., J. Phys. Soc. Jpn. 62, 224 (1993).
J. T. Chalker et al., Phys. Rev. Lett. 75, 4496 (1995).

phase diagram w.r.t. interlayer coupling and disorder

Liu, Ohtsuki, Shindou, PRL '16

Layered Chern Insulator

$$
\begin{equation*}
\boldsymbol{H}(\boldsymbol{k})=a_{0} \sigma_{0}+\boldsymbol{a} \cdot \boldsymbol{\sigma} \tag{7}
\end{equation*}
$$

with $\boldsymbol{\sigma}=\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)$ are Pauli matrices and

$$
a_{0}(\boldsymbol{k})=\frac{\epsilon_{s}+\epsilon_{p}}{2}+\left(t_{p}-t_{s}\right)\left(\cos k_{x}+\cos k_{y}\right)-\left(t_{s}^{\prime}+t_{p}^{\prime}\right) \cos k_{z}
$$

$$
a_{3}(k)=\frac{\epsilon_{s}-\epsilon_{p}}{2}-\left(t_{p}+t_{s}\right)\left(\cos k_{x}+\cos k_{y}\right)-\left(t_{s}^{\prime}-t_{p}^{\prime}\right) \cos k_{z}
$$

$a_{2}(k)=-2 t_{s p} \sin k_{y}$,
$a_{1}(k)=-2 t_{s p} \sin k_{x}$,
For simplicity,

$$
t_{s}^{\prime}+t_{p}^{\prime}=0, t_{s}-t_{p}=0 \quad \varepsilon_{s}-\varepsilon_{p}=-2\left(t_{s}+t_{p}\right)=-4 t_{s}
$$

$E= \pm\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right)^{1 / 2}$

clean system

Why is Weyl semimetal robust against randomness?
(by Syzranov et al., PHYSICAL REVIEW B 91, 035133 (2015))

- effective fluctuation $\Delta W=W /(\lambda / a)^{d / 2}=W(k a)^{d / 2}$
- Kinetic Energy $E=b k^{\alpha}$
- At band edge, $k \rightarrow 0, E \gg \Delta W$ for $d-2 \alpha>0$
- In case of Schrodinger Eq. $(\alpha=2)$, randomness becomes relevant at band edge when $d<4$.
- In case of Dirac/Weyl semimetal ($\alpha=1$), randomness becomes irrelevant at band edges when $d>2$.
- RG analysis, Goswami et al. '11, Syzranov et al. '16

How did we determine the phase diagram?

- Localization length calculation by transfer matrix method along z-direction.

3D Weyl semimetal (3DWSM)

- semimetal \Rightarrow Existence of Dirac/Weyl nodes
- Pairs of Weyl nodes move as a function of mass and disorder
- Fermi arcs appear on specific surfaces

$|\psi(\vec{x})|^{2}$
 diagonalization for $80 \times 80 \times 80$ system

$\beta=0.45$
$\mathrm{W}=0.8$
$\beta=0.45$
$\mathrm{W}=1.7$
$\beta=0.6$
W=1.5

Phase diagram for 3DWSM: real space analysis

T. Ohtsuki, T. Ohtsuki, JPSJ ‘16, ‘17

$E \approx \mathbf{0}, \mathrm{fbc}$ for \boldsymbol{x} direction

S.Liu, T.Ohtsuki, R.Shindou, PRL'16

Integrate along y

- Can we distinguish WSM II /WSMIII?

Application to Weyl semimetals

$32 \times 32 \times 32$, Conv-Pool-Conv-Pool (Mano et al., unpublished) $|\psi(\vec{x})|^{2}$ vs. $|\psi(\vec{k})|^{2}$

DM/CI/WSM (II, III), real space

DM/CI/WSM (II, III), \boldsymbol{k}-space

phase diagram

Density of state scaling for WSM to Metal

 (Kobayashi et al., PRL14, Dirac semimetal in 3D TI)Number of states below $\varepsilon \quad N(\epsilon, L)=F\left(L / \xi, \epsilon / \epsilon_{0}\right)$,
Relate energy scale to length scale via z $\epsilon_{0} \propto \xi^{-z}$.

In thermodynamic limit,

$$
N(\epsilon, L)=(L / \xi)^{d} f\left(\epsilon \xi^{z}\right) .
$$

DOS per volume is derived as

$$
\rho(\epsilon)=\frac{1}{L^{d}} \frac{d N(\epsilon, L)}{d \epsilon},
$$

$$
\rho(\epsilon)=\rho(-\epsilon)=\xi^{z-d} f^{\prime}\left(|\epsilon| \xi^{z}\right)
$$

Distance from the critical point $\delta=\left|W-W_{\mathrm{c}}\right| / W_{\mathrm{c}}$

$$
\xi \sim \delta^{-\nu}
$$

$$
\rho(\epsilon) \sim \delta^{(d-z) \nu} f^{\prime}\left(|\epsilon| \delta^{-z \nu}\right)
$$

From $\rho(\epsilon) \sim \delta^{(d-z) \nu} f^{\prime}\left(|\epsilon| \delta^{-z \nu}\right)$.
Weyl/Dirac SM $\rho(\epsilon) \sim \delta^{(d-z) \nu}\left(|\epsilon| \delta^{-z \nu}\right)^{d-1}=|\epsilon|^{d-1} \delta^{-(z-1) d \nu}$. metallic $\quad \rho(0) \sim \delta^{(d-z) \nu}\left(|\epsilon| \delta^{-z \nu}\right)^{0}=\delta^{(d-z) \nu}$. Fradkin, '86

Critical point

$$
\rho(\epsilon) \sim \delta^{(d-z) \nu}\left(|\epsilon| \delta^{-z \nu}\right)^{(d-z) / z}=|\epsilon|^{(d-z) / z} .
$$

$$
\begin{aligned}
(3-z) / z & =1.00 \pm 0.15 \\
z & =1.5 \pm 0.1
\end{aligned}
$$

Estimates of exponents

For DSM

$$
\rho(\epsilon) \sim c(\delta)|\epsilon|^{2},
$$

For metal

$$
c(\delta)^{-1} \sim \delta^{3(z-1) \nu_{\mathrm{DSM}}}
$$

$\rho(0) \sim \delta^{(d-z) \nu}$

$$
v \sim \delta^{(z-1) \nu} \approx \delta^{0.4}
$$

$$
\begin{aligned}
3(z-1) \nu_{\mathrm{DSM}} & \simeq 1.16 \pm 0.05, \\
\therefore \nu_{\mathrm{DSM}} & \simeq 0.81 \pm 0.21 .
\end{aligned}
$$

$$
\begin{aligned}
(3-z) \nu_{\mathrm{M}} & \simeq 1.36 \pm 0.09 \\
\therefore \nu_{\mathrm{M}} & \simeq 0.92 \pm 0.13
\end{aligned}
$$

single parameter scaling plot

$$
\rho(\epsilon) \sim \delta^{(d-z) \nu} f^{\prime}\left(|\epsilon| \delta^{-z \nu}\right) .
$$

Scaling laws

Distance from the critical point: $\quad \delta=\left|W-W_{\mathrm{c}}\right| / W_{\mathrm{c}}$
Diverging length scale: $\xi \sim \delta^{-\nu}$,
Vanishing energy scale: $\epsilon_{0} \propto \xi^{-z}$.

Weyl semimetal

Diffusive Metal

DoS @ $\varepsilon=0$
0
$\delta^{(d-z) v}$
Effective velocity
$\delta^{(z-1) v}$
Diffusion Constant @ $\varepsilon=0$
∞
Conductivity σ @ $\varepsilon=0$
$\delta^{(d-2) v}$
$\delta^{(d-2) v}$
The same scaling law
DoS @ Critical point: $\rho(\varepsilon) \sim|\varepsilon|^{(d-z) / z}$

Conductivity scaling: from WSM side

Weyl semimetal to $W_{c}: D=v^{2} \tau / d, \rho \propto 1 / \tau \rightarrow$

$$
\sigma(E=0) \propto \bar{v}^{2} \text { with } \bar{v} \propto \delta^{(z-1) \nu}
$$

assuming $z=d / 2$, we recover $\quad \sigma(0) \sim \delta^{(d-2) \nu}$,

Scaling behaviors in other parts of the phase diagram

- Quantum Multicritical point (QMCP) is encompassed by three phases: band insulator, renormalized Weyl semimetal and diffusive metal phases
\checkmark BI-WSM phase transition is controlled by FPO in the clean limit; unconventional scaling X. Luo, et. al. Phys. Rev. B 98, 020201(R) (2018)

Layered Chern insulator

Magnetic dipole model for BI-WSM transition

$$
\begin{gathered}
\mathcal{H}_{\mathrm{eff}}=\int d^{2} \boldsymbol{x}_{\perp} d x_{3} \psi^{\dagger}(\boldsymbol{x})\left\{-i v\left(\partial_{1} \boldsymbol{\sigma}_{1}+\partial_{2} \boldsymbol{\sigma}_{2}\right)\right. \\
\left.+\left((-i)^{2} b_{2} \partial_{3}^{2}-m\right) \boldsymbol{\sigma}_{3}\right\} \psi(\boldsymbol{x}),
\end{gathered}
$$

$\mathrm{m}>0$: WSM phase
MM and AM locate at $\left(p_{1}, p_{2}, p_{3}\right)=\left(0,0, \pm \sqrt{m / b_{2}}\right)$.

B. Roy, et.al. arXiv:1610.08973 (2016) X. Luo, et. al. Phys. Rev. B 97, 045129 (2018)

Effect of Disorders on Magnetic dipole model

$$
\begin{gathered}
\mathcal{H}_{\mathrm{eff}}=\int d^{2} \boldsymbol{x}_{\perp} d x_{3} \psi^{\dagger}(\boldsymbol{x})\left\{-i v\left(\partial_{1} \boldsymbol{\sigma}_{1}+\partial_{2} \boldsymbol{\sigma}_{2}\right)\right. \\
\left.+\left((-i)^{2} b_{2} \partial_{3}^{2}-m\right) \boldsymbol{\sigma}_{3}\right\} \psi(\boldsymbol{x})
\end{gathered}
$$

the model has a quadratic dispersion along the dipole direction, and a linear dispersion along the in-plane direction in the clean limit

b : block size in k-space

unconventional scaling form of conductance along BIWSM transition

$$
\begin{gathered}
x_{z}^{\prime}=b^{1 / 2} x_{z} \\
x_{\perp}^{\prime}=b x_{\perp}
\end{gathered}
$$

$$
\left\{\begin{array}{l}
\rho^{\prime}=b^{-\left(d-\frac{1}{2}-z\right)} \rho \quad\left(V^{\prime}=b^{\left.d-\frac{1}{2} V\right)}\right. \\
D_{\perp}^{\prime}=b^{-(z-2)} D_{\perp}, D_{z}^{\prime}=b^{-(z-1)} D_{z} .
\end{array}\right.
$$

With Einstein relation: $\sigma_{\mu}=e^{2} D_{\mu} \rho$, we obtain:

$$
\sigma_{\perp}^{\prime}=b^{-d+\frac{5}{2}} \sigma_{\perp}, \sigma_{z}^{\prime}=b^{-d+\frac{3}{2}} \sigma_{z}
$$

$$
\begin{aligned}
& G_{\perp}^{\prime}\left(L_{z}^{\prime}, L_{\perp}^{\prime}, \Delta^{\prime}, m^{\prime}\right)=G_{\perp}\left(L_{z}, L_{\perp}, \Delta, m\right), \\
& G_{z}^{\prime}\left(L_{z}^{\prime}, L_{\perp}^{\prime}, \Delta^{\prime}, m^{\prime}\right)=G_{z}\left(L_{z}, L_{\perp}, \Delta, m\right), \begin{array}{l}
\text { set } m \text { to be tiny, } \\
m^{\prime}=b^{-1} m=1
\end{array} \\
& \left.\begin{array}{l}
L_{z}^{\prime}=b^{\frac{1}{2}} L_{z} \\
L_{\perp}^{\prime}=b L_{\perp} \\
\Delta^{\prime}=b^{-y_{\Delta}} \\
m^{\prime}=b^{-1} m
\end{array}\right) G_{\mu}\left(L_{z}, L_{\perp}, m\right)=\Phi_{\mu}\left(m^{1 / 2} L_{z}, m L_{\perp}\right)
\end{aligned}
$$

numerical test for unconventional scaling form of conductance

anisotropic system size:
 $L_{\perp}=\eta L_{z}^{2}$

$$
G_{\mu}\left(L_{z}, L_{\perp}, m\right)=f\left(m L_{z}^{2}\right) \quad \mu=z, \perp \quad m=\beta-\beta_{c}
$$

Phys. Rev. B 97, 045129 (2018).
Phys. Rev. B 98, 020201(R) (2018).

Summary

- Rich phase diagram: Chern insulator, Anderson insulator, Weyl semimetal, diffusive metal
- Phase diagram: machine learning in real and kspace
- Scaling behaviors: nontrivial behaviors of
- Density of states scaling for WSM/Metal, similar to Coulomb glass/metal transition.
- Conductivity scaling.
- 3D Topological insulator?

