キャパシティ活用度の分析
——貢献利益アプローチ——
狩野 勇

固定間接費差異分析 (analysis of fixed overhead variance) のために使われている術語の混亂。計算方法の多様性は、原価計算のうちでもこの面に未だ研究の余地が残されていることを物語っている。さきに私は、現在の論文に見られる多彩な各種の分析法をとりあげ、それらを比較検討したが、その結果において固定間接費の分析がこの面の研究の大きな焦点になることを指摘した。本稿は、その根拠を果たし得なかった固定間接費の詳細な分析を「キャパシティ活用度」に関連させて述べてみたいと思う。

1 能率差異と固定費

ビヤマン (H. Bierman) による固定間接費は次のよう分析される。

\[
\text{予算差異} = \text{実際固定費} - \text{固定費予算}
\]

\[
\text{換算差異} = \text{正常固定費率} \times (\text{正常時間} - \text{実際時間})
\]

\[
\text{能率差異} = \text{正常固定費率} \times (\text{実際時間} - \text{標準時間})
\]

* ここに「正常固定費率」とは、一般に言われる固定間接費の標準配賦率のことである。ここであえて「標準」の語を避ける時代は、当該分析法では、「標準」の語が別の場合に用いることがあるからである。この分析法では、正常配賦率を算出するために想定された換算度（すなわち予算編成の基盤となった換算度）を「正常換算度」、その正常換算度について見直された予算額を「正常予算」と呼ぶことになっている。

**「標準時間」というのは、実際に生産された製品の量から推定して、その量ならばこの時間でできるべきである、というその時間を指している。

この分析法は、従来、わが国で説かれているそれと比べて勝っているが、中でも固定費の分析に積極的に挑戦しようとするアプローチは高く評価されてよい。ただ、この分析法で気にかかるのは、かつて私も指摘したように「固定費の能率差異」についてである。ここでの固定費の能率差異 (efficiency variance) とは、次のような内容をもっている。すなわち、選行された実際時間には、通例、能率が含まれているが、もし仮に、この実際時間が標準的な能率で運行されたとすれば吸収されたであろう固定費の部分であることである。それだけに固定費が配賦されるはずであった。私見によれば、このような意味での能率差異は、たとえば計算技術的には算出しうるとしても、その経済的意義は薄いものと言わざるを得ない。なぜならば直接材料費、直接労務費、変動間接費に関しては、その能率的な利用が原価換算額に影響するか能率差異の計算に意味があるが、固定間接費の換算額、短期的には能率によって影響されないわけではないから計算上能率差異を算定しても、それに特に意義が認められないのである。さらに言えば、能率に対して責任をもつ管理者は、変動費の統制に関しては報告書を通じてその所在に気付くはずであるが、歴史的原価 (historical costs) を基調とした「固定間接費不率額」といったデータからは、直接的管理に役立つ情報を察知しようと努力されないのである。
キャパシティ活用度の分析

そこで、前記分析体系から固定費の能率差異を除外したい。また、予算差異（budget variance）の算出については、一般に異論がないので、これも論考の対象からはすすことにする。残るのは、ビヤマンの分析体系では操業差異がであるが、これを一括的に管理不能なものとして処理してしまわず、基本でそれをより詳細に分析してみたいと思うのである。

2 長期ファクターと短期ファクターの区別

キャパシティの二つの側面——取得と活用

経営体は、生産・販売のためのキャパシティ（capacity）を支える人材と財物から成っている8。キャパシティを支えるこれらの要素は、長期にわたって業績に影響を与える多額の支出を余儀なくする。したがって経営管理者が留意すべきは、注意深く練られた計画に基づく財物の賢明な取得であり、毎期の利益を最大ならしめるための財物の適切な活用である。

固定費の発生が、長期間にわたって経営に及ぼす影響を十分研究した後、資本予算が決める。換言すれば多くの固定費は資本予算の決定によって定まる。この資本予算すなわちキャパシティの規模の選択は、結局のところ季節変動、景気循環、製品需要の基本的動向といった諸ファクターをいかに勘酌し組み合わせるかによって決定される。

キャパシティの取得とフォロー・アップ

経営者が、年間200,000単位の製品を生産できる工場の建設を決めたと仮定する。この工場のその規模を正当化するために使われた需要予想は、こうした五年間、年平均160,000単位であった。にも拘らず、このような大規模な工場の建設を決めたのは季節的変動、景気循環、製品需要の動向を観察すると、ピーク時には200,000単位の需要が見込まれるので、その需要に応じうる生産能力を備えておくことが最も経済的な道であると経営者が判断したからであった。

さて、設備取得の拠点である（すなわち、計画立案に使われた）活動水準（activity level）と実際の設備活用状況との程度一致しているかを知ることが肝要である。フォロー・アップ（follow-up）は、過去の長期計画決定の正確性を評定したり、将来における類似の決定の質を改善するのに甚だ有意義であり、そのための比較基準は、設備取得を認めた資本予算におけるある特定の年の活動水準となる。比較は、プロジェクト別に、プロジェクトに従って予算化されたスケジュールがどの程度満たされているかを知るために行わねばならないが、そのような比較は、必ずしも常規的・全体的なインフォメーション・システムに組み入れる必要はあるまい。

さきにあげた正常活動（normal activity）160,000単位は季節変動、景気循環を含む長さの期間における、平均的販売需要に応ずるために必要な活動水準である。すなわちそれは、長期計画（long-range plan）の基盤として使われるべき平均的生産水準である。正常活動160,000単位と、当期予算販売量（currently budgeted sales）もしくは実際販売量（actual sales）との比較は、長期計画決定が当期に与えている影響を調べるのには至上の基準だといえよう。しかし、正常活動は、特定の年のフォロー・アップに関してはあまり意味のない平均値であることを考慮してはならない。つまりそれは、各期の業績を判断するための指標としては有益ではない。以下に述べるところは、期別の活動計画および統制に焦点を合わせてあるので、正常活動の問題には特に触れないこととする。

3 現行分析法の難点

歴史的原価たる固定費配賦率の適用
一般には、歴史的原価により計算した固定費に基づいて配賦率 (unit rate) を求め、その配賦率を使って製品原価を計算したりポリューム差異 (volume variance) を算定したりする (たとえ、見積配賦率を用いるとしても次に述べるような難点は避けられないから)。実際配賦率を見積配賦率かといった相違は今の場合には重要な論点ではない。

製造間接費の金額は元で 131,200 と仮定する。それを生産量で除して単位原価を算出するが、この場合、除数すなわち生産量としていかなる数値をとるかが大きな問題となる。この点に関しホーリング (C. T. Hornigren) は次のように述べている。

A —— 適用として実現可能最大能力を用いる場合

単位原価 = 製造間接費合計 / 生産可能最大能力

= 131,200 / 200,000 単位 = 656 程度

B —— 適用として予算売価を用いる場合

単位原価 = 製造間接費合計 / 総合売価

= 131,200 / 164,000 単位 = 80 程度

経営計画を立てたり統制を行なったりするために歴史的原価を使うことはっぱぱの欠点を免れない。ただし歴史的原価は、保有キャパシティ (existing capacity) の当期活用度 (current utilization) を知るという問題には直接的には無関係だからである。例えば上記二種の単位原価を使って、それぞれポリューム差異を算出すると次のようにになる。

A —— 単位原価 656 の場合

製造可能最大能力 200,000 単位、固定費 …… 131,200
実際生産・販売量 140,000 単位。

単位原価 = 656 …… 91,840

ポリューム差異 = 60,000 単位 × 656 …… 39,360

B —— 単位原価 80 の場合

総合予算における販売額 164,000 単位、

固定費 …… 131,200
実際生産・販売量 140,000 単位、

単位原価 = 80 …… 112,000

ポリューム差異 = 24,000 単位 × 80 …… 19,200

ところで、伝統的な計算方法では、固定費率 (fixed cost rate) は歴史的原価、中でも製造関係の原価のみを分子として計算されるから固定費や管理費 (fixed selling and administrative costs) は——それは莫大な額に上る例が多いが——製品原価に算入されず、またそれらの原価はキャパシティを勘案して決められた生産・販売量と実績との差異分析に際して無視されている。歴史的原価による伝統的計算方法には、まずこの点に問題があると言わなければならない。

次に、単位原価は前記計算式の分母によって影響される。すなわち分母として実現可能最大能力をとるか、予算売価をとるかによって単位原価が異なってくる。ということは、分母の選択が製品原価さらには間接費差異の金額に影響を与えることになるのである。このような数値の相違を納得できるように理的に解明することは難しい。

歴史的原価によるポリューム差異の本質

通則の原価計算システムは、(1) 計画および統制のための原価集計、(2) 品卸品評価および利益算定のための製品原価算出を同時に行なうとする。変動費に関しても、(1) および(2) に対するアプローチはいずれも直接材料費、直接労務費、変動製造間接費の単価の使用を伴う。発生したすべての変動費は製品に割り当てられて変動費の総額に等しいはずであるからポリューム差異は生じないところが、同じアプローチが固定費について用いられるとき、そこに問題が発生する。

ポリューム差異は、統制のための会計 (予算が使われる) と、製品原価算出のための会計 (製品に間接費を配賦するために費用率が使われる) との間の転換の故に生じると言ってよい。製品原価算出のための費用率は人為的な産物である。統計的には、製品原価算出のためにはすべての原価は同質のものとみなされ、コスト・ビヘイビアのパターン (cost behavior patterns) の相違は考慮外におかれる。かくして、固定費は、製品原価計算においては、あた
キャパシティ活用度の分析

ともがそれが変動費であるかのごとく (as if it were a variable cost) 計算されるのである。そのため、配賦率の算出に用いられた分母である単位活動水準と実際活動水準が一致しない場合には、常にポリューム差異が現われることになるのである。

この点から歴史的原価を基調としたポリューム差異は、原価計算システムの中にある、統制目的 (control purpose) と製品原価算定目的 (product costing purpose) との秘訣の橋渡し (book-keeping bridge) をする以外の何物でもない、という見方も成り立つであろう。そのような差異を毎期の計画および統制に資するために検討するということは土台無理な話なのである。問題の核心はここにある。固定費を変動費のように単純な分割することは妥当でないであろう。固定費は、通常、大きな塊で発生するものであり、それは本来製品一単位の生産のために特別に発生するものというよりも、むしろ販売ないし生産キャパシティの大きな集合体を支える (providing big chunks) ために発生するものと考えるべきだからである。このようにビヘビアの異なる変動費と固定費の差異分析にあたって特に留意しないのは論理的ではない。

それでは、“失われた単位当り限界利益”よりも理論的には下位の概念だと思うよう。すでに何度か述べたように、変動費を除き固定費の総額は生産・販売量の変動によって影響されない。保有設備の不動な利用は毎期の固定費の発生額とは無関係である。目標たる生産・販売量の水準に到達し得なかったことによる経済的効果 (economic effects) は、失われた貢献利益 (contribution margins) によってこそ直接的に測定されるのである。しかし、毎期の計画・統制のために歴史的原価を用いるアプローチにいうと、貢献利益の総額を最大化する目的を達成していると言われるを得ない。これらは別個の経営的問題であって、現存キャパシティの活用という問題は、より直接に後者に関連するものと考えられるのである。歴史的原価アプローチは、過去の資本運用の決定を評価するためのいわば前向きの意味しかなく、貢献利益アプローチこそは、毎期の計画・統制にとっては前向きの意味をもつものと言えよう。

4 短期計画と統制

アクティブティの測定

キャパシティに関するいくつかのインフォメーションが経営活動の計画・統制にとって有益であろうか。それは次のようなものだと思われる。

既述のように、実現可能最大能力というの

<table>
<thead>
<tr>
<th>表 1 キャパシティ活用度の分析体系（数量表示）</th>
</tr>
</thead>
<tbody>
<tr>
<td>計算・利用の時期</td>
</tr>
<tr>
<td>総合予算が編成される時</td>
</tr>
<tr>
<td>P = 実現可能最大能力</td>
</tr>
<tr>
<td>M = 総合予算の販売量</td>
</tr>
<tr>
<td>期末: 実現業績評価の時に</td>
</tr>
<tr>
<td>M = 総合予算の販売量</td>
</tr>
<tr>
<td>S = 計画生産量（受注量）</td>
</tr>
<tr>
<td>A = 実際 生産 量</td>
</tr>
<tr>
<td>（生産され販売されたもの）</td>
</tr>
</tbody>
</table>

96
キャパシティ活用度の分析

は、工場もしくは部門が、現実に最適の水準で活動した時の状態を考えたものであるが、それは理想的生産力に、避け得ない作業の中断、例えば段取り、作業者の交替といった準備・修繕・待時間などを考慮して定められる。ここで総合予算（master budget）とは、経営全般に関わる当該年度の財務および活動計画（financial and operating plans）を意味している。計画生産量とは、受注し直ちに当期の生産部門のスケジュールに組み入れた量のことである。これは、予算量と一致しないだろう。この最良、マーケティング部門の何らかの事情によって、結局、予算量を販売し尽すことができない例が多いからである。ここで実際生産量とは、生産し顧客に引き渡した量を指すものと仮定する。なお、前表は、説明を簡単にするために、在庫水準に変化なく（ということは当期に生産されたものはすべて当期に販売されたことになる）。製品は一種で、部門も一つであることを前提として作成してある。

予期されるアイドル・キャパシティ差異
アイドル・キャパシティ差異（P-M）は、総合予算が編成される時に算定されるものである。経営者はその時点で、早目に、アイドル・キャパシティに関する一定の目安を得ることができるし、また、このアイドル・キャパシティに対する活用可能性を考えた上で計画を修正することもできる。アイドル・キャパシティの算定は、いわば妥協の過程であって、そこにおいて原計画の総合予算が修正されることもありうる（例えば売価変更などを通じて）。アイドル・キャパシティ差異（idle capacity variance）についての責任の一部は市場開発を担当する販売部門に、また他の一端は将来の需要を見通して設備投資を行なった経営者に帰すであろう。もちろん、そのほかに、社会・一般的な経済状態、競争関係等もこれに無関係ではない。問題は、現存設備を保有するに至った過去の決定により、当期の計画・統制のためにとりうる自由が制限される点にある。そこで当期の計画は、与えられた設備の適切な活用というところに焦点を合わせて立てなければならない。

実現可能最大能力は、総合予算の編成に当って重要な役割を果たす。しかしながら期末には、むしろ総合予算が業績評価の鍵となるだろう。

NAA. Research Report No. 39 (p. 24) は、実現可能最大能力と生産計画との比較によって業績を評価するよう提唱している。それは「追加のキャパシティ・コストの発生なしに到達しうる増加製品量を示すものだからである」という。業績評価の基準としての実現可能最大能力の提唱は、経営者が常に後退設備全体に注意を払うべきことを指摘している点では正しい。しかし、経営者にとって最も重要な「時間」は恐らく総合予算を編成する場面である、業績評価の場面にあるのである。その点で私はNAAの主張に全面的に賛同することはできない。

なお、特に付言しておかなければならない事がある。それはここで主張としている実現可能最大能力と本稿で紹介した分析法との関係である。そこでは「正常予算額」と「正常時間」を出発点として分析が行なわれた。その場合の「正常時間」というのは別言すれば「総合予算編成のための基準値（標準）」のことであって、前記例解の（ただし金額ではなく数値で表示してある）164,000単位がこれに相当する。ということは、1の分析では実現可能最大能力の問題は分析対象からはずれていることになるのである。

ボリューム差異
当期の生産計画に組み入れられた数値は148,000単位であったが、実際には140,000単位が生産・販売されたこと、その業績をどのように評価したらよいかであろうか。表
1 では、予算販売量と実際販売量との差をポリューム差異（M-A）として示している。次いでこのポリューム差異がマーケティング差異（M-S）と製造差異（S-A）とに細分される。前者は、通常、販売部門管理者の責任にかかわるものであり、また後者は、通常、製造部門管理者の責任にかかわるものである。

マーケティング差異（M-S）は、販売業績の一環として通常的に計算され分析される。マーケティング差異（marketing variance）の発生原因としては、不透明な広告や販売促進策、経済環境や競争状態の予期せざる変化、見積りの不正確、販売員の不足、不透明な販売活動が含まれられるよう。

ところで、実現可能最大能力よりも、むしろ総合予算における販売量のほうが、経営の業績を評価するのに密接な関係をもつ。管理者達は、総合予算そのものが当期の販売能力を慎重に考慮してきめるところから、当然、予算量の達成により大きな責任を感じるはずである。マーケティング差異が、何らかの意味を持たなければならない、少なくとも、それが販売余地の存在をあらゆるに示すものであることが好ましい。

ある種の差異、例えば実現可能最大能力から計画販売量を差し引いて実現可能最大能力差異といったものを算出することも可能である。しかし、この差異は、二種のアイテムの混合したものを（すなわち、マーケティング差異と予期されるアイテム・キャパシティ差異）から、その有用性は上記マーケティング差異に劣ることは言うまでもない。

製造部門の管理者は、二重の重要な責任を負っている。一つは生産本数を最大限にあげることであり、もう一つは生産スケジュールにそって仕事を進めていくことである。

生産本数は、変動原価については基準および予算の助けを借りて監視される。他方、生産スケジュールに従って仕事がなされたかどうかは、スケジュールに組み込まれた生産計画に基づいて計測される。

5 差異の物量表示と金額表示

金額表示の限界と利用

一定のキャパシティの下において、販売のための製品量の増加は、単位当たり貢献利益の新たな累積となるから、完売的に、企業所得を増大せめることになる。短期的にみれば、固定費は生産量の変動によって影響されない。したがって、キャパシティを十分に活用しなかった場合には、使われなかったキャパシティに対応する製品量の貢献利益相当分だけ所得増加が失われたことになる。

1 これまでは、差異の金額表示（monetary measures）を意識的に避けている。それは次のような理由に基づいている。

第一に、物数数値（physical measures）に
キャパシティ活用度の分析

よってものを考え判断する習慣の現場の人々に対し、金額によって統制の規準を示すこととは不要であり、また混乱を招くものとなられるからである。一般に、指針は、それに関係する人々に最もよく理解される形で表現するのがよい。ゆえに、物量数値による差異の表示は、管理者が効果的、能率的に仕事をするのに有益だと思われる。もし、仕事の目標を示すのに、金額表示によるデータなしで間に合うならば、あえて金額表示をするには及びえないであろう。

第二に、金額表示（それは内容的には機会原価である）には実践上いろいろ難しい問題がある。例えば、しばしば同一の貢献利益というものが前提条件とされる。ところが、製品量（すなわち販売量とみなす）の増加は、通常、売値を切り上げるか、あるいは特別の出費により受注を増やしてはじめて可能となる。このような場合には、差異の金額表示はそれに応じて修正しなければならないといった煩わしさを伴うであろう。

機会原価算定のための貢献利益アプローチ
未活用のキャパシティに関するコストを測定する最高の方法は何であろうか。固定費の総額は、生産が 140,000 単位であると 164,000 単位であるが、それにかわる金額となる。つまり、短期的視点に立って経営費用をみるならば、未活用のキャパシティは、会計担当者によって経常的に記録される原価総額に影響しないのである。しかしながら、経済的観点から見れば、キャパシティを十分に活用しないために機会原価（opportunity cost）が発生したと考えられ、それは失われた貢献利益によって測定されるよう。特にの場合、例えば販売力が製品販売のためにフルに発揮され、あるいはキャパシティが、もはや利用の余地がない程活用されれば、機会原価は零になるだろう。けれども、このような場合はむしろ稀だと思われる。

キャパシティ活用度の分析テクニックとして、貢献利益法を用いるべきことを強く提唱しているのはホーングレンである。しばらくの間、氏の所説を追求みたいと思うが10)。

ある製品単位の売値を $10.00、変動費を $8.00、しあがって貢献利益を $2.00 と仮定する。表 2 は差異分析を金額で示したものである。

表 2 キャパシティ活用度の分析（金額表示）

<table>
<thead>
<tr>
<th>総合予算の販売高</th>
<th>140,000 単位、単位当たり貢献利益 $2.00、計 $280,000</th>
<th>マーケティング差異</th>
<th>$32,000</th>
<th>ボリューム差異</th>
<th>$48,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>計画生産高</td>
<td>148,000 単位、単位当たり貢献利益 $2.00、計 $296,000</td>
<td>製造差異</td>
<td>$16,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>実際生産・販売費</td>
<td>140,000 単位、単位当たり貢献利益 $2.00、計 $280,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

なお、固定費の総額を $200,000 と仮定し、上記分析を整理しなおしてみると表 3 のようになる。

表 3 キャパシティ利用不足のために失われた利益

<table>
<thead>
<tr>
<th></th>
<th>総合予算 140,000 単位</th>
<th>実際 140,000 単位</th>
<th>失われた利益</th>
</tr>
</thead>
<tbody>
<tr>
<td>売上高</td>
<td>$1,640,000</td>
<td>$1,400,000</td>
<td></td>
</tr>
<tr>
<td>変動費</td>
<td>$1,312,000</td>
<td>$1,120,000</td>
<td></td>
</tr>
<tr>
<td>貢献利益</td>
<td>$328,000</td>
<td>$280,000</td>
<td>$48,000</td>
</tr>
<tr>
<td>固定費</td>
<td>$200,000</td>
<td>$200,000</td>
<td></td>
</tr>
<tr>
<td>正味利益</td>
<td>$128,000</td>
<td>$80,000</td>
<td>$48,000</td>
</tr>
</tbody>
</table>

99
キャパンティ活用度の分析

機会原価を算定するために貢献利益を使う方法は、総合算出における販売高予想が、実現可能最大能力に近い場合に最も理解し易い。例えば、総合算出が実現可能最大能力200,000単位の水準を基盤に編成され、不能率のために194,000単位の実績に終わったものと仮定すると、この製造差異に基づす経済的影響（economic impact）は、$2.00×(200,000単位−194,000単位)＝$12,000……失われた貢献利益、算定される。

前述した差異は、毎年度の経営方針を示す指標とする予算を、いろいろな角度から再検討したり改変したりするのに基づく有益である。たとえば、その差異が販売・生産活動の管理のために直接的に活用されなかったとしても、それらの差異は予算編成過程においておのおの意味をもつといううる。ただし、それは、総合算出編成に当って問題の所在を明確に指示するから、必然的により慎重な算出編成を促すことになると思われるからである。なお、現在実行中の総合算出の迅速な改訂も、差異の発生状況を常時把握していることによってはじめて可能になるであろう（経済環境の急変によって、算出の期中改訂が必要となることがある）。

ちなみに、前例では、1回、1年を仮定したが、同じアプローチは月次に、あるいはフォータリーに実施することができる。

機会原価アプローチ

今まで述べてきたところは、キャパンティが、いかによく利用されているかを計定する問題の本質をなるべく簡潔に示すことを意図したものであった。そのために、製品の種類を一覧にしぼり、またその他の与件を簡易化し、かつ一定の与件が変動するものとみなすなど、あまりにも前提条件を単純化し過ぎたさらいがあった。ところで現実には、ほとんどの企業は、多種類の製品を生産・販売し、より多くの拘束条件をもち、それが相互に作用する中で活動している。したがって、上述したように必ずしも容易には差異の把握・原因の分析ができないであろうと推察される17)。

差異分析を効果あらゆるためには、実践的には、まず特定の意思決定モデル（specific decision model）に適合した報告制度を設定する必要がある。次いで、各種のファクトを相互に関連しながら変動することを考慮した機会原価算定方法を考えてなければならないであろう。すなわちリニア・プログラミング（linear programming application）の技法の適用が必要となるのである18)。

むすび

固定間接費差異の分析は、結局のところ、キャパンティ活用度の分析だということになる。そしてそれは、キャパンティがどの程度有意に使用されたか（effectiveness）の問題であって、いかに能率的に使用されたか（efficiency）という問題ではない19)。キャパンティ的活用度を分析するに当たっては、長短両ファクトを区別し、責任のはっきりした職制を設けることが先決条件であり、また短期的な計画・統制にはキャパンティ活用度の物量数値による表示が有益である。殊に下級の従業員に対するインフォメーションに関じてそのことが言える。金額表示によるインフォメーションが必要ならば、それは機会原価で示されるべきであり、その機会原価は、単純な状況の下では貢献利益によって、また状況が複雑である場合にはリニア・プログラミングの技法を通じて算定されるべきである。以上をいうに、キャパンティ活用度の分析に歴史的原価を用いるのは適切でない。なぜならば、生産・販売量が変動しても固定費の総額は短期的には変化しないわけだし、また、歴史的原価により表示された差異には、計画・統制の観点からみて経済的意味がある認われるかである。小総括は、固定間接費差異分析に関するホー
キャパシティ活用度の分析

2) 撮影, 「製造間接費差異の分析法」『会計』昭和43年1月, pp. 55-67.

4) 撮影, 前掲論文, p. 66.

6) わが国では「idle capacity variance」や「volume variance」を「操業度差異」と訳すことが多い。しかし、米国におけるこの種の用語の使用法は必ずしも統一されていないから一概に「操業度差異」とするのは必ずしも適切ではない。つまりケース・バイ・ケースで内容に応じて訳語をきめる必要がある。

7) 「キャパシティ」という語を顕訳すると「生産能力」「経営能力」「営業準備」などとなろうかどうもずっかりしない。「生産設備」という語も使われるが「設備」という言葉は「物」を連想させるのでキャパシティと呼べる。ニュアンスが異なる。ちなみに、わが国の原価計算基準は「操業度とは、生産設備を一定とした場合のその利用度をいう（第2章8の四）」と述べているが、これは物理的設備のみを意味していると解される。

けだし、そのように理解しなければ監督者給料を準固定費として例示した意味がいかからである。なお、「キャパシティ」についてはNAA, Research Report No. 39, "Accounting for Cost of Capacity", May 1963 に詳しい解釈が述べられている。

8) 操業度を示す指標としては、理論的には直接労働時間よりも生産量をとる方が正確である。なぜならば、労働時間には能率が混入するので、正確に操業度を示し得ないからである。しかし操業度の指標として、測定し易いといった利便から、直接労働時間がとられることが多い。この場合には、労働時間は生産量に正比例するものと仮定されていることに注意すべきである。

10) 実現可能最大能力（practical capacity）とは「一定の資本設備によって一時間に生産でき最大的実物のアウト・プット」を意味する。それは、機械、保全、作業交替に関する方針が一貫して最高水準を保ち、与件が変ることなく反復的に生産が継続されることが前提とされている（注1）にあたった D.T. DeCoster の論文 p. 298 による。

12) このことについては注6であげた NAA, Research Report No. 39, p. 22 に詳しい説明がある。

13) 説明を簡単するために、受注分は直ちに生産部門に生産されるもの仮定する。換言すれば、受注・生産スケジュール組み入れ・生産予定との間にはタイム・ラグはないとする。

14) アイドル・キャパシティ差異は次の二つに細分できる。すなわち(1)過去に、賃支予算の編成に使われる活動水準と実現可能最大能力との差異,(2)過去に、賃支予算の編成に使われた活動水準と当期の総合予算の水準との差異。これらの差異は、長期計画時に超過設備が慎重な配慮の下に調達準備されている場合
キャパシティ活用度の分析

の計画を評価するのに有益である（注8にあげたC.T.Horngrenの論文 p.259)。
15) 販売量の見通しや差異の分析には確率が使われる。この問題については、例えばRobert
K.Jaedicke and Alexander A.Robichek, "Cost-Volume-Profit Analysis Under
Conditions of Uncertainty", The Accounting Review, October 1964, pp.917-
926やHarold Bierman Jr., Lawrence E.
Foursaker, and Robert K. Jaedicke, "A
Use of Probability and Statistics in
Performance Evaluation", The Accounting
Review, July 1962, pp.409-417 に詳しい
説明がある。
17) 「鈍の刃は、どのようにして物を切るのか、
それを知るために、もし、あなたが片方の刃
を手にとって調べてみたとしても、あなたは、
鈍がどのように紙を切るのか知ることはでき
まい。鈍は2枚の刃の相互作用によって紙を
切るものだからだ。企業や政府の活動現象と
いうものは、そのようなものではないだろう
か。にも拘らず、ある一つのファクターをと
り出して、企業のビエビアを説明しようとす
るのは無理である。システム分析の要点は、
システムの変動傾向ではなくて、システムの
状態を知ることにあるのだ」(Comments
by W.W.Cooper in Thomas J. Burns
(Mund.), "The Use of Accounting Date in
Decision-Making",1966, p.228 から要約。
まことに興味ある見解だと思う。
18) ホーングレンによれば、デムスキイが秀れ
た方法を開発したという。C.T.Horngren,
op.cit., p.263 が指摘する論文 Joel S.
Demsiki, "Variance Analysis:An Opportu-
nity Cost Approach with a Linear
Programming Application", unpublished
ph.D.disertation, University of Chicago,
1966.
19) C.T.Horngren, "Capacity Utilization
and the Efficiency Variance", The