Mathematical Characteristics of ROXY Index (I): Distance and Reversed Distance Used as Weighing Factors Tatsuhiko Kawashima* Noriyuki Hiraoka* #### Contents - 1 Introduction - 2 Spatial-cycle Frameworks: One Original Version and Two Outgrowth Versions - 3 Terminological Conventions: Concentration and Centralization - 4 ROXY Index: For Spatial Concentration and Deconcentration - 5 Two Types of ROXY Indices R_d and R_s: For Spatial Centralization and Decentralization - 6 Functional Relationship: R_d (ROXY Index with Distance as Weighing Factor) and R_s (ROXY Index with Reversed Distance as Weighing Factor) - 7 Empirical Results for R_d and R_e: Spatial-cycle Paths of Five Railway-line Regions in the Tokyo Metropolitan Area - 8 Conclusion Notes References Appendix ## **Abstract** There are two types of ROXY indices which have been developed for studies on the phenomena of centralization and decentralization of population and other socio-economic activities in a large metropolitan area. These ROXY indices are R_d and R_s . We calculate R_d by use of a CBD distance as its weighing factor. This paper, after discussing principal features of R_d and R_s , theoretically examines the mathematical relationship between R_d and R_s , and concludes that the ratio of R_d to R_s is constant. It then empirically compares the value of R_d with that of R_s , for each of five railway-line regions within the Tokyo metropolitan area to show how the spatial-cycle path of each railway-line region can be represented through R_d and R_s , respectively. The results of the empirical investigation on the relationship between R_d and R_s are found, as expected, to be consistent with the theoretical conclusion drawn from our mathematical examination. Based on the above theoretical and empirical considerations, it is suggested that using R_s would appear to be a better choice than using R_d when we want to apply the ROXY-index method to a series of spatial-cycle studies for the investigation of both intra-metropolitan and inter-metropolitan redistribution processes of socio-economic activities. #### **Kev Words** Centralization, Concentration, Decentralization, Deconcentration, Klaassen, Metropolitan area, ROXY index, Spatial-cycle, Tokyo, Urban change ^{*} Kawashima is associated with the Economics Department of Gakushuin University in Tokyo, and Hiraoka with the Social Systems Department of Mitsubishi Research Institute in Tokyo. Kawashima gratefully acknowledges the research support from the Grant-in-Aid for General Scientific Research of the Ministry of Education, Science and Culture. Both authors are indebted to Masumi Morita for her diligent work in typing the original manuscript and to Melanie Mortimer for her editorial suggestions. #### 1 Introduction Researches in the field of regional and urban economics, as occasion demands, require systematic considerations of changes in spatial distribution patterns of socio-economic activities. Among useful scientific instruments for the investigation of spatial redistribution processes, is the spatial-cycle hypothesis. It argues for the existence of a tendency for spatial redistribution processes to recurrently follow ups-and-downs in four types of major transmuting stages. For the purpose of empirically testing the magnitude of the adequateness of the spatial-cycle hypothesis and of quantitatively analyzing the phenomena of urban changes in a broader sense, the ROXY index was proposed and has been developed since the end of the 1970s. This paper focuses upon the following five elements concerning the ROXY index method. The first is on three different versions of the spatial-cycle framework: the original version and two outgrowth versions (Section 2). The second element is on the conceptual definitions for spatial concentration and spatial centralization (Section 3). The third element is the discussion on the structural characteristics of three types of ROXY indices; One of them has been developed for inter-metropolitan analyses, while the other two types have been developed for intra-metropolitan analyses (Sections 4 and 5). The fourth element is a mathematical examination of the relationship between the two types of ROXY indices developed for intra-metropolitan analyses; One is the ROXY index whose value we calculate by use of a CBD distance as its weighing factor, and the other is the ROXY index whose value we calculate by use of a reversed CBD distance as its weighing factor (Section 6). The fifth element is an empirical study of spatial-cycle paths for five railway-line regions in the Tokyo metropolitan area, in which we apply the two types of ROXY indices developed for intra-metropolitan analyses to familiarize ourselves with the validity of the theoretical results of our mathematical examination on these two types of ROXY indices (Section 7). ## 2 Spatial-cycle Frameworks: One Original Version and Two Outgrowth Versions A total of eleven large SMSAs¹⁾ in the USA experienced a net population loss²⁾ in the first half of the 1970s. This phenomenon of net population loss of large metropolitan areas³⁾, which is referred to as disurbanization, presents a striking contrast to the continuous growth of population in large metropolitan areas, with minor exceptions, observed in the US before the 1970s. It should be noted, however, that the "disurbanization did not surge abruptly on the US urban system without any warning signs."⁴⁾ In fact, the decrease in population of central cities of large metropolitan areas "served as a key omen of its (i.e., disurbanization's) approach."⁵⁾ With this in mind, Klaassen and his collaborative research scholars started to conduct in the middle of the 1970s in Vienna, Austria, extensive empirical studies concerning the dynamic processes of urbanization and suburbanization in a number of relatively large-sized cities in both East and West European countries. A major outcome of their investigation was the conceptualization of the spatial-cycle framework⁶⁾ which is a hypothesis useful for ## Mathematical Characteristics of ROXY Index (I): Distance and Reversed Distance Used as Weighing Factors (Kawashima, Hiraoka) describing, with reasonably systematic and scientific exactitude, possible tendencies of urban growth and decline. Their hypothetical framework argues that metropolitan areas having relatively large populations tend to follow, as indicated by Table 1, four major recurring transmuting stages with respect to the spatial redistribution pattern of population and other socio-economic activities. The four stages are *urbanization*, *suburbanization*, *counter-urbanization* (or *disurbanization*) and *reurbanization*, each of which is composed of two substages as also shown in Table 1. Klaassen's original hypothesis relied upon the application of an absolute level of increment or decrement of population to identify each of the four cyclical stages. From this original version of the spatial-cycle framework, we have derived two outgrowth versions of spatial-cycle frameworks, both of which follow the cyclical pattern unique to Klaassen's original framework, by applying the growth ratio, in place of the absolute level of change in population. One framework has been derived for the intra-metropolitan analyses as illustrated in Table 2, and the other for the inter-metropolitan analyses as illustrated in Table 37. These two outgrowth versions of Klaassen's spatial-cycle framework play key roles in the present paper to discuss cyclical aspects of urban changes. Table 1 Spatial-cycle Framework for a Metropolitan Area (Klaassen's Original Version: Spatial-cycles in terms of Absolute Level of Growth and Decline) | Transmuting stage | Sub-stage | Change in absolute level of population (1) | | | | | |----------------------|-------------|--|-------------|------------------------------------|---------------------------------|--| | | | Center ⁽²⁾
(△X) | Suburbs (3) | Relative size between
△X and △Y | Metropolitan area
as a whole | | | †T-1 | First half | + | _ | A V > A V | 1 | | | Urbanization | Second half | + | + | $\triangle X > \triangle Y$ | + | | | Suburbani-
zation | First half | + | + | $\triangle X < \triangle Y$ | + | | | | Second half | _ | + | | | | | Counter- | First half | _ | + | $\triangle X < \triangle Y$ | | | | urbanization | Second half | _ | | | _ | | | Reurbanization | First half | _ | _ | A.W. > A.W. | | | | | Second half | + | _ | $\triangle X > \triangle Y$ | _ | | #### Notes - (1) Plus and minus signs indicate population increase and decrease respectively. - (2) The center of a metropolitan area conceptually accords with its core, central city, central part, or inner-ring zone. - (3) The suburbs of a metropolitan area conceptually accords with ring, outskirts of its center, ring, or outer-ring zone. Source: Constructed from Klaassen et al. (pp. 8ff, 1981). Table 2 Spatial-cycle Framework for a Metropolitan Area: Spatial-cycles in terms of Growth Ratio | Transmuting stage | Value relationship of GRCN (1) and GRSB (2) | Increase or decrease in
the value of
GRCN/GRSB | |----------------------|---|--| | Urbanization | GRCN > GRSB | Decreasing | | Suburbanization | GRCN < GRSB | Decreasing | | Counter-urbanization | GRCN < GRSB | Increasing | | Reurbanization | GRCN > GRSB | Increasing | ## Notes (1) GRCN: Annual growth ratio of population in the center of a metropolitan area. The annual growth ratio is defined as x ^{t+1}/x ' where x ' is population level in year (2) GRSB: Annual growth ratio of population in the suburbs of a metropolitan area. Table 3 Spatial-cycle Framework for a System of Metropolitan Areas: Spatial-cycles in terms of Growth Ratio | Transmuting stage | Value relationship of GRLM (1) and GRSM (2) | Increase or decrease in
the value of
GRLM/GRSM
 | |----------------------|---|--|--| | Urbanization | GRLM > GRSM | Decreasing | | | Suburbanization | GRLM < GRSM | Decreasing | | | Counter-urbanization | GRLM < GRSM | Increasing | | | Reurbanization | GRLM > GRSM | Increasing | | - (1) GRLM: Annual growth *ratio* of population of a group of metropolitan areas (which are all in a system of metropolitan areas) with larger population sizes. The annual growth *ratio* is defined as x^{t+1}/x^t where x^{τ} is population level in year τ . - (2) GRSM: Annual growth *ratio* of population of a group of metropolitan areas (which are all in a system of metropolitan areas) with medium and smaller population sizes. #### Mathematical Characteristics of ROXY Index (I): Distance and Reversed Distance Used as Weighing Factors (Kawashima, Hiraoka) Meanwhile, the intermediate steps which link Klaassen's original hypothesis with our two outgrowth versions of his spatial-cycle framework are as follows. - (1) From the original version of Klaassen's spatial-cycle framework expressed in Table 1, and through an experimental attempt of the *ideation by analogy*, we may depict a conceptual framework as illustrated by Figure 1 in which the annual growth *rate* of population is applied in place of the absolute level of increment or decrement of population. The spatial-cycle stages for intra-metropolitan analyses and that for intermetropolitan analyses are both represented in this figure. - (2) From Figure 1 it would be perhaps reasonable for us to derive, through another experimental attempt of the ideation by analogy, the conceptual framework illustrated by Figure 2. In this figure the annual growth ratio of population is applied (instead of growth rate of population) where the growth ratio of population for the period between two years t and t+1 is defined as the ratio of the population of year t+1 to that of year t. The spatial-cycle stages for intra-metropolitan analyses and that for intermetropolitan analyses are both represented in this figure. - (3) A logical argument derived from the contents carried by Figure 2 would lead us to the construction of Tables 2 and 3, for intra-metropolitan analyses and inter-metropolitan analyses respectively. #### 3 Terminological Conventions: Concentration and Centralization The term urban change, which is frequently used in the study of urban and regional economics, refers to two aspects of spatial significance. These are urbanization and suburbanization. Urbanization and suburbanization each carry two different conceptual facets. The first facet is associated with the spatial redistribution processes of socio-economic activities (such as population reflecting residential activities) among metropolitan areas⁹ in an urban system. The second facet is associated with the spatial redistribution processes of population within a metropolitan area delineated as a functional urban region¹⁰. For either facet, the primary attention of studies on urban changes usually centers around the distinct spatial shifts of population between relatively densely-populated areas and sparsely-populated areas. The multifaceted nature of the term urban change is accordingly apt to confuse our discussion when we are involured in urban and regional analyses in general. For the purpose of avoiding unnecessary ambiguity in applying terminologies related to urban change, we will employ four basic terms. These terms are spatial *concentration*, *deconcentration*, *centralization* and *decentralization* of population, as illustrated by Category I of Table 4. The concept of concentration is one type of urbanization, and accords with the notion of inter-metropolitan agglomeration and that of convergence towards larger metropolitan areas¹¹⁾. The concept of deconcentration is one type of suburbanization, and accords with the notion of inter-metropolitan deglomeration and that of divergence (or dispersion) from larger - (1) Notations for intra-metropolitan analyses - X: Annual growth rate of population in the center of a metropolitan area - Y: Annual growth rate of population in the suburbs of a metropolitan area - (2) Notation for inter-metropolitan analyses - X: Annual growth *rate* of population of a group of larger (in terms of population) metropolitan areas - Y: Annual growth *rate* of population of a group of medium and smaller (in terms of population) metropolitan areas - (3) Spatial-cycle stages | Transmuting stages | Positions in X-Y space | |----------------------|------------------------| | Urbanization | 3 and 4 | | Suburbanization | (5) and (6) | | Counter-urbanization | ⑦ and ⑧ | | Reurbanization | ① and ② | Figure 1 Spatial-cycle Framework for Intra-metropolitan Analyses and Intermetropolitan Analyses: Spatial-cycles in terms of Growth Rate ## Mathematical Characteristics of ROXY Index (I): Distance and Reversed Distance Used as Weighing Factors (Kawashima, Hiraoka) #### Notes - (1) Notations for intra-metropolitan analyses - X: Annual growth ratio of population in the center of a metropolitan area - Y: Annual growth ratio of population in the suburbs of a metropolitan area - (2) Notations for inter-metropolitan analyses - X: Annual growth *ratio* of population of a group of larger (in terms of population) metropolitan areas - Y: Annual growth *ratio* of population of a group of medium and smaller (in terms of population) metropolitan areas - (3) Spatial-cycle stages | | Position in X-Y space | | | | | | | |----------------------|-------------------------------|-----------------------|-------------------------|-------------------------|--------------------------------|--|--| | Transmuting stages | Example-1 Example-2 Example-3 | | Example-4 | | | | | | Urbanization | $A^* \rightarrow Z_2$ | A* → Z | A _i * | → Z | $A^* \rightarrow Z_2$ | $A_2^{\circ} \rightarrow Z_2$ | | | Suburbanization | $Z_2 \rightarrow B$ | $Z \rightarrow B$ | Z- | → B | $Z_2 \rightarrow B_2$ | $Z_2 \rightarrow B$ | | | Counter-urbanization | B→Z | $B \rightarrow Z_2$ | B → Z ₂ * | | $B_2 \rightarrow Z_3^{\sharp}$ | $B \rightarrow Z^+$ | | | Reurbanization | $Z \rightarrow A^*$ | $Z_2 \rightarrow A^*$ | $Z_1 \rightarrow A_1^*$ | $Z_2^* \rightarrow A_2$ | Z+ → A* | $Z_3^{\sharp} \rightarrow A_2^{\circ}$ | | (The symbols of \$, \sharp , \bigcirc , and + in each column, refer to the continuative direction of the spatial-cycle paths. Among other possible spatial-cycle paths would be $Z_1 \rightarrow A_1 \rightarrow Z \rightarrow B \rightarrow Z_2 \rightarrow A'_2 \rightarrow Z'_3 \rightarrow B'_2 \rightarrow Z_2 \rightarrow A \rightarrow Z \rightarrow B_1 \rightarrow Z_1$.) Figure 2 Spatial-cycle Framework for Intra-metropolitan Analyses and Intermetropolitan Analyses: Spatial-cycles in terms of Growth Ratio Terminological Exactitude or Inexactitude?: Five Categories of Technical Terms on Spatial Redistribution Patterns of Population Table 4 | Category V | Reurbanization,
urbanization,
suburbanization, and
counter-urbanization | Reurbanization | Urbanization | Suburbanization | Counter-urbanization | Reurbanization | Urbanization | Suburbanization | Counter-urbanization | |-------------|--|-------------------------------------|----------------------------|---|------------------------------|-----------------------------|-----------------------------|-------------------------------|-------------------------------| | Category IV | Urbanization and
suburbanization | ;
;
;
;
; | O Dailleation | | Suburbanization | Urbanization | | | Subuibation | | Category II | Convergence and divergence | sp | | Convergence towards areas Divergence from larger metropolitan areas Convergence within a metropolitan area towards its center | | Divergence within | from its center | | | | Category II | Agglomeration and deglomeration | Inter-metropolitan
agglomeration | | Inter-metropolitan | degiomeration | Intra-metropolitan | aggiomeration | Intra-metropolitan | uegioineration | | Category 1 | leconcentration,
decentralization | Accelerating concentration | Decelerating concentration | Accelerating deconcentration | Decelerating deconcentration | Accelerating centralization | Decelerating centralization | Accelerating decentralization | Decelerating decentralization | | Cat | Category I Concentration, deconcentration, centralization, and decentralization | | Spatial concentration | | Spatial deconcentration | | Spatial centralization | | Spatial decellifation | Category V in this table has been arranged based on terminologies coined by L. Klaassen in his original spatial-cycle framework. Note ## Mathematical Characteristics of ROXY Index (I): Distance and Reversed Distance Used as Weighing Factors (Kawashima, Hiraoka) metropolitan areas to medium and smaller metropolitan areas. The concept of centralization is another type of urbanization, and accords with the notion of intra-metropolitan agglomeration and that of convergence to the central part of a metropolitan area. The concept of decentralization is another type of suburbanization, and accords with the notion of intra-metropolitan deglomeration and that of divergence (or dispersion) from the center of a metropolitan area to its suburbs. In this table, we divide each of the four basic terms into two subcomponents. One subcomponent corresponds to the state of acceleration in speed of spatial redistribution processes, and the other to the state of decelerating speed. Consequently, we have eight subcomponents in the column of Category I. They are (i) accelerating concentration, (ii) decelerating concentration, (iii) accelerating deconcentration, (iv) decelerating deconcentration, (v)
accelerating centralization, (vi) decelerating decentralization, and (vii) decelerating decentralization. In Category V of Table 4 which represents Klaassen's original version of the spatial-cycle framework, the subcomponents (ii) and (vi) of Category I correspond to the urbanization stage, subcomponents (iii) and (vii) to the suburbanization stage, subcomponents (iv) and (vii) to the counter-urbanization stage, and subcomponents (i) and (v) to the reurbanization stage. By integrating these definitions into our discussion below, we can make more accurate applications of the technical terms specified under Category I in Table 4. ## 4 ROXY Index: For Spatial Concentration and Deconcentration The ROXY index is a comprehensive measure that would be useful for quantitative analyses of the spatial-cycle phenomena in general. This index has been proposed and developed by Kawashima¹³⁾ as an analytical instrument to identify spatial-cycle stages for (i) a system of metropolitan areas and (ii) a metropolitan area, whereby the basic characteristics of the ROXY index can be consistent with the urban change concepts described by Tables 2, 3, and 4, and Figure 2.¹⁴⁾ Table 5 furnishes the definition of the ROXY index. This definition is one for a ROXY index which would be useful for inter-metropolitan analyses, namely, for studying the phenomena of spatial concentration and deconcentration¹⁵⁾. In defining this type of ROXY index, the population of each metropolitan area is employed as the weighing factor necessary for the calculation of the value of the ROXY index¹⁶⁾. Implications of the values of this type of ROXY index are summarized in Table 6. It can be seen from this table, that the value of the ROXY index is positive if the population is spatially concentrating, negative if the population is spatially deconcentrating, and zero if the spatial redistribution pattern of population is neutral from the movements of both concentration and deconcentration. Among major causes of this neutrality are the balanced, bell-shaped and cup-shaped growths or declines in population, as described in the notes to Table 6. In the stage of concentration, the value of the ROXY index increases if the speed of concentration is accelerating, remains the same for a constant speed of concentration, and decreases for a deceleration in the speed of concentration. In the stage of deconcentration, the value of the ROXY index decreases, remains the same, or increases, when the speed of deconcentration accelerates, stays constant, or decelerates respectively. For the neutral situation, the value of the ROXY index increases from zero at the onset of accelerating concentration, remains zero for the continuation of the neutral situation, and decreases from zero at the onset of accelerating deconcentration. As to the above implications of the ROXY index, it should be noted that conditions appearing in column (i) of Table 6 are necessary conditions for their corresponding phenomena listed in column (ii), and that conditions appearing in column (iii) are also necessary conditions for their corresponding phenomena listed in column (iv). A clear understanding of these relations should be born in mind for the discussion in the next section. Table 5 Definition of ROXY Index: With Metropolitan Population Used as Weighing ROXY Index = $$\left(\frac{WAGR_{t,t+1}}{SAGR_{t,t+1}} - 1.0\right) \times 10^4$$ = $\left\{\frac{\sum_{i=1}^{n} (x_i^i \times r_i^{t,t+1})}{\sum_{i=1}^{n} x_i^i} \times \frac{n}{\sum_{i=1}^{n} r_i^{t,t+1}} - 1.0\right\} \times 10^4$ where \mathbf{x}^{τ} : population of metropolitan area i in year τ r_i^{t+1} : annual growth *ratio* of population in metropolitan area *i* for the period between years *t* and t+1, which is defined as the k-th root of x_i^{t+k}/x_i^t n : number of metropolitan areas $WAGR_{t,t+1}$: weighted average of annual growth ratios of population in n metropolitan areas for the period between years t and t+1, which is equal, in case population level of each metropolitan area is used as the weighing factor, to $$\sum_{i=1}^{n} (\mathbf{x}_{i}^{t} \times \mathbf{r}_{i}^{t+1}) / \sum_{i=1}^{n} \mathbf{x}_{i}^{t}$$ $SAGR_{t,t+1}$: simple average of annual growth ratios of population in n metropolitan areas for the period between years t and t+1, which is equal to $$\sum_{i=1}^{n} r_i^{t_i t+1} / n$$ Table 6 ROXY Index for Inter-metropolitan Analyses: With Metropolitan Population Used as Weighing Factor | (i) | (ii) | (iii) | (iv) | |------------------------|---|---|---| | Value of
ROXY index | Pattern of spatial redistribution of population | State of changes in value of ROXY index | Speed of spatial redistribution process of population | | | | Increasing | Accelerating | | Positive | Concentration | Leveling-off | Constant | | | | Decreasing | Decelerating | | | Neutrality from both concentration and deconcentration (viz. symmetric growth or decline (1)) | Increasing | Start of ACon ® | | Zero | | Leveling-off | Continuation of neutrality | | | | Decreasing | Start of ADcon (3) | | | Deconcentration | Increasing | Decelerating | | Negative | | Leveling-off | Constant | | | | Decreasing | Accelerating | - The spatial redistribution pattern of the 'symmetric growth or decline' includes the following three sub-patterns. - (i) Balanced growth or decline (BGD): The growth-rate curve is nearly flat, reflecting a fixed share of population by metropolitan areas. - (ii) Bell-shaped growth or decline (BSGD): The growth-rate curve is bell-shaped, reflecting the 'medianization' of population over metropolitan areas of different sizes in population. 'Medianization' refers to the increases in population share by metropolitan areas of medium sizes in population, accompanied by decreases in population share by metropolitan areas of smaller and larger sizes in population. - (iii) Cup-shaped growth or decline (CSGD): The growth-rate curve is cup-shaped, reflecting the 'bipolarization' of population over metropolitan areas of different sizes in population. 'Bipolarization' means increases in population share of smaller and larger metropolitan areas, along with decreases in population share of medium-sized metropolitan areas. - (2) 'ACon' stands for accelerating concentration. - (3) 'ADcon' stands for accelerating deconcentration. ## 5 Two Types of ROXY Indices R_a and R_a: For Spatial Centralization and Decentralization We have learned that the ROXY index approach could assist our studies of spatial concentration and deconcentration. Consequently, we have also become interested in searching for a ROXY index which can be applied to the studies on the phenomena of spatial centralization and decentralization. Two types of ROXY indices have been developed by Kawashima to meet this demand. The first type is the ROXY index whose value we calculate by use of a CBD distance¹⁷⁾ of each locality as the weighing factor. The formula of this type of ROXY index is delineated in Table 7, with the implications of its values as summarized in Table 8. The second type is the ROXY index whose value we calculate by use of a reversed CBD distance¹⁸⁾ of each locality as the weighing factor. The formula of this type of ROXY index is delineated in Table 9, with the implications of its values as summarized in Table 10. Table 7 Definition of ROXY Index: With CBD Distance Used as Weighing Factor ROXY Index = $$\left(\frac{WAGR_{i,i+1}}{SAGR_{i,i+1}} - 1.0\right) \times 10^4$$ = $\left\{\frac{\sum_{i=1}^{n} (d_i \times r_i^{i,i+1})}{\sum_{i=1}^{n} d_i} \times \frac{n}{\sum_{i=1}^{n} r_i^{i,i+1}} - 1.0\right\} \times 10^4$ where i annual growth ratio of the population in locality i for the period between years t and t+1, which is defined as the k-th root of x_i^{+k}/x_i^+ where x_i^- is the population of locality i in year τ d_i : CBD distance of locality i n : number of localities $WAGR_{t,t+1}$: weighted average of annual growth ratios of population in n localities for the period between years t and t+1, which is equal, in case the CBD distance of each locality is used as the weighing factor, to $$\sum_{i=1}^{n} (d_i \times r_i^{t,t+1}) / \sum_{i=1}^{n} d_i$$ $SAGR_{t,t+1}$: simple average of annual growth *ratios* of population in *n* localities for the period between years t and t+1, which is equal to $$\sum_{i=1}^{n} r_{i}^{t,t+1} / n$$ Table 8 ROXY Index for Intra-metropolitan Analyses: With CBD Distance Used as Weighing Factor | (i) | (ii) | (iii) | (iv) | |------------------------|---|---|---| | Value of
ROXY index | Pattern of spatial redistribution of population | State of changes in value of ROXY index | Speed of spatial redistribution process of population | | | | Increasing | Accelerating | | Positive | Decentralization | Leveling-off | Constant | | | | Decreasing | Decelerating | | | Neutrality from both centralization and decentralization (viz. symmetric growth or decline (1)) | Increasing | Start of ADcen® | | Zero | | Leveling-off | Continuation of neutrality | | | | Decreasing | Start of ACen (3) | | | Centralization | Increasing | Decelerating | | Negative | | Leveling-off | Constant | | | | Decreasing | Accelerating | - (1) The spatial redistribution pattern of 'symmetric growth or decline' includes the following three sub-patterns. - (i) Balanced growth or decline (BGD): The growth-rate curve is nearly flat, reflecting a fixed share of population by localities. - (ii) Bell-shaped growth or decline (BSGD): The growth-rate curve is bell-shaped, reflecting the 'medianization' of population over localities with different CBD distances. 'Medianization' refers to the
increases in population share by localities with medium distances, accompanied by decreases in population share by localities with near and far distances. - (iii) Cup-shaped growth or decline (CSGD): The growth-rate curve is cup-shaped, reflecting the 'bipolarization' of population over localities with different CBD distances. 'Bipolarization' means increases in population share of localities with near and far distances, along with decreases in population share of localities with medium distances. - (2) 'ADcen' stands for accelerlating decentralization. - (3) 'ACen' stands for accelerating centralization. Looking back upon the development processes of the ROXY index for the intrametropolitan analyses, it is pointed out that the ROXY index with a weighing factor of CBD distance¹⁹⁾ was conceptualized and empirically applied before the ROXY index with a weighing factor of a reversed CBD distance²⁰⁾. Following the chronological order of their development, let us examine the fundamental characteristics of the two types of ROXY indices, by starting with the ROXY index having a weighing factor of a CBD distance. Table 8 indicates that the value of the ROXY index is positive, zero, or negative, when the metropolitan area under investigation is decentralizing, neutral, or centralizing respectively along its spatial-cycle path. In the stage of decentralization, the value of the ROXY index increases, remains the same, or decreases, when the speed of decentralization accelerates, Table 9 Definition of ROXY Index: With Reversed CBD Distance Used as Weighing Factor ROXY Index = $$\left(\frac{WAGR_{t,t+1}}{SAGR_{t,t+1}} - 1.0\right) \times 10^4$$ $$= \left\{ \frac{\sum_{i=1}^{n} (s_i \times r_i^{t,i+1})}{\sum_{i=1}^{n} s_i} \times \frac{n}{\sum_{i=1}^{n} r_i^{t,i+1}} - 1.0 \right\} \times 10^4$$ where : annual growth *ratio* of the population in locality i for the period between years t and t+1, which is defined as the k-th root of x_i^{t+k}/x_i^t where x_i^t is the population of locality i in year τ s: reversed CBD distance of locality i which is defined as $d_{min} + d_{max} - d_{i}$, where d_{i} is the CBD distance of locality i, and d_{min} and d_{max} respectively indicate the minimum and maximum values of d_{i} (for $i=1, 2, \ldots, n$) n : number of localities $WAGR_{t,t+1}$: weighted average of annual growth *ratios* of population in n localities for the period between years t and t+1, which is equal, in case the reversed CBD distance of each locality is used as the weighing factor, to $$\sum_{i=1}^{n} (s_i \times r_i^{t,i+1}) / \sum_{i=1}^{n} s_i$$ $SAGR_{t,t+1}$: simple average of annual growth ratios of population in n localities for the period between years t and t+1, which is equal to $$\sum_{i=1}^{n} r_{i}^{t, t+1} / n$$ Table 10 ROXY Index for Intra-metropolitan Analyses: With Reversed CBD Distance Used as Weighing Factor | (i) | (ii) | (iii) | (iv) | |------------------------|--|---|---| | Value of
ROXY index | Pattern of spatial redistribution of population | State of changes in value of ROXY index | Speed of spatial redistribution process of population | | | | Increasing | Accelerating | | Positive | Centralization | Leveling-off | Constant | | | | Decreasing | Decelerating | | | Neutrality from both centralization and decentralization (viz. symmetric growth or decline (1) | Increasing | Start of ACen (2) | | Zero | | Leveling-off | Continuation of neutrality | | | | Decreasing | Start of ADcen (3) | | | | Increasing | Decelerating | | Negative | Decentralization | Leveling-off | Constant | | | | Decreasing | Accelerating | #### Notes - (1) See note (1) to Table 8 for the meanings of 'symmetric growth or decline.' - (2) 'ACen' stands for accelerating centralization. - (3) 'ADcen' stands for accelerating decentralization. stays constant, or decelerates respectively. In the stage of centralization, the value of the ROXY index decreases, remains the same, or increases, when the speed of centralization accelerates, stays constant, or decelerates respectively. For the neutral situation, the value of the ROXY index increases from zero at the onset of accelerating decentralization, remains zero for the continuation of the neutral situation, and decreases from zero at the onset accelerating centralization. From the above discussion, we might conclude that the ROXY index with the weighing factor of a CBD distance would assist our studies on the phenomena of spatial centralization and decentralization. It is, however, important to notice that the sign of the value of this type of ROXY index is opposite to that of the ROXY index with the weighing factor of metropolitan population which we previously discussed as to Table 6 for the study of spatial concentration and deconcentration. Taking this fact into consideration, the ROXY index with the weighing factor of a reversed CBD distance, has been structuralized as defined in Table 9 in such a way that its value can show the same sign as the ROXY index with the weighing factor of metropolitan population. As for the ROXY index with the weighing factor of a reversed CBD distance, Table 10 indicates that its value is positive, zero, or negative, when the metropolitan area is centralizing, neutral, or decentralizing respectively. In the stage of centralization, the value of the ROXY index increases, remains the same, or decreases, when the speed of centralization accelerates, stays constant, or decelerates respectively. In the stage of decentralization, the value of the ROXY index decreases, remains the same, or increases, when the speed of decentralization accelerates, stays constant, or decelerates respectively. For the neutral situation, the value of the ROXY index increases from zero at the onset of accelerating centralization, remains zero for the continuation of the neutral situation, and decreases for the start of accelerating decentralization. Accordingly, it would appear that the two types of ROXY indices developed for intrametropolitan analyses practically provide us with almost similar information on the spatial-cycle stages of a metropolitan area. The only exception would be that the signs of their values for a given stage of the spatial-cycle path are different from each other. In the next section, we talk in more detail about the relationship between the ROXY index using a CBD distance and the ROXY index using a reversed CBD distance as their respective weighing factors. ## 6 Functional Relationship: R_d (ROXY Index with Distance as Weighing Factor) and R_s (ROXY Index with Reversed Distance as Weighing Factor) In this section we use the following notational conventions for our examination of the relationship between the two ROXY indices developed for intra-metropolitan analyses; ``` r_i^{i,i+1} : annual growth ratio of the population in locality i for the period between ``` years t and t+1 d: : CBD distance of locality i d : average of CBD distance d_{min} : minimum CBD distance, viz. the minimum value of d_i (for $i=1, 2, \ldots, n$) d_{max} : maximum CBD distance, viz. the maximum value of d_i (for i=1, 2, ..., n) s_i : reversed CBD distance of locality i which is defined as $d_{min} + d_{max} - d_i$ s : average of reversed CBD distance n : number of localities R₄ : value of ROXY index which we calculate by use of a CBD distance as its weighing factor R, : value of ROXY index which we calculate by use of a reversed CBD distance as its weighing factor By definition, we have Mathematical Characteristics of ROXY Index (I): Distance and Reversed Distance Used as Weighing Factors (Kawashima, Hiraoka) $$R_{d} \equiv \left\{ \frac{\sum_{i=1}^{n} (d_{i} \times r_{i}^{t,i+1})}{\sum_{i=1}^{n} d_{i}} \times \frac{n}{\sum_{i=1}^{n} r_{i}^{t,i+1}} - 1.0 \right\} \times 10^{4}$$ $$R_{d} \equiv \left\{ \frac{\sum_{i=1}^{n} (s_{i} \times r_{i}^{t,i+1})}{\sum_{i=1}^{n} s_{i}} \times \frac{n}{\sum_{i=1}^{n} r_{i}^{t,i+1}} - 1.0 \right\} \times 10^{4}$$ It then follows that $$R_{i} \times 10^{4} = \frac{\sum_{i=1}^{n} \{(d_{min} + d_{max} - d_{i}) \times r_{i}^{t,i+1}\}}{\sum_{i=1}^{n} s_{i}} \times \frac{n}{\sum_{i=1}^{n} r_{i}^{t,i+1}} - 1.0$$ $$= \frac{\sum_{i=1}^{n} \{(d_{min} + d_{max}) \times r_{i}^{t,i+1}\} - \sum_{i=1}^{n} (d_{i} \times r_{i}^{t,i+1})}{\sum_{i=1}^{n} s_{i}} \times \frac{n}{\sum_{i=1}^{n} r_{i}^{t,i+1}} - 1.0$$ $$= \frac{(d_{min} + d_{max}) \times \sum_{i=1}^{n} r_{i}^{t,i+1}}{\sum_{i=1}^{n} s_{i}} \times \frac{n}{\sum_{i=1}^{n} r_{i}^{t,i+1}} - \frac{\sum_{i=1}^{n} d_{i}}{n \times s} \times \frac{\sum_{i=1}^{n} (d_{i} \times r_{i}^{t,i+1})}{\sum_{i=1}^{n} d_{i}} \times \frac{n}{\sum_{i=1}^{n} r_{i}^{t,i+1}} - 1.0$$ $$= \frac{d_{min} + d_{max}}{s} - \frac{d}{s} \times \frac{\sum_{i=1}^{n} (d_{i} \times r_{i}^{t,i+1})}{\sum_{i=1}^{n} d_{i}} \times \frac{n}{\sum_{i=1}^{n} r_{i}^{t,i+1}} - 1.0$$ $$= \frac{s + \overline{d}}{s} - \frac{\overline{d}}{s} \times \frac{\sum_{i=1}^{n} (d_{i} \times r_{i}^{t,i+1})}{\sum_{i=1}^{n} d_{i}} \times \frac{n}{\sum_{i=1}^{n} r_{i}^{t,i+1}} - 1.0$$ $$= -\frac{\overline{d}}{s} \times \left\{ \frac{\sum_{i=1}^{n} (d_{i} \times r_{i}^{t,i+1})}{\sum_{i=1}^{n} d_{i}} \times \frac{n}{\sum_{i=1}^{n} r_{i}^{t,i+1}} - 1.0 \right\}$$ $$= -\frac{\overline{d}}{s} \times R_{d} \times 10^{4}$$ where \overline{d} : average of distance, viz. $\sum_{i=1}^{n} d_i / n$ \bar{s} : average of reversed distance, viz. $\sum_{i=1}^{n} s_i / n$ Hence $$R_{s} = -\frac{\overline{d}}{\overline{s}} \times R_{d} \quad \cdots \qquad (1)^{21}$$ Since we can rewrite the average of reversed CBD distance as $$\bar{s} = d_{min} + d_{max} - \bar{d}$$ we obtain from Equation-1 $$R_s = -\frac{\overline{d}}{d_{min} + d_{max} - \overline{d}} \times R_d$$ Hence $$R_{s} = -\left(\frac{d_{min} + d_{max}}{d_{min} + d_{max} - \overline{d}} -
1\right) \times R_{d} \quad \cdots \qquad (2)$$ From Equation-2, we develop Figure 3, which diagrammatically summarizes the relationship between \overline{d} and $|R_{*}/R_{d}|$. Meanwhile, since $d_{min} < \overline{d} < d_{max}$, the following can be deduced from Equation-2: - (i) If \overline{d} is infinitesimally close to d_{min} , then $|R_s/R_d| = d_{min}/d_{max}$ (< 1) - (ii) If $d_{min} < \overline{d} < (d_{min} + d_{max})/2$, then $d_{min}/d_{max} < |R_s/R_d| < 1$ - (iii) If \overline{d} is equal to $(d_{min} + d_{max})/2$, then $|R_s/R_d| = 1$ - (iv) If $(d_{min} + d_{max})/2 < \overline{d} < d_{max}$, then $1 < |R_s/R_d| < d_{max}/d_{min}$ - (v) If \overline{d} is infinitesnimally close to d_{max} , then $|R_s/R_d| = d_{max}/d_{min} (> 1)$ Considering the above, we can summarize the following about the relationship between R_s and R_d : - (1) The absolute value of the ratio of R_s to R_d is equal to the ratio of \overline{d} to \overline{s} which is constant; $R_s/R_d = -\overline{d}/\overline{s}$. - (2) The sign of R_s , is opposite to that of R_d $$|R_{*}/R_{d}| = (d_{min}+d_{max})/(d_{min}+d_{max}-\overline{d})-1$$ Figure 3 Relationship of $|R_s/R_d|$ to \overline{d} - (3) The ratio of $|R_s|$ to $|R_d|$ ranges from d_{min}/d_{max} through d_{max}/d_{min} . - (4) $|R_s| = |R_d|$ if $\overline{d} = (d_{min} + d_{max}) / 2$, (i.e., if $\overline{d} = \overline{s}$). - (5) If the distribution pattern of the CBD distance of localities is skewed toward d_{min} , then the value of $|R_s|$ can be reasonably smaller than that of $|R_d|$. - (6) If the distribution pattern of the CBD distance of localities is skewed toward d_{max} , then the value of $|R_s|$ can be reasonably greater than that of $|R_d|$. Now let R_p denote the value of the ROXY index with the weighing factor of metropolitan population as defined by Table 5. Using this notation, the following observations can be pointed out about the interface among R_s , R_d and R_p : - (1) Since R, and R_d are in proportion, the information which they each provide is basically identical, with respect to the movements of the spatial-cycle path. - (2) R, and R, share the same sign for the same given stage of the spatial-cycle path. Namely, they show the plus sign for spatial agglomeration and minus sign for spatial deglomeration. - (3) The sign of R_d and that of R_p are opposite for the same given stage of the spatial-cycle path. - (4) Let us define the reversed population for metropolitan area i by the formulation of $x_{min} + x_{max} x_i$ where x_i is denoted as population of metropolitan area i, x_{min} and x_{max} as minimum and maximum values of x_i (for i = 1, 2, ..., n) respectively, and n as the number of metropolitan areas. In addition, let R_q be denoted as the value of the ROXY index with the weighing factor of reversed population. For this setting, we have the relationship $R_q/R_p = -\overline{p}/\overline{q}$, where \overline{p} and \overline{q} are the average of population and the average of reversed population respectively. It should be noted here that both \overline{p} and \overline{q} are not fixed, but variable when time changes. Therefore the ratio of R_q to R_p would not remain the same with a time change. From the aformentioned, it follows (i) that R_s is more compatible with R_s than R_d is, and (ii) that the functional relationship between R_s and R_d is firmer than that between R_g and R_s . Consequently, when we want to utilize both R_s and either R_d or R_s in a series of spatial-cycle studies on both inter-metropolitan and intra-metropolitan areas, using R_s would appear to be a better choice than using R_d . The next section will empirically investigate how the spatial-cycle path of each major railway-line regions in the Tokyo metropolitan area can be represented through R_d and R_s respectively in order to familiarize ourselves to the validity of the outcomes of our theoretical considerations on the mathematical relation between R_d and R_s . ## 7 Empirical Results for R_d and R_s: Spatial-cycle Paths of Five Railway-line Regions in the Tokyo Metropolitan Area In this section, we investigate the values of R_d and R_s for five major railway-line regions in the Tokyo metropolitan area²²⁾. They are the Chuo-line, Takasaki-line, Joban-line, Tokaido-line and Sobu-line regions. The member localities and their local codes for the five railway-line regions are listed in Table 11. For each railway-line regions, we set two cases. One is the 'aggregated case' in which each of Tokyo city (i.e., Tokyo-tokubetsu-ku), Kawasaki-city (i.e., Kawasaki-shi) and Yokohama-city (i.e., Yokohama-shi) is considered as one spatial unit. Another one is the 'disaggregated case' in which each of the above three cities is spatially disaggregated into wards (ku). In the disaggregated case, individual wards can be considered as separate spatial units, and those wards that are on or close to each of the railway-line regions, are picked up to be member localities of that railway-line region. The number of localities, and minimum and maximum CBD distances for the five railway-line regions are furnished by Table 12 (for aggregated case) and Table 13 (for disaggregated case). The CBD distance, reversed CBD distance, and population (for every fifth year from 1960 through 1990) of member localities are given for each of the five railway-line regions by Table A-1 in Appendix. From this table, we obtain Table A-2 which shows five-year growth ratios of population for each member locality of the five railway-line regions. Based on Table A-2, we can construct Figure 4. In this figure are illustrated 'five-year growth-rate curves' for the six five-year periods, by railway-line region for both aggregated and disaggregated cases. The growth-rate curves in Figure 4 would tell us the following three *general* characteristics for both aggregated and disaggregated cases, about their dynamic movements which we can observe as time goes by²³. - (1) The peak point of the growth-rate curve almost successively shifts from localities with a shorter CBD distance to localities with a longer CBD distance (i.e., the existence of a tendency for the peak point to move outwards). - (2) The height of the peak point of the growth-rate curve gradually becomes lower (i.e., the existence of a reductive tendency in maximum growth-rate value). - (3) The growth-rate curve levels off (i.e., the existence of a flattening tendency of the shape of the growth-rate curve). Figure 4 can also help us notice *individual* characteristics of growth-rate curves for each railway-line regions²⁴. Taking into consideration the nature of the above-mentioned *general* and *individual* characteristics of growth-rate curves, the following three points may possibly be suggested concerning the processes of centralization and decentralization of population for the five railway-line regions of the Tokyo metropolitan area during the 1960-90 period²⁵. (1) A movement from the stage of centralization to that of decentralization seems to have taken place for all the railway-line regions. ## Table 11 Localities for Five Railway-line Regions ## (a) Chuo-line region | Code | Locality | |-------|---------------------| | 13100 | Tokyo-tokubetsu-kub | | 13102 | Chuo-ku | | 13101 | Chiyoda-ku | | 13104 | Shinjuku-ku | | 13113 | Shibuya-ku | | 13114 | Nakano-ku | | 13115 | Suginami-ku | | 13203 | Musashino-shi | | 13204 | Mitaka-shi | | 13210 | Koganei-shi | | 13206 | Fuchuh-shi | | 13214 | Kokubunji-shi | | 13215 | Kunitachi-shi | | 13202 | Tachikawa-shi | | 13212 | Hino-shi | | 13201 | Hachioji-shi | | 14424 | Fujino-machi | | | | ## (b) Takasaki-line region | Code | Locality | |-------|---------------------| | 13100 | Tokyo-tokubetsu-kul | | 13106 | Taito-ku | | 13118 | Arakawa-ku | | 13117 | Kita-ku | | 11203 | Kawaguchi-shi | | 11223 | Warabi-shi | | 11204 | Urawa-shi | | 11220 | Yono-shi | | 11205 | Ohmiya-shi | | 11219 | Ageo-shi | | 11231 | Okegawa-shi | | 11233 | Kitamoto-shi | | 11217 | Kohnosu-shi | | 11304 | Fukiage-shi | | 11206 | Gyohda-shi | | | | ## (c) Joban-line region | Cod | е | Locality | |------|----|----------------------| | 1310 | 00 | Tokyo-tokubetsu-kubu | | 1310 |)6 | Taito-ku | | 131 | 18 | Arakawa-ku | | 131 | 21 | Adachi-ku | | 131 | 22 | Katsushika-ku | | 122 | 07 | Matsudo-shi | | 122 | 20 | Nagareyama-shi | | 122 | 17 | Kashiwa-shi | | 122 | 22 | Abiko-shi | | 82 | 17 | Toride-shi | | 850 | 63 | Fujishiro-shi | | 820 |)8 | Ryuhgasaki-shi | | 82: | [9 | Ushiku-shi | ## (d) Tokaido-line region | Code | Locality | |-------|----------------------------| | 13100 | Tokyo-tokubetsu-kubu | | 13101 | Chiyoda-ku | | 13103 | Minato-ku | | 13109 | Shinagawa-ku | | 13111 | Ohta-ku | | 14130 | Kawasaki-shi | | 14132 | Saiwai-ku | | 14131 | Kawasaki-ku | | 14100 | Yokohama-shi | | 14101 | Tsurumi-ku | | 14102 | Kanagawa-ku | | 14103 | Nishi-ku | | 14106 | Hodogaya-ku | | | (including 14112 Asahi-ku) | | 14110 | Totsuka-ku | | | (including 14115 Sakae-ku) | | 14204 | Kamakura-shi | | 14205 | Fujisawa-shi | | 14207 | Chigasaki-shi | ## (e) Sobu-line region | Code | Locality | |-------|----------------------| | 13100 | Tokyo-tokubetsu-kubu | | 13101 | Chiyoda-ku | | 13107 | Sumida-ku | | 13106 | Taito-ku | | 13108 | Kohtoh-ku | | 13123 | Edogawa-ku | | 13122 | Katsushika-ku | | 12203 | Ichikawa-shi | | 12204 | Funabashi-shi | | 12216 | Narashino-shi | | 12201 | Chiba-shi | | 12228 | Yotsukaido-shi | | 12212 | Sakura-shi | | 12322 | Shisui-shi | | 12323 | Yachimata-shi | | 1 | | ## Mathematical Characteristics of ROXY Index (I): Distance and Reversed Distance Used as Weighing Factors (Kawashima, Hiraoka) Table 12 Number of Localities, and Minimum and Maximum CBD Distances of Five Railway-line Regions (For Aggregated Case) (unit of distance: km) | Railway-line region | Number of localities |
Minimum
distance | Maximum
distance | |----------------------|----------------------|---------------------|---------------------| | Chuo-line region | 11 | 7.4 | 55.5 | | Takasaki-line region | 12 | 7.4 | 58.0 | | Joban-line region | 9 | 7.4 | 48.0 | | Tokaido-line region | 6 | 7.4 | 50.1 | | Sobu-line region | 9 | 7.4 | 49.8 | Table 13 Number of Localities, and Minimum and Maximum CBD Distances of Five Railway-line Regions (For Disaggregated Case) (unit of distance: km) | Railway-line region | Number of localities | Minimum
distance | Maximum
distance | |----------------------|----------------------|---------------------|---------------------| | Chuo-line region | 16 | 1.1 | 55.5 | | Takasaki-line region | 14 | 4.2 | 58.0 | | Joban-line region | . 12 | 4.2 | 48.0 | | Tokaido-line region | 14 | 2.1 | 50.1 | | Sobu-line region | 14 | 2.1 | 49.8 | - (2) A movement from the stage of accelerating decentralization to that of decelerating decentralization seems to have taken place for most of the railway-line regions. - (3) A movement from the stage of decelerating decentralization to that of accelerating redecentralization may have taken place towards the end of the 1980s for the Chuo-line, Tokaido-line and Sobu-line regions. From Table A-2, meanwhile, we can prepare Table 14 showing (i) the value of the ROXY index with a CBD distance as its weighing factor and (ii) the marginal change in the value of the ROXY index, for five railway-line regions (for aggregated case). In addition, we can similarly prepare Table 15 for the ROXY index with a reversed CBD distance (for aggregated case), Table 16 for the ROXY index with a CBD distance (for disaggregated case), and Table 17 for the ROXY index with a reversed CBD distance (for disaggregated case). Figure 4 Five-year Growth-rate Curves for Five Railway-line Regions in the Tokyo Metropolitan Area: Aggregated Case (AG) and Disaggregated Case (DAG) Mathematical Characteristics of ROXY Index (I): Distance and Reversed Distance Used as Weighing Factors (Kawashima, Hiraoka) Figure 4 (Continued) These four tables enable us to produce Figure 5 diagramatically illustrating the locus of the spatial-cycle paths for the five railway-line regions during the thirty-year period between 1960 and 1990 based on the values of the ROXY indices (i) with a CBD distance for the aggregated case, (ii) with a reversed CBD distance for the aggregated case, (iii) with a CBD distance for the disaggregated case, and (iv) with a reversed CBD distance for the disaggregated case. For the five railway-line regions for both aggregated and disaggregated cases, Table A-3 shows the average of the CBD distance, average of the reversed CBD distance, and their ratio. If we pick up figures for the Chuo-line region for the aggregated case as an example from this table, the average of the CBD distance is 28.2 while the average of the reversed CBD distance is 34.7. The ratio of these two figures (i.e., RR-ratio) is hence equal to 0.81. From Tables 14 and 15, we know that, for the aggregated case, R_d is -25.45 and R_s , is 20.73 for the period 1960-1965. Therefore the absolute value of the ratio of R_s to R_d becomes equal to 20.73 divided by 25.45 which results in also 0.81. Reflecting this, a pair of graphs AG-D-a and AG-RD-a in Figure 5 have the similarity-ratio of 0.81 for both horizontal and vertical directions. Table 14 Value of ROXY Index and Its Marginal Change for Five Railway-line Regions in Aggregated Case (Weighing Factor: CBD Distance) | | 1960—65 | 65 | 1965-70 | -70 | 1970-75 | -75 | 1975-80 | -80 | 1980—85 | -85 | 1985-90 | 06- | |----------------------|---------|-------|--------------|-------|---------|--------|---------|--------|---------|---------------------------|---------|--------| | | ROXY | △ROXY | ROXY | △ROXY | ROXY | ∆ROXY | ROXY | △ROXY | ROXY | △ROXY | ROXY | △ROXY | | Chuo-line region | -25.45 | 33.28 | 7.83 | 27.57 | 29.63 | 17.01 | 41.84 | -4.90 | 19.89 | -10.49 | 20.87 | 0.98 | | Takasaki-line region | -29.49 | 64.72 | 35.23 | 35.68 | 41.46 | 5.77 | 46.97 | -6.61 | l | 28.65 -14.35 | 18.07 | -10.58 | | Joban-line region | -84.21 | l | 69.78 -14.43 | 55.54 | 26.87 | 35.59 | 56.75 | 6.10 | 39.06 | 39.06 -11.90 | 32.95 | -6.11 | | Tokaido-line region | 64.69 | 9.49 | 77.18 | -1.54 | 64.62 | -15.07 | ĺ | -23.09 | 18.44 | 47.04 -23.09 18.44 -16.10 | 14.84 | -3.60 | | Sobu-line region | -83.82 | | 65.87 -17.95 | 66.43 | 49.63 | 51.51 | 85.06 | 28.9 | 62.77 | 62.77 -13.95 | 57.17 | -5.60 | Table 15 Value of ROXY Index and Its Marginal Change for Five Railway-line Regions in Aggregated Case (Weighing Factor: Reversed CBD Distance) | | 1960—65 | -65 | 1965-70 | -70 | 1970—75 | -75 | 1975—80 | -80 | 1980-85 | -85 | 1985 - 90 | -90 | |----------------------|---------|----------------------------|---------|--------|---------------|---------------|---------|-------|--------------|-------|-----------|-------| | | ROXY | △ROXY | | Chuo-line region | 20.73 | -27.11 | -6.38 | -22.46 | -24.19 | -13.85 | -34.08 | 4.00 | -16.20 | 8.54 | -17.00 | -0.80 | | Takasaki-line region | 30.44 | 30.44 -66.81 -36.37 -36.62 | -36.37 | -36.62 | -42.79 | -5.95 | -48.27 | 19.9 | -29.57 | 14.81 | -18.65 | 10.92 | | Joban-line region | 108.30 | 08.30 -89.77 18.53 -71.40 | 18.53 | -71.40 | -34.50 | -45.70 -72.86 | -72.86 | -7.83 | -7.83 -50.15 | 15.28 | -42.31 | 7.84 | | Tokaido-line region | -82.59 | -11.57 | -94.16 | 1.88 | -78.84 | 18.39 | -57.39 | 28.18 | -22.49 | 19.64 | -18.11 | 4.38 | | Sobu-line region | 93.61 | 93.61 -73.57 | 20.04 | | -74.18 -54.75 | -57.52 | -95.00 | -7.67 | -70.10 | 15.58 | -63.84 | 6.26 | Table 16 Value of ROXY Index and Its Marginal Change for Five Railway-line Regions in Disaggregated Case (Weighing Factor: CBD Distance) | | 1960—65 | -65 | 1965-70 | -70 | 1970-75 | -75 | 1975-80 | -80 | 1980 - 85 | -85 | 1985-90 | -06 | |----------------------|---------|----------------------|---------------|--------|--------------|----------------------|---------|----------------------|-----------|--------|---------------|--------| | | ROXY | △ROXY | | Chuo-line region | 150.12 | -11.10 | 139.02 | -16.39 | 117.34 | -20.76 | 97.51 | -30.72 | 55.90 | 4.76 | 4.76 107.03 | 51.13 | | Takasaki-line region | 36.20 | 86.75 | 122.95 | 35.33 | 106.86 | -16.22 | 90.51 | -25.16 | 56.55 | -20.13 | 50.25 | -6.30 | | Joban-line region | -11.27 | -11.27 111.71 100.44 | 100.44 | ! | 78.46 145.65 | 24.19 | 148.81 | -28.19 | 89.28 | -39.05 | 10.71 | -18.57 | | Tokaido-line region | 171.39 | 3.69 | 3.69 175.08 | -12.16 | 147.06 | -12.16 147.06 -43.33 | 88.43 | -49.85 | 47.36 | 3.53 | 81.38 | 34.02 | | Sobu-line region | 50.51 | 109.55 | 109.55 160.06 | | 80.20 210.90 | 22.29 | | 204.64 -42.08 126.75 | 126.75 | | -32.12 140.41 | 13.66 | Table 17 Value of ROXY Index and Its Marginal Change for Five Railway-line Regions in Disaggregated Case (Weighing Factor: Reversed CBD Distance) | | 1960-65 | -65 | 1965-70 | -70 | 1970-75 | -75 | 1975 - 80 | -80 | 1980 - 85 | -85 | 1985 - 90 | -90 | |----------------------|---------|-------------------------------------|---------|--------|---------------|-------------------------------|-----------|---------------------------|--------------|--|-------------|--------| | | ROXY | ROXY \rightarrow ROXY | ROXY | △ROXY | ROXY | △ROXY | ROXY | △ROXY | ROXY | ROXY \Begin{array}{c} \triangle ROXY \end{array} | ROXY | △ROXY | | Chuo-line region | -90.03 | 99.9 | -83.37 | 9.83 | -70.37 | 12.45 | -58.48 | 12.45 -58.48 18.43 -33.52 | -33.52 | -2.86 | -64.19 | -30.67 | | Takasaki-line region | -32.36 | -32.36 -77.54 -109.90 | -109.90 | -31.58 | -95.52 | 14.50 | -80.90 | 22.49 | -50.55 | 17.99 | -44.92 | 5.63 | | Joban-line region | 10.54 | 10.54 -104.47 -93.93 -73.37 -136.20 | -93.93 | -73.37 | -136.20 | -22.61 -139.16 | -139.16 | 26.36 | -83.48 | 36.52 | -66.12 | 17.36 | | Tokaido-line region | -143.79 | 43.79 -3.10 -146.89 | -146.89 | 10.21 | 10.21 -123.37 | 36.35 | -74.19 | 36.35 -74.19 41.82 -39.74 | -39.74 | | 2.96 -68.27 | -28.53 | | Sobu-line region | -35.46 | 35.46 -76.91 -112.37 | -112.37 | -56.30 | -148.06 | -56.30 -148.06 -15.65 -143.67 | -143.67 | 29.54 | 29.54 -88.98 | 22.54 | -98.58 | -9.60 | Figure 5 Spatial-cycle Paths for Five Railway-line Regions in the Tokyo Metropolitan Area for Aggregated Case (AG) and Disaggregated Case (DAG): With Weighing Factors of CBD Distance (D) and Reversed CBD Distance (RD) Figure 5 (Continued) Above observations are certainly consistent with the theoretical conclusion drawn from our mathematical examination discussed in Section 6. This consistency holds, as can be seen from Tables 14, 15, 16, 17 and A-3 as well as from Figure 5, for all five railway-line regions for all five-year periods for both aggregated and disaggregated cases²⁶. Based on Figure 5, the following points can be made as to the development of the 'spatial-cycle race'27 among the five railway-line regions for the disaggregated case²⁸. - (1) In the early 1960s, the Chuo-line region was taking the lead in the race with its position at the stage of decelerating decentralization. Following the Chuo-line region, were the Tokaido-line region (at the stage of accelerating decentralization), the Takasakai-line region (at the stage of accelerating decentralization), the Sobu-line region (at the stage of accelerating decentralization), and the Joban-line region (at the stage of decelerating centralization) in this order. - (2) Around the late 1980s, the Chuo-line region whose position was then at the stage of accelerating re-decentralization was leading the race, followed by the Tokaido-line region (at the stage of accelerating re-decentralization), the Sobu-line region (at the stage of accelerating re-decentralization), Takasaki-line region (at the stage of decelerating decentralization), and the Joban-line region (at the stage of decelerating decentralization) in this order. - (3) The relative order in the spatial-cycle race
between the Takasaki-line region and the Sobu-line region was reversed around 1980, resulting in that the Sobu-line region has been taking the lead over the Takasaki-line region since then. ## 8 Conclusion In this paper we have investigated, based on the values of the two types of ROXY indices (R_d and R_s), the spatial-cycle paths of five railway-line regions, for both aggregated and disaggregated cases, in the Tokyo metropolitan area. In this investigation, one of the focaul points is the theoretical and empirical comparisons of the values of the two types of ROXY indices, R_d and R_s , where R_d is the ROXY index with a CBD distance as its weighing factor and R_s is the ROXY index with a reversed CBD distance as its weighing factor. The implications of the results of our investigations would be as follows: - (1) The ROXY-index approach seems to offer a theoretically reasonable and empirically powerful means of conducting systematic inter-metropolitan and intra-metropolitan spatial-cycle researches. One of the reasons for this is that the value of the ROXY index would summarize a great deal of information which tells us about basic properties or performance of the spatial-cycle movements useful information that might otherwise remain indistinct. - (2) The ROXY-index approach seems to have introduced new dimensions in quantitatively investigating the spatial-cycle phenomena, within the realm of a simple analytical ## Mathematical Characteristics of ROXY Index (I): Distance and Reversed Distance Used as Weighing Factors (Kawashima, Hiraoka) device. (3) Using R, would appear to be a better choice than using R_{4} when we want to apply the ROXY-index method to studies of the intra-metropolitan spatial redistribution processes of socio-economic activities. - 1) SMSA stands for Standard Metropolitan Statistical Area. - 2) Those eleven SMSAs are: Cleveland (with a population change of -4.7% for the five-year period of 1970-75), New York (-4.1%), Pittsburgh (-3.3%), Newark (-2.8%), St. Louis (-1.8%), Seattle-Everett (-1.3%), Los Angeles-Long Beach (-0.8%), Philadelphia (-0.4%), Boston (-0.3%), Cincinnati (-0.3%), Detroit (-0.2%). See Kawashima (1987a) for a discussion on the disurbanization processes in the United States for the period of 1960-80. - 3) See Beale (1975), Berry (1978), Gordon (1979) and Alden (1981) for a discussion on the phenomena of net population loss of large US SMSAs in the early 1970s. - 4) Citation from Kawashima (p.71, 1978a). - 5) Citation from Kawashima (p.71, 1978a). - 6) See Klaassen and Paelinck (1979) and Klaassen et al. (1981) for the fundamental characteristics of the spatial-cycle framework and the factors leading up to the development of the spatial-cycle hypothesis proposed by Klaassen and his collaborators. - 7) For a discussion on how the development and applications of either or both of these two frameworks have come about, see for example Kawashima (1985, 1989). - 8) The connotations of counter-urbanization and reurbanization within the conceptual fremework illustrated by Figure 2 are more fully discussed in Kawashima and Hiraoka (1993b). - 9) There are cases where non-metropolitan areas are included in studies of the intermetropolitan spatial redstribution processes of socio-economic activities. - 10) See Kawashima (1977) and Glickman (1979) for a description of functional urban regions in Japan. - 11) In this paper, the size of a metropolitan area refers to the size of its population. Therefore, a larger metropolitan area is one with a larger population. - 12) The terms of counter-urbanization and disurbanization are used interchangeably in this paper. - 13) The foundations for the ROXY index were first conceived by Kawashima in the late 1970s when he was involved in studies of urban growth and decline at the International Institute for Applied Systems Analysis, Austria. See Kawashima (1978, 1981, 1982) for early applications of the ROXY index in his studies on urban changes. Also see Kawashima (1985) for detailed discussions on initial versions of the ROXY index, and Kawashima (1987b) for the application of the ROXY index for both inter- and intrametropolitan analyses. - 14) Note that we have thus far limited our discussion to two cases in each of which two spatial units are involved: (i) central city and suburbs for studying a metropolitan area, and (ii) a group of larger metropolitan areas and a group of medium and smaller metropolitan areas for studying a system of metropolitan areas. - 15) We begin our discussion of ROXY indices with the ROXY index which can be used for studying the phenomena of spatial concentration and deconcentration. This choice reflects the order of the empirical applications of the ROXY index, in which the intermetropolitan analyses preceded the intra-metropolitan analyses. The first empirical study in which the ROXY index was applied for intra-metoropolitan analyses was carried out by Kawashima (1986a) where he compared the speed of suburbanization for major railway-line regions in each of Tokyo, Osaka and Nagoya metropolitan areas. - 16) In general, the value of the ROXY index would turn out to be (i) greater than, (ii) equal to, or (iii) less than zero when spatial units with relatively heavy weights (in terms of, for example, population, distance, density, production level, or consumption level) attain growth ratios (i) higher than, (ii) equal to, or (iii) lower than spatial units with relatively light weights. - 17) In this paper, 'CBD distance of each locality' refers to the airline distance from the former Tokyo Metoropolitan Government Office (close to Tokyo station in Chiyoda-ku) to the public office (i.e., city hall, ward office, or town hall) of that locality. - 18) 'Reversed CBD distance of each locality' is defined as 'the sum of the minimum and maximum CBD distances among CBD distances of all localities subtracted by the CBD distance of that locality.' - 19) See Kawashima (1985, 1986a, 1986b, 1986c) and Kawashima and Hiraoka (1993a) for theoretical discussions and empirical applications of the ROXY index with CBD distance used as its weighing factor. - 20) See Kawashima (1987b, 1989) for discussions and empirical applications of the ROXY index with reversed CBD distance used as its weighing factor. - 21) In response to Kawashima's suggestion that there may exist a systematic functional relationship between R_4 (the value of the ROXY index which we calculate by use of a CBD distance as its weighing factor) and R_* (the value of the ROXY index which we calculate by use of a reversed CBD distance as its weighing factor), Hiraoka came up with a mathematical formulation relating the two values as expressed in Equation-1. Credit for the completion of this mathematical manipulation consequently goes to Hiraoka. - 22) In this paper, the geographical boundary of the Tokyo meytropolitan area is the one delineated as the 1990-version of the Tokyo functional urban region (FUR) by Kawashima et al. (1993). For the discussion on the delineation of the FURs in Japan, see Kawashima (1977) as to the 1970-version of FURs, and Kawashima et al. (1993) as to the 1970- and 1990-versions of FURs. - 23) For more details about the grounds for justifying the existence of these three general ## Mathematical Characteristics of ROXY Index (I): Distance and Reversed Distance Used as Weighing Factors (Kawashima, Hiraoka) - tendencies, see Kawashima and Hiraoka (1993a). - 24) See *ibid*. for the discussion on the *individual* characteristics of growth-rate curves unique to each railway-line region. - 25) It is to be noticed that these three points are discussed here in light of the spatial-cycle framework in which we use growth rate (or growth ratio) of population (instead of absolute level of change in population) as its basic reference-variable. - 26) It should be additionally noticed that, in Table A-3, the RR-ratio for the disaggregated case is smaller than that for the aggregated case. For a discussion on this subject, see Kawashima and Hiraoka (1993b). - 27) 'Spatial-cycle race' implies 'race along the spatial-cycle path.' - 28) For the more detailed investigation on the spatial-cycle path which each railway-line region (for disaggregated case) has shown since 1960, see Kawashima and Hiraoka (1993a). ## References - Alden J, 1981, "A Cross-National Study of Metropolitan Problems in Industrial Countries: Experiences of the USA and West Europe," Institute of Science and Technology, Cardiff (mimeographed). - Beale C, 1975, "The Revival of Population Growth in Nonmetropolitan America," Economic Research Service Series ERS 605, US Department of Agriculture, Washington, D.C., U.S.A. - Berry B J L, 1978, "The Counterurbanization Process: How General?," in N.H.Hansen (ed.) Human Settlement Systems: International Perspectives on Structure, Change and Public Policy, Ballinger, Cambridge, Mass., USA. - Glickman N, 1979, The Growth and Management of the Japanese Urban System, Academic Press, New York, U.S.A. - Gordon P, 1979, "Deconcentration without a 'Clean Break'," *Environment and Planning A*, Vol. 11, pp.281-290. - Kawashima T, 1977, "Changes in the Spatial Population Structure of Japan," Research Memorandum, 77-25, International Institute for Applied Systems Analysis, Laxenburg, Austria. - Kawashima T, 1978, "Recent Urban Evolution Processes in Japan: Analysis of Functional Urban Regions," presented at the Twenty-fifth North American Meetings of the Regional Science Association, Chicago, Illinois, USA, November. - Kawashima T, 1981, "Analytical Methods for the Phenomena of Urban Changes," Shin Toshi, Vol.35, No.8, Toshikeikaku Kyohkai, August, pp.10-21 (in Japanese). - Kawashima T, 1982, "Recent Urban Trends in Japan: Analysis of Functional Urban Regions" in T. Kawashima and P. Korcelli (eds.) Human Settlement Systems: Spatial Patterns and Trends, International Institute for Applied Systems Analysis, Laxenburg, Austria, pp.21-40. - Kawashima T,
1985, "ROXY Index: An Indicative Instrument to Measure the Speed of Spatial Concentration and Deconcentration of Population," *Gakushuin Economic Papers*, Vol.22, No.2, Gakushuin University, Tokyo, September, pp.183-213. - Kawashima T, 1986a, "Speed of Suburbanization: ROXY Index Analysis for Intrametropolitan Spatial Redistribution of Population in Japan," *Gakushuin Economic Papers*, Vol.22, No.3, Gakushuin University, Tokyo, March, pp.243-304. - Kawashima T, 1986b, "People Follow Jobs in Japan?: Suburbanization of Job Markets," Gakushuin Economic Papers, Vol.23, Nos.1&2, Gakushuin University, Tokyo, October, pp.157-183. - Kawashima T, 1986c, "Spatial Cycle Race 1985: ROXY Index Analysis of the 1985 Population Census for Three Railway-line Regions in the Tokyo Metropolitan Area," *Gakushuin Economic Papers*, Vol.23, No.3, Gakushuin University, Tokyo, December, pp.53-70. - Kawashima T, 1987a, "Is Disurbanization Foreseeable in Japan?: A Comparison between U. S. and Japanese Urbanization Processes" in L. van de Berg, L. S. Burns and L. Klaassen (eds.) Spatial Cycles, Gower Publishing Company, Hants, England, pp.100-126. - Kawashima T, 1987b, "ROXY Index Analysis of Population Changes in Japan for 1960-85: Spatial (De)centralization and (De)concentration," *Gakushuin Economic Papers*, Vol.24, No.3, Gakushuin University, Tokyo, December, pp.11-39. - Kawashima T, 1989, "Basic Concepts of the Nature of ROXY Index," GEM Bulletin, Vol.3, Gakushuin University Research Institute of Economics and Management, Tokyo, October, pp.81-94 (in Japanese). - Kawashima T, et al., 1993, "Metropolitan Analyses: Boundary Delineations and Future Population Changes of Functional Urban Regions," Gakushuin Economic Papers, Vol.29, Nos.3&4, Gakushuin University, Tokyo, January, pp.205-248. - Kawashima T and N. Hiraoka, 1993a, "Centralization and Suburbanization: ROXY Index Analysis for Five Railway-line Regions in Tokyo Metropolitan Area," *Gakushuin Economic Papers*, Vol.30, No.1, Gakushuin University, Tokyo, March, pp.203-230. - Kawashima T and N. Hiraoka, 1993b "Mathematical Characteristics of ROXY Index (II): Formulation of ROXY Index and Patterns of Spatial-cycles," Gakushuin Economic Papers, Vol. 30, No.3, Gakushuin University, Tokyo, (forthcoming). - Klaassen L H and J. H. P. Paelinck, 1979, "The Future of Large Towns," *Environment and Planning A*, 10:pp.1095-1104. - Klaassen L H et al., 1981, Transport and Reurbanisation, Gower Publishing Company, Hants, England. # Appendix Table A-1 CBD Distance, Reversed CBD Distance, and Population for Localities of Five Railway-line Regions in the Tokyo Metropolitan Area ## (a) Chuo-line region (unit of distance: km) | Code | Distance | Reve
dista | | 1960 | 1965 | 1970 | 1975 | 1980 | 1985 | 1990 | |--|--|--|--|--|--|--|---|---|--|---| | Code | Distance | Type a ⁽²⁾ | Type d(3) | | 1905 | 1310 | 1910 | 1300 | 1303 | 1330 | | 13100 ⁽¹⁾ 13102 13101 13104 13113 13114 13115 13203 13204 13210 13206 13214 13215 13202 13212 13201 14424 | 7. 4
1. 1
2. 1
5. 7
6. 1
9. 6
11. 7
18. 5
23. 7
25. 8
27. 5
29. 2
31. 0
33. 2
40. 3
55. 5 | 55.5
-
-
-
44.4
44.4
39.2
37.1
35.4
33.7
31.9
29.7
22.6
7.4 | 55.5
54.5
50.5
47.0
44.9
38.1
32.9
30.8
29.1
27.4
25.6
23.4
16.3 | 8,310,027
161,299
116,944
413,690
282,687
351,360
487,210
120,337
98,038
45,734
82,098
39,098
32,609
81,951
43,394
164,622
8,659 | 8,893,094
128,017
93,047
413,910
283,730
376,697
536,792
133,516
135,873
76,350
126,235
64,911
100,699
67,979
207,753
8,473 | 8,840,942
103,850
74,185
390,657
274,491
378,723
553,016
136,959
155,693
94,448
163,173
81,259
59,709
117,057
98,557
253,527
8,295 | 8,642,800
90,097
61,656
367,218
263,815
373,075
560,716
139,493
164,852
102,703
182,379
88,155
64,404
138,097
126,754
322,558
8,571 | 8,349,209
82,700
54,801
343,928
247,035
345,733
542,449
136,895
164,449
102,412
191,980
91,014
64,154
142,600
145,417
387,162
9,470 | 8,354,615
79,973
50,493
332,722
242,442
335,936
539,842
138,783
166,252
104,642
201,972
95,467
64,881
146,523
156,031
426,654
10,186 | 8,163,573
68,041
39,472
296,790
205,625
319,887
529,485
139,077
165,564
100,982
65,833
152,824
165,928
466,347
10,729 | ## (b) Takasaki-line region (unit of distance: km) | Code | Distance | Reve
dista | | 1960 | 1965 | 1970 | 1975 | 1980 | 1985 | 1990 | |--|--|--|--|---|---|--|--|--|--|--| | Code | Distance | Type a ⁽²⁾ | Type d(3) | | 1505 | 1510 | 1010 | 1500 | 1000 | 1000 | | 13100 ⁽¹⁾ 13106 13118 13117 11203 11223 11204 11220 11205 11219 11231 11233 11217 | 7.4
4.2
6.7
8.9
14.8
18.0
23.2
26.0
28.0
36.5
40.2
44.0 | 58.0

50.6
47.4
42.2
39.4
37.4
28.9
25.2
21.4
17.4 | 58.0
55.5
53.3
47.4
44.2
39.0
36.2
25.7
22.0
18.2
14.2 | 8,310,027
318,889
285,480
418,603
173,992
50,952
174,437
40,840
169,996
38,889
21,309
15,483
31,868 | 8,893,094
286,324
278,412
452,064
249,112
69,715
221,323
51,746
215,646
54,776
28,108
20,576
36,526 | 8,840,942
240,769
247,013
431,219
305,886
77,225
269,397
62,802
268,777
110,792
38,717
31,699
41,990 | 8,642,800
207,649
217,905
419,996
345,547
76,312
331,145
71,045
327,696
146,359
48,034
46,632
51,632 | 8,349,209
186,048
198,126
387,458
379,357
70,876
358,180
72,326
354,082
166,244
55,746
50,888
57,085 | 8,354,615
176,804
190,061
367,579
403,015
70,408
377,235
70,597
373,022
178,587
61,499
58,114
60,565 | 8,163,573
162,969
184,809
354,647
438,680
73,620
418,271
79,060
403,776
194,947
69,029
63,929
72,435 | | 11217
11304
11206 | 48.0
54.5
58.0 | 17.4
10.9
7.4 | 14.2
7.7
4.2 | 31,868
12,095
54,746 | 36,526
14,482
56,152 | 41,990
17,247
60,135 | 51,632
18,775
66,069 | 57,085
22,606
73,205 | 60,565
24,990
79,359 | 72,435
26,928
83,181 | ## (c) Joban-line region (unit of distance: km) | Code | Distance | Reve
dista
Type a ⁽²⁾ | ince | 1960 | 1965 | 1970 | 1975 | 1980 | 1985 | 1990 | |---|--|--|--
---|---|---|---|---|---|---| | 13100 ⁽¹⁾
13106
13118
13121
13122
13122
12207
12220
12217
12222
8217
8563
8208
8219 | 7.4
4.2
6.7
8.4
10.5
17.8
23.5
28.6
31.7
36.5
41.4
45.6
48.0 | 48.0
-
-
37.6
31.9
26.8
23.7
18.9
14.0
9.8
7.4 | 48.0
45.5
43.8
41.7
34.4
28.7
23.6
20.5
15.7
10.8
6.6
4.2 | 8,310,027
318,889
285,480
408,768
376,724
86,372
25,672
27,063
22,582
12,606
33,581
16,131 | 8,893,094
286,324
278,412
514,717
446,059
160,001
39,166
109,239
33,216
26,179
13,002
34,917
17,203 | 8,840,942
240,769
247,013
571,791
462,954
253,591
56,485
150,635
49,240
40,287
16,309
37,267
19,372 | 8,642,800
207,649
217,905
609,025
442,328
344,552
82,936
203,063
76,218
52,821
20,407
40,569
27,674 | 8,349,209
186,048
198,126
619,961
420,187
400,870
106,635
239,199
101,061
71,246
26,464
43,131
40,170 | 8,354,615
176,804
190,061
622,640
419,017
427,443
124,682
273,128
111,659
78,608
29,757
48,857
51,926 | 8,163,573
162,969
184,809
631,163
424,801
456,210
140,059
31,665
32,744
57,238
60,693 | ## (d) Tokaido-line region | (d) To | okaido-l | ine reg | ion | | | | | (unit | of dista | nce: km) | |--|----------------------|-----------------------|--------------------|--|--|-------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------| | Code | Distance | Reve
dista | | 1960 | 1965 | 1970 | 1975 | 1980 | 1985 | 1990 | | Code | Distance | Type a ⁽²⁾ | Type d(3) | | 1303 | 1310 | 1313 | 1300 | 1300 | 1000 | | 13100 ⁽¹⁾
13101 | 7.4
2.1 | 50.1 | -
50.1 | 8,310,027
116,944 | 8,893,094
93,047 | 8,840,942
74,185 | 8,642,800
61,656 | 8,349,209
54,801 | 8,354,615
50,493 | 8,163,573
39,472 | | 13103
13109 | 2.4
8.1 | - | 49.8
44.1 | 267,024
427,859 | 241,539
423,015 | 223,978
397,302 | 209,492
366,058 | 201,257
346,247 | 194,591
357,732 | 158,499
344,611 | | 13111
14130 ⁽⁴⁾
14132 | 11.6
17.2
15.6 | 40.3 | 40.6
36.6 | 706,219
632,975
632,975 ⁽⁶⁾ | 755,535
854,866
854,866 ⁽⁶⁾ | 734,990
973,486
155.549 | 691,337
1,014,951
148,756 | 661,147
1,040,802
138.585 | 662,814
1,088,624
137,306 | 647,914
1,173,603
142,320 | | 14131
14100 ⁽⁵⁾ | 16.9 | 31.7 | 35.3
- | 632,975 ⁽⁶⁾
1.375,710 | | 251,906
1,935,412 | 216,569
2,621,771 | 199,148
2,773,674 | 193,954
2,992,926 | 200,056 | | 14101
14102 | 19.8
24.9 | - | 32.4
27.3 | 230,377
172,068 | 255,755
196,559 | 256,403
207,319 | 242,808
213,654 | 231,477
201,794 | 237,083
188,952 | 250,100
194,506 | | 14103
14106 | 27.6
28.0 | - | 24.6
24.2 | 104,173
143,804 | 104,352
229,724 | 97,906
327,953 | 89,015
377,337 | 80,539
390,747 | 78,858
419,468 | 76,978
432,585 | | 14110
14204
14205 | 37.1
44.3
44.9 | 13.2
12.6 | 15.1
7.9
7.3 | 113,514
98,617
124,601 | 155,645
118,329
175,183 | 248,696
139,249
228,978 | 339,420
165,552
265,975 | 401,973
172,629
300,248 | 444,116
175,495
328,387 | 453,773
174,307
350,330 | | 14207 | 50.1 | 7.4 | 2.1 | 68,054 | 100,081 | 129,621 | 152,023 | 171,016 | 185,030 | 201,675 | ## (e) Sobu-line region | c, 00 | Du IIIIC | 1081011 | | | | | | (unit | of dista | nce: km) | |---------------|-----------------------|---------------|------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | Code | Distance | Reve
dista | | 1960 | 1965 | 1970 | 1975 | 1980 | 1985 | 1990 | | Code Distance | Type a ⁽²⁾ | Type d(3) | | 1905 | 1910 | 1915 | 1900 | 1900 | 1990 | | | 13100(1) | 7.4 | 49.8 | - | 8,310,027 | 8,893,094 | 8,840,942 | 8,642,800 | 8,349,209 | 8,354,615 | 8,163,573 | | 13101 | 2.1 | - | 49.8 | 116,944 | 93,047 | 74,185 | 61,656 | 54,801 | 50,493 | 39,472 | | 13107 | 3.8 | - | 48.1 | 331,843 | 317,856 | 281.237 | 250,714 | 232,796 | 229,986 | 222,944 | | 13106 | 4.2 | - | 47.7 | 318.889 | 286.324 | 240,769 | 207,649 | 186.048 | 176,804 | 162,969 | | 13108 | 4.9 | - | 47.0 | 351,053 | 359,672 | 355.835 | 355,382 | 362.270 | 388,927 | 385,159 | | 13123 | 10.0 | - | 41.9 | 316.593 | 405,139 | 446,758 | 473.656 | 495,231 | 514,812 | 565.939 | | 13122 | 10.5 | - | 41.4 | 376.724 | 446,059 | 462.954 | 442.328 | 420,187 | 419,017 | 424.801 | | 12203 | 16.8 | 40.4 | 35.1 | 157,301 | 207.988 | 261,055 | 319.272 | 364,244 | 397,822 | 436,596 | | 12204 | 20.0 | 37.2 | 31.9 | 135.038 | 223,989 | 325,426 | 423,160 | 479,437 | 506,966 | 533,270 | | 12216 | 24.0 | 33.2 | 27.9 | 42,167 | 64,477 | 99,951 | 117.851 | 125, 154 | 136,365 | 151.471 | | 12201 | 31.7 | 25.5 | 20.2 | 241.615 | 332,188 | 482,133 | 659.356 | 746,430 | 788,930 | 829,455 | | 12228 | 36.5 | 20.7 | 15.4 | 16,623 | 19,778 | 26,375 | 37,401 | 59.236 | 67.008 | 72,157 | | 12212 | 41.7 | 15.5 | 10.2 | 36,869 | 40.941 | 60.433 | 80,804 | 101,180 | 121,213 | 144,688 | | 12322 | 45.8 | 11.4 | 6.1 | 6.093 | 6,040 | 6.259 | 8,465 | 12.807 | 17,463 | 19,298 | | 12323 | 49.8 | 7.4 | 2.1 | 25,387 | 25,173 | 25,357 | 28,511 | 31,939 | 37,532 | 50,036 | | | 1 | 1 ''- | 1 | , | | , | | 1, | | | - (1) Code 13100 is for Tokyo city with 23 wards. - (2) Localities under type a are those for the aggregated case. - (3) Localities under type d are those for the disaggregated case. - (4) Code 14130 is for Kawasaki city. - (5) Code 14100 is for Yokohama city. - (6) These figures represent the population of Kawasaki-city. Saiwai-ku (14132) and Kawasaki-ku (14131) were designated as ku (i.e., ward) in April of 1972. Before that, each of them was simply a part of Kawasaki city, which makes their population statistics unavailable from the national population census for the years 1960 and 1965. Table A-2 Annual Growth Ratio of Population for Localities of Five Railway-line Regions in the Tokyo Metropolitan Area ## (a) Chuo-line region | (a) Chuo-line region (unit of distance: ki | | | | | | | | | | | |--|--|---|--|--|--|--|--|--|--|--| | Code | Distance | Reve
dista | | 19601965 | 1965-1970 | 1970-1975 | 1975-1980 | 1980-1985 | 1985-1990 | | | Code | Distance | Type a ⁽²⁾ | Type d(3) | 1300 1303 | 1505 1510 | 1510 1515 | 13/0 1300 | 1300 1300 | 1300 1300 | | | 13100 ⁽¹⁾ 13102 13101 13104 13113 13114 13115 13203 13204 13210 13216 13214 13215 13202 13212 | 7.4
1.1
2.1
5.7
6.1
9.6
11.7
18.5
23.7
25.8
27.5
29.2
31.0 | 55.5
-
-
-
44.4
43.4
33.7
35.4
33.7
31.9
29.7 | 55.5
54.5
50.9
50.5
47.0
44.9
38.1
32.9
30.8
29.1
27.4
25.6
23.4 | 1.0137
0.9548
0.9553
1.0001
1.0007
1.0140
1.0210
1.0675
1.1079
1.0899
1.1067
1.0592
1.0421
1.0421 | 0.9988
0.9590
0.9557
0.9885
0.9934
1.0011
1.0060
1.0051
1.0276
1.0435
1.0527
1.0459
1.0655
1.0306 | 0.9955
0.9720
0.9637
0.9877
0.9821
0.9970
1.0028
1.0037
1.0115
1.0169
1.0225
1.0164
1.0153
1.0336 | 0.9931
0.9830
0.9767
0.9870
0.9889
0.9849
0.9962
0.9995
0.9995
0.9995
0.9994
1.0103
1.0064
0.9992 | 1.0006
0.9933
0.9934
0.9963
0.9943
0.9990
1.0027
1.0022
1.0043
1.0102
1.0096
1.0023 | 0.9954
0.9682
0.9519
0.9774
0.9676
0.9901
1.0004
0.9992
1.0024
1.0072
1.0113
1.0029
1.0085
1.0085 | | |
13201
14424 | 40.3
55.5 | 22.6
7.4 | 16.3
1.1 | 1.0476
0.9957 | 1.0406
0.9958 | 1.0493
1.0066 | 1.0372
1.0201 | 1.0196
1.0147 | 1.0180
1.0104 | | ## (b) Takasaki-line region | (b) Ta | akasaki-l | line regi | on | | | | (u | nit of dista | ance: km) | |---|--|--|--|--|--|--|--|--|--| | Code | Reversed distance | | 1960-1965 | 1965-1970 | 1970 — 1975 | 1975 1980 | 1980-1985 | 1985-1990 | | | Code | Distance | Type a ⁽²⁾ | Type d(3) | 1300 1300 | 1303 1310 | 1310 1313 | 1313 1360 | 1300 1300 | 1365 1330 | | 13100 ⁽¹⁾
13106
13118
13117
11203
11223
11204
11220
11205
11219
11231
11233 | 7.4
4.2
6.7
8.9
14.8
18.0
23.2
26.0
28.0
36.5
40.2 | 58.0
-
-
50.6
47.4
42.2
39.4
37.4
28.9
25.2
21.4 | 58. 0
55. 5
53. 3
47. 4
44. 2
39. 0
36. 2
34. 2
25. 0
18. 2 | 1.0137
0.9787
0.9950
1.0155
1.0748
1.0647
1.0488
1.0487
1.0487
1.0709 | 0.9988
0.9659
0.9764
0.9906
1.0419
1.0207
1.0401
1.0395
1.0450
1.1513
1.0661
1.0903 | 0.9955
0.9708
0.9752
0.9947
1.0247
0.9976
1.0421
1.0250
1.0404
1.0573
1.0442 | 0.9931
0.9783
0.9811
0.9840
1.0188
0.9853
1.0158
1.0036
1.0258
1.0258 | 1.0006
0.9899
0.9917
0.9895
1.0122
0.9987
1.0104
0.9952
1.0105
1.0144
1.0198 | 0.9954
0.9838
0.9944
0.9929
1.0171
1.0090
1.0209
1.0229
1.0160
1.0177
1.0234
1.0193 | | 11217
11304
11206 | 48.0
54.5
58.0 | 17.4
10.9
7.4 | 14.2
7.7
4.2 | 1.0585
1.0277
1.0367
1.0051 | 1.0283
1.0356
1.0138 | 1.0803
1.0422
1.0171
1.0190 | 1.0176
1.0203
1.0378
1.0207 | 1.0269
1.0119
1.0203
1.0163 | 1.0364
1.0151
1.0095 | ## (c) Joban-line region | (unit of dista | ance. Kin | , | |----------------|-----------|---| |----------------|-----------|---| | Code | Distance Reversed distance | | | 1960 — 1965 | 1965 — 1970 | 1970 — 1975 | 1975-1980 | 1980-1985 | 1985-1990 | |--|--|--|--|--|--|--|--|--|--| | Distance | | Type a ⁽²⁾ | Type d(3) | | 19001910 | 19101913 | 1919 1960 | 1900 1900 | 1905 1990 | | 13100 ⁽¹⁾
13106
13118
13121
13122
12207
12220
12217
12222
8217
8563 | 7.4
4.2
6.7
8.4
10.5
17.8
23.3
28.6
31.7
36.5
41.4 | 48.0
-
-
37.6
31.9
26.8
23.7
18.9
14.0 | - 48.0
45.5
43.8
41.7
34.4
28.7
23.6
20.5
15.7
10.8 | 1.0137
0.9787
0.9950
1.0472
1.0344
1.1312
1.0882
1.1137
1.0418
1.0300
1.0062 | 0.9988
0.9659
0.9764
1.0213
1.0075
1.0965
1.0760
1.0664
1.0819
1.0900
1.0464 | 0.9955
0.9708
0.9752
1.0127
0.9909
1.0632
1.0798
1.0616
1.0913
1.0557
1.0459 | 0.9931
0.9783
0.9811
1.0036
0.9898
1.0307
1.0516
1.0333
1.0580
1.0617
1.0534 | 1.0006
0.9899
0.9917
1.0009
0.9994
1.0129
1.0318
1.0269
1.0201
1.0199
1.0237 | 0.9954
0.9838
0.9944
1.0027
0.0027
1.0131
1.0235
1.0224
1.0156
1.0077
1.0193 | | 8208
8219 | 45.6
48.0 | 9.8
7.4 | 6.6
4.2 | 1.0078
1.0130 | 1.0131
1.0240 | 1.0171
1.07 39 | 1.0123
1.0774 | 1.0252
1.0527 | 1.0322
1.0317 | ## (d) Tokaido-line region (unit of distance: km) | Code | Distance | Reve
dista | | 1960-1965 | 1965-1970 | 1970-1975 | 1975-1980 | 1980 — 1985 | 1985-1990 | | |--|--|---|----------------------------------|--|--|--|---|--|--|--| | Louic | Distance | Type a ⁽²⁾ | Type d(3) | 1300 1300 | 1300 1310 | 1910 1910 | 1910 1900 | 1300 1303 | 1960 — 1990 | | | 13100 ⁽¹⁾ 13101 13103 13109 13111 14130 ⁽⁴⁾ 14132 14131 14100 ⁽⁵⁾ 14101 14102 14103 14106 14110 14205 14207 | 7.4
2.1
2.4
8.1
11.6
17.2
15.6
16.9
25.8
19.8
24.9
27.6
28.0
37.1
44.3
50.1 | 50.1
-
-
40.3
-
31.7
-
-
-
13.2
12.6
7.4 | 50.1
49.8
44.1
40.6
 | 1.0137
0.9553
0.9801
0.9977
1.0136
1.0619**
1.0619**
1.0211
1.0270
1.0003
1.0982
1.0652
1.0371
1.0705
1.0802 | 0.9988
0.9557
0.9850
0.9875
0.9945
1.0263 ⁽⁶⁾
1.0263 ⁽⁶⁾
1.0557
1.0005
1.0107
0.9873
1.0738
1.0738
1.0331
1.0550
1.0550 | 0.9955
0.9637
0.9867
0.9838
0.9878
1.0084
0.9911
0.9702
1.0627
0.9892
1.0060
0.9811
1.0285
1.0642
1.0352
1.0304
1.0304 | 0.9931
0.9767
0.9920
0.9889
0.9911
1.0050
0.9859
0.9834
1.0113
0.9905
0.9886
0.9802
1.0070
1.0344
1.0084
1.0084
1.00245 | 1.0006
0.9838
0.9933
1.0065
1.0095
1.0090
0.9981
0.9947
1.0153
1.0048
0.9869
0.9958
1.0143
1.0201
1.0033
1.0181 | 0.9954
0.9519
0.9598
0.9926
0.9925
1.0152
1.0062
1.0148
1.0107
1.0058
0.9952
1.0043
0.9986
1.0130
1.0174 | | ## (e) Sobu-line region (unit of distance: km) | Code | Distance | Reversed
distance | | 1960 — 1965 | 1965—1970 | 1970-1975 | 1975-1980 | 1980-1985 | 1985-1990 | |--|---|---|--|--|--|--|--|--|--| | Code | Distance | Type a ⁽²⁾ | Type d(3) | 1900 - 1903 | 1905-1910 | 1910-1919 | 1919-1900 | 1900-1900 | 1965-1990 | | 13100
⁽¹⁾
13101
13107
13106
13108
13123
13122
12203
12204
12216
12201
12228
12228
12212
12322 | 7.4
2.1
3.8
4.2
4.9
10.0
10.5
15.7
19.5
23.5
31.7
36.5
41.7 | 49.8
-
-
-
-
-
40.4
37.2
33.2
25.5
20.7
15.5 | - 49.8
48.1
47.7
47.0
41.9
41.4
35.1
31.9
20.2
15.4
10.2 | 1.0137
0.9553
0.9914
0.9787
1.0049
1.0506
1.0344
1.0575
1.1065
1.0901
1.0657
1.0354
1.0212
0.9983 | 0.9988
0.9557
0.9758
0.9659
0.9679
1.0197
1.0075
1.0465
1.0776
1.0902
1.0773
1.0593
1.0810 | 0.9955
0.9637
0.9773
0.9708
0.9997
1.0118
0.9999
1.0411
1.0539
1.0335
1.0646
1.0724
1.0598 | 0.9931
0.9767
0.9853
0.9783
1.0089
1.0089
0.9898
1.0267
1.0253
1.0121
1.0251
1.0963
1.0460
1.0863 | 1.0006
0.9838
0.9976
0.9899
1.0143
1.0078
0.9994
1.0178
1.0112
1.0173
1.0111
1.0250
1.0368
1.0640 | 0.9954
0.9519
0.9938
0.9838
0.9838
1.0191
1.0027
1.0188
1.0102
1.0212
1.0101
1.0149
1.0360
1.0202 | - (1) The code 13100 is for Tokyo city with 23 wards. - (2) Localities under type a are those for the aggregated case. - (3) Localities under type b are those for the disaggregated case. - (4) The code 14130 is for Kawasaki city. - (5) The code 14100 is for Yokohama city. - (6) These figures represent the population of Kawasaki-city. Saiwai-ku (14132) and Kawasaki-ku (14131) were designated as ku (ward) in April 1972. Before that, each of them was simply a part of Kawasaki city, which makes their population statistics unavailable from the national population census for years 1960 and 1965. It should be, however, noted that unavailability of these data would not seem to cause serious distortions in the results of our analysies, mainly because of the fact that we calculate the value of our ROXY index in terms of the annual growth ratio of the population (instead of the annual increment or decrement of the population). Table A-3 Average of CBD Distance, Average of Reversed CBD Distance, and RR-ratio: Aggregated and Disaggregated Cases for Five Railway-line Regions (unit of distance: km) | | Ag | gregated cas | ie . | Disaggregated case | | | | |------------------------|----------------------------|----------------------------------|----------|----------------------------|----------------------------------|----------|--| | Railway-line
region | Average of
CBD distance | Average of reversed CBD distance | RR-ratio | Average of
CBD distance | Average of reversed CBD distance | RR-ratio | | | | (A) | (B) | (A/B) | (A) | (B) | (A/B) | | | Chuo-line region | 28.2 | 34.7 | 0.81 | 21.2 | 35.4 | 0.60 | | | Takasaki-line region | 33.2 | 32.2 | 1.03 | 29.4 | 32.8 | 0.90 | | | Joban-line region | 31.2 | 24.2 | 1.29 | 25.2 | 27.0 | 0.93 | | | Tokaido-line region | 31.6 | 25.9 | 1.22 | 23.8 | 28.4 | 0.84 | | | Sobu-line region | 30.4 | 26.8 | 1.13 | 21.6 | 30.3 | 0.71 | | ## Note RR-ratio refers to the absolute value of the ratio of R_* to R_* which is equal to the average of CBD distance divided by the average of reversed CBD distance.