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Abstract

We theoretically explore the risk-taking behavior of two unequally-endowed risk-neutral agents who 

are presented with opportunities to play lotteries.  We fi nd that if the agents consider rank in the wealth 

distribution more important than wealth itself, then their risk preferences are distorted in a way that  

lowers their expected income, raises inequality and increases wealth-rank mobility.  In equilibrium, the 

rich agent avoids some positive expected return lotteries and both agents gamble on some negative 

expected return lotteries.  We simulate and graph equilibrium strategies to visualize how trying to get 

richer differs from trying to be richer than someone else.
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1.  Introduction

We study risk-taking behavior by two risk-neutral agents each of whom cares primarily about his rank 

in the wealth distribution and secondarily about how much wealth he has.   In a previous study of the 

problem, we examined the intricate ways in which the pursuit of wealth rank distorts risk preferences, 

inducing agents to gamble on some negative expected return lotteries and to avoid some positive 

expected return investments.  (Rtischev 2008)    The model in that study, however, allowed the rich agent 

to take bigger risks than the poor agent, and the fi ndings were thus contingent on such an inequality of 

opportunity.  In this paper, we re-examine the problem in a different framework that gives both agents 

the same set of opportunities and also allows visualization of strategies. 

Our investigation belongs to the strand of research on the connection between willingness to take risks 

and concern for relative position.  Broadly speaking, we fi nd that the poor takes on more risk while the 

rich plays it safe.  This is generally consistent with prior theoretical results (Gregory 1980; Robson 1992, 

1996; Stark 2019) as well as experimental evidence (Mishra, Barclay and Lalumière, 2014).  Using a 

new modeling approach, we are able to depict the agents’ risk strategies as regions in two-dimensional 

space and inspect in detail how the pursuit of rank shapes their risk strategies.  This allows us to visually 

demonstrate that trying to get richer is very different from trying to be richer than someone else.  It als o 

reveals that, despite the overall tendency of the poor to gamble and the rich to play it safe, even the rich 

are prone to play some negative expected return lotteries as part of a strategy to defend high rank.  
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Moreover, we fi nd that, relative to pursuit of wealth, pursuit of wealth-rank lowers expected income, 

raises inequality and increases wealth-rank mobility.

The rest of the paper is organized as follows.  The next section presents the model and Section 3 

analyzes it in general.   Section 4 derives strategies and outcomes in several baseline cases.  Section 5 

presents equilibrium analysis based on computer simulations.   Section 6 concludes.

2.  The model

There are two players: Abe endowed with a>0 and Bob endowed with b>0 dollars.  Abe is richer:  

d ≡ a – b > 0.   A lottery ticket is offered to Bob:  the ticket costs y < b dollars, the winning prize is x + 

y dollars, and the probability of winning is 1/2.  Thus, if Bob decides to buy the ticket, his wealth will 

either increase to b + x or decrease to b – y.  Simultaneously, another lottery ticket is offered to Abe: the 

price and prize are potentially different, but the probability of winning is also 1/2.  

Abe and Bob don’t see each other’s lottery tickets but know that they are independent identically 

distributed draws from the uniform distribution of equiprobable binary lotteries with support on Ω
={(x,y)|x,y∈ (0,M]}, where 0 < d < M < b.   Each agent must decide whether to buy the ticket he has 

been offered without any knowledge of the other’s ticket or decision.

Alternatively, the game can be formulated in discrete space, as follows.  Each player draws 2 balls 

(with replacement) from an urn containing M balls numbered from 1 to M.  The fi rst ball signifi es the 

price of the lottery ticket y and the second ball signifi es the possible net gain x.  Below, we will use the 

continuous formulation for analysis and the discrete formulation for computer simulations.

Only one lottery is offered to each player and each must decide whether to play it or abstain.  Each 

player’s primary objective is to maximize the probability of becoming the richer player.  Maximizing 

expected income is a secondary objective that each player considers only when the primary objective 

leaves him indifferent.   Formally, if after the lottery Abe ends up with mA dollars and Bob with mB, then 

Abe’s utility is 

u(m
A
) =

m
A
 + V if m

A
 ≥ m

B

m
A
       if m

A
 <  m

B
　　　　　　　　　　　　　　　(1)

and Bob’s utility is 

u(m
B
) =

m
B
 + V if m

B
 >  m

A

m
B
       if m

B
 ≤ m

A
　　　　　　　　　　　　　　　(2)

where V>>a+M is a big prize that brings more utility than money can buy.

3.  Analysis 

The game is essentially a winner-take-all tournament.  Let mi be the random variable representing the 

wealth of player i∈ {A,B} after the game.  Denote the ex ante probability of Abe winning the 

tournament by π ≡ Pr(mA ≥ mB). Let Si⊆Ω be the strategy of agent i, i.e., the set of lotteries he would 
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play if offered.  Any strategy profi le {SA, SB} corresponds to an allocation of contest success probability 

(CSP) between the two players on the simplex {(π ,1－π ) │ π∈ [0,1] }.

Let Fi(m) ≡ Pr(mi < m|Si) be the cumulative distribution function of the post-game wealth of player i 

if he plays strategy Si.  Denote the corresponding probability density function by fi(m)= dFi(m)/dm.

Each player’s optimal decision whether to play or pass on a given lottery depends on the distribution 

of the other player’s ex post wealth given the other player’s strategy.  Suppose Abe is considering whether 

to play a particular lottery (x, y) given that Bob is playing strategy SB which results in an ex post 

distribution of wealth FB(m).  If Abe passes on the lottery, the probability of him remaining the richer 

man is Pr(mB≥a) = FB(a).  If he plays the lottery, the probability of him remaining the richer man is

1
2

1
2

F
B
(a＋x) +    F

B
(a－y)　　　　　　　　　　　　　　　(3)

The critical threshold for Abe to play the lottery is thus 

1
2

1
2

T
A
(x,y) ≡　F

B
(a＋x) +    F

B
(a－y) - F

B
(a)　　　　　　　　　　　　(4)

If the threshold is positive, Abe plays the lottery.  If it is negative, he abstains. If it is zero, he plays only 

if the lottery offers a positive expected return.  We can thus express Abe’s best response strategy as

S
A

BR(S
B
) ＝｛(x,y)∈Ω|T

A
(x,y) >  0  or (T

A
(x,y)＝0  and x >  y))｝　　　　　　　　(5)

Bob’s best response can be expressed analogously. 

Lemma 1.  If a strategy Si is a best response to some strategy of the opponent, i.e., Si=Si
BR(Sj ), then for 

all (x,y),(x',y')∈Ω the following hold

(i)    Every lottery offering a higher expected return than a lottery in the best response must also be part 

of the best response:

(x,y)∈ S
i
 ⇒ (x´,y´)∈ S

i
 x´  x y´  y

(ii)    Every lottery offering a lower expected return than a lottery absent from the best response must 

also be absent from the best response

(x,y)  S
i
 ⇒ (x´,y´)  S

i
 x´  x y´  y

(iii)    Let si(x)≡ sup{y | (x,y)∈ Si} be the biggest loss that player i is willing to risk on a lottery in the 

hope of winning x.  The function si(x) is non-decreasing on (0, M) and traces the upper-left 

boundary (frontier) of Si.

Proof.

(i)   If x'≥x and y'≤y, then Ti (x',y')≥Ti (x,y).  Since (x,y) is in the best response set of strategies, Ti(x,y) > 

0 and therefore Ti(x',y') > 0.

(ii)   If x'≤x and y'≥y, then Ti (x',y' )≤Ti (x,y).  Since (x,y) is not in the best response set of strategies, 

Ti(x,y) < 0 and therefore Ti(x',y') < 0.

(iii) Follows from (i) and (ii). QED
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As shown in Figure 1, contest success probability can be computed by integrating probability density 

over the part of the 2M by 2M square event space that lies above the 45° line.  Specifi cally,

π = 1 － f
A
(m

A
)

b＋M

a－M
f
B
(m

B
)dm

B
dm

A

b＋M

m
A 　　　　　　　　　　　　　　　(6)

which simplifies to

π = 1 － F
A
(b＋M)＋ f

A
(m

A
) F

B
(m

A
)dm

A

b＋M

a－M 　　　　　　　　　　　　　　　(7)

Figure 1.   The event space is a 2M by 2M square centered on the endowment point (a, b).   
Abe remains the richest player at all outcomes that lie on or below the 45º line; 
all outcomes above the line correspond to Bob becoming the richer player.

By Lemma 1, best response strategies can be expressed in terms of boundary curves sA(x) and sB(x).   

Using these strategy curves and with reference to Figure 2, we can express Abe’s cumulative distribution 

Pr(mA<m) by 

F
A
(m) =

F
A

lose(m), m < a

F
A

win (m), m ≥ a
　　　　　　　　　　　　　　　(8)

where

1
2M 2 (a－m)SA

−1F
A

lose (m) = (s
A  
(x)－(a－m))dx

M

　　　　　　　　　　　　　　　(9)

1
2M 2

F
A

win (m) = K
A  
＋ m−a

s
A  
(x)dx

0   　　　　　　　　　　　　　　(10)

and where the probability of Abe abstaining is given by

1
M 2

M

s
A  
(x)dx

0
K

A  
 = 1－   　　　　　　　　　　　　　　(11)
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(i)  z<a (lottery loss)　　　　　　　　　(ii)  z>a (lottery win)　　　

Figure 2.   The striped area in (i) represents all lotteries that can result in losses larger than 
a-z.  The striped area in (ii) represents all lotteries that can result in winning less 
than z-a.  

Differentiating （8） gives Abe’s probability density function:

f
A  
(m) = g

A  
(m)＋K

A 
δ

 
(m－a)  　　　　　　　　　　　　　　(12)

where δ is the Dirac delta function and 

g
A  
(m) =

g
A

lose (m) , m <  a

g
A

win (m) , m >  a 
  　　　　　　　　　　　　　　(13)

where

g
A

lose(m) =
M－　　　　

2M2

(a－m)SA
−1

  　　　　　　　　　　　　　　(14)

g
A

win(m) =
2M2

(m－a)SA

  　　　　　　　　　　　　　　(15)

Bob’s cumulative distribution and probability density functions can be expressed analogously. 

Using these expressions for the distributions and densities, we can rewrite the contest success 

probability (7) as follows:

π = 1 － F
A

win(b＋M)＋K
A
F

B

win(a)＋ g
A
(m

A
) F

B
(m

A
)dm

A

b＋M

a－M
  　　　　　　　　　　　　　　(16)

Since a – M < b < a < b+M, we can rewrite (16) to make explicit the various combinations of wins and 

losses by the two players:
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π = 1 － F
A

win(b＋M)＋K
A
F

B

win(a)

＋ g
A

lose(m
A
) F

B

lose(m
A
)dm

A

b

a－M
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A

lose(m
A
) F

B

win(m
A
)dm

A

a

b

＋ g
A

win(m
A
) F

B

win(m
A
)dm

A

b＋M

a

  　　　　　　　　　　　　　　(17)

Expression (17) links players’ strategies to contest success probabilities.  The problem of fi nding best 

responses and equilibrium corresponds to maximizing (17) over the set of all possible strategy curves 

sA(x) and sB(x).  Since it is diffi cult to solve this in general, we will examine various special cases and 

then use simulation to study the equilibrium.

4. Strategies and outcomes in baseline cases

We fi rst examine three baseline cases in which both players are hard-wired to play the same strategy.

1. Si =Ø : both players abstain from all lotteries.  The allocation of CSP is π =1.

2.   Si =Ω : both players willing to play all lotteries.  The probability density of mA is uniformly 

distributed on [a-M, a+M] and the cumulative distribution of mA increases linearly from 0 to 1 on 

the same interval.  The density and distribution of mB are analogous.  The allocation of CSP is 

(2M－d )2

8M 2
π = 1 －   　　　　　　　　　　　　　　(18)

　　  By symmetry of the lottery space, the expected gain from every positive-expected return lottery is 

offset by the expected loss from a corresponding negative-expected return lottery.  Therefore, 

expected income is zero.

3.   Si =Λ≡ {(x,y)∈Ω | x>y} : both players maximize income by playing all lotteries with positive 

expected return and abstaining from all negative expected return gambles.  The probability density 

and cumulative distribution functions for Abe are given by the following expressions (see Figure 3):
m＋M－a

2M 2
g

A

lose (m) =　　　　  , m [a－M,a)  　　　　　　　　　　　　　　(19)

g
A

win (m) =　　　 , m (a, a＋M]
m－a

2M 2   　　　　　　　　　　　　　　(20)

(m＋M－a ) 2

4M 2
F

A

lose (m) =　　　　　 , m [a－M, a)  　　　　　　　　　　　　　　(21)

(m－a ) 2

4M 2

3
4

F
A

win (m) =　　＋　　　　 , m [a, a＋M ]  　　　　　　　　　　　　　　(22)

　　Bob’s expressions are analogous, with b replacing a.  The allocation of CSP is

5
8

π  =　　＋　　　－5d

12M

d 2(6M＋d )(2M－d )
96M 4

  　　　　　　　　　　　　　　(23)
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　Players’ expected incomes are E[I
A
] = E[I

B
] = 

M
12  , where E[I

A
] ≡ E[m

A
]－a and E[I

B
] ≡ E[m

B
]－b .

Figure 3.   Probability density and cumulative distributions of Abe’s post-game wealth if he 
plays the wealth-maximization strategy.  Since he abstains from half the lotteries, 
the density includes a Dirac delta function with mass 1/2 at mA = a.

We next examine best-response strategies in six baseline cases.

4.   SB= Ø : If Bob abstains from all lotteries, Abe’s best response is to buy all positive expected return 

lotteries except those whose price is so large as to jeopardize his initial wealth advantage (Figure 4a 

left):

S
A

BR(Ø) ＝｛(x,y)∈Ω| y <  min(d , x)｝

　  Abe’s expected income is E[I
A
] =

(d 2－3dM＋3M 2)d

2M 2
 , which is less than M/12 that he could have 

earned if he didn’t care about being leapfrogged and simply played all the positive expected return 

lotteries.  By foregoing some expected income, Abe manages to keep CSP at π＝1 , retaining his 

top rank for sure.

5.   SA= Ø : If Abe abstains from all lotteries, Bob’s best response is to buy all lotteries with prize large 

enough to leapfrog Abe, and also positive-expected return lotteries with a smaller prize (Figure 4a 

right):

S
B

BR(Ø) ＝｛(x,y)∈Ω| x >  min(d , y)｝
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　  Bob’s expected income is E[I
B
] =

(d 2－3dM＋3M 2)d

2M 2
 , which is less than M/12 that he could have 

earned if he didn’t try to leapfrog Abe and simply played all the positive expected return lotteries.   

By foregoing some expected income, Bob manages to lower Abe’s chances of retaining top wealth 

rank to  1
2

d
2M

π =　  +  .

6. SB=Ω : If Bob buys all lotteries, Abe’s best response is (Figure 4b left):

S
A

BR(Ω) ＝｛(x,y)∈Ω| y <  min(M－d , x)｝ 

　  Abe’s expected income is E[I
A
] =

M 3－d 3

12M 2
 , which is less than M/12 that he could have earned if he 

didn’t care about staying ahead of Bob and just tried to maximize income.

7. SA=Ω :   If Abe buys all lotteries, Bob’s best response is (Figure 4b right):

S
B

BR(Ω) ＝｛(x,y)∈Ω| x >  min(M－d , y)｝ 

　  Bob’s expected income is E[I
B
] =

M 3－d 3

12M 2
 , which is less than M/12 that he could have earned if he 

didn’t care about getting ahead of Abe and just tried to maximize income.

8. SB=Λ :   If Bob maximizes income, Abe’s best response is

S
A

BR(Λ) ＝｛(x,y)∈Ω| y <  d and (x＋d )2＋(y－d )2 >2d 2｝ 

　  This can be derived by substituting Bob’s version of (21) and (22) into (4) and solving TA(x,y)=0.  

As Figure 4c (left) shows, in response to an absolute wealth maximizer, a richer player who wants 

to keep his rank abstains from some positive expected return investments that may lead to a big loss 

but is willing to gamble on some small negative expected return lotteries.

9. SA=Λ : If Abe maximizes income, Bob’s best response is

S
B

BR(Λ) ＝｛(x,y)∈Ω| x >  d or (x＋M－d )2＋(y－(M－d ))2 > 2 (M－d )2｝ 

　  This can be derived by substituting (21) and (22) into Bob’s version of (4) and solving TB(x,y)=0.  

As Figure 4c (right) shows, in response to an absolute wealth maximizer, a poorer player who wants 

to leapfrog plays all positive expected return lotteries and many but not all of the negative expected 

return ones. 
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SA
BR(Ø)　　　　　　　　　　　　　　SB

BR(Ø)　　　

Figure 4a.   Best response strategies when the other agent abstains from all lotteries (cases 
4 and 5).

SA
BR(Ω )　　　　　　　　　　　　　　SB

BR(Ω )　　　

Figure 4b. Best response strategies when the other agent plays all lotteries (cases 6 and 7).
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　　SA
BR(Λ )　　　　　　　　　　　　　　　　　　　SB

BR(Λ )

Figure 4c.   Best response strategies when the other agent maximizes absolute wealth (cases 
8 and 9).  The circle on the left is centered at (-d, d) and has a radius of d √2.  
The circle on the right is centered at (d-M, M-d) and has a radius of (M-d) √2.

5. Equilibrium 

Nash equilibrium is a strategy profi le ｛S
A

NE, S
B

NE ｝ such that S
A

NE＝ S
A

BR(S
B

NE) and S
B

NE＝ S
B

BR(S
A

NE) .  We 

implemented the following simulation algorithm to fi nd equilibrium strategies:

1．Initialize both players’ strategies to absolute wealth maximization: Si =Λ 

2．Compute players’ probability distributions of post-lottery wealth fi(m)

3．  Re-compute Abe’s best response strategy, i.e., the strategy that maximizes the probability that mA ≥ 

mB given fB(m)

4．Re-compute the probability distribution of post-lottery wealth for Abe:  fA(m)

5．  Re-compute Bob’s best response strategy, i.e., the strategy that maximizes the probability that mB > 

mA given fA(m)

6．Re-compute the probability distribution of post-lottery wealth for Bob:  fB(m)

7．  Repeat 3-5 until both players’ strategies stop changing or the maximum number of iterations has 

been reached

We programmed the algorithm in Ruby and ran the simulation with various sets of parameters.  For all 

parameters and initial strategies that we tried, the algorithm quickly converged to an equilibrium.2）   We 

2） For some parameter combinations, the algorithm converged to a cycle between two strategies.  Since scaling the pa-
rameters proportionally eliminated such cycling, it appears that the cycling is an artifact of the discretization of strate-
gy space.
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will describe the results of a simulation with the following parameters: a=169, b=140, M=120.  This 

simulation reached equilibrium in 13 iterations.  The equilibrium strategies are shown in Figure 5 and 

closely resemble equilibria reached in other simulation runs using different parameter values.  Note that 

in equilibrium both rich and poor agents play some negative expected return lotteries and that the rich 

agent but not the poor avoids some positive expected return lotteries.  Figure 6 shows the equilibrium 

distributions of the players’ post-game wealth.   Overall, the poor agent takes on much more negative 

expected return risk than the rich agent.  However, the poor agent is also more willing to make positive-

expected return investments than the rich; in fact, unlike the rich, the poor agent does not abstain from 

any positive expected return lottery.

In this simulation, when both players maximize income, the probability that the rich stays rich is π = 

0.72.  Playing the game according to equilibrium strategies reallocates some CSP to the poor player.  

Specifi cally, in equilibrium π = 0.65, which means strategizing for rank raises the poor player’s 

probability of leapfrogging from 0.28 to 0.35, a gain of 25%.

Although playing the game according to equilibrium strategies increases wealth rank mobility, it 

reduces the expected income of both agents.  Specifi cally, when using income maximization strategies, 

each agent’s expected income is 10.  However, when playing rank-seeking equilibrium strategies, the rich 

and poor agent’s expected incomes drop to 9.3 and 4.5, respectively.  Thus, by pursuing wealth rank 

instead of wealth, the rich player sacrifi ces expected income by 7% and the poor player by 55%.

In the simulation, the pursuit of rank in the wealth distribution leads to greater wealth inequality.  As 

Table 1 shows, the difference in initial endowments is 9.4% of total wealth.  If the agents maximize 

income, the difference in their expected wealth comes down to 8.8% of the total expected ex-post wealth.  

However, if they pursue wealth rank, it rises to 10.5%.  Thus, pursuing income reduces inequality but 

pursuing wealth rank increases it.

It is interesting to compare this equilibrium to best-responses against an income-maximizing opponent 

that we considered in general in Section 4, Cases 8-9 and Figure 4c.  Figure 7 shows the simulated best-

response strategies to an income-maximizing opponent for the same parameter values as the equilibrium 

Table 1.   Summary of simulation results with parameters a=169, b=140, M=120.
Abstain Max income Wealth rank percent

changeStrategies S= ∅ S=Λ SNE

Abe's income E[mA]-a 0 10.0 9.324 -6.8%
Bob's income E[mB]-b 0 10.0 4.498 -55.0%
Abe's wealth E[mA] 169.0 179.0 178.324 -0.4%
Bob's wealth E[mB] 140.0 150.0 144.498 -3.7%
wealth gap Δ =E[mA - mB] 29.0 29.0 33.826 16.6%
total wealth T 309.0 329.0 322.822 -1.9%
inequality ratio Δ /T 0.0939 0.0881 0.1048 18.9%
Abe's CSP π 1.0000 0.7210 0.6522 -9.5%
Bob's CSP 1- π 0.0000 0.2790 0.3478 24.7%
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simulation; Figure 8 shows the corresponding distributions of ex-post wealth.   Figure 9 shows the 

difference between the equilibrium strategies and the best-responses to income maximization.  As Figure 

9a reveals, Abe plays many more positive expected return lotteries in equilibrium than when best-

responding to an income-maximizing Bob.  However, as Figure 9b reveals, Bob plays many more 

negative expected return lotteries in equilibrium than when best-responding to an income-maximizing 

Abe.   Although the shapes of the equilibrium strategies resemble the best-response strategies to an 

income-maximizing opponent, in equilibrium both agents play more lotteries, take on more risk, and 

generate more variance in ex-post wealth.
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Figure 5a.   Abe’s equilibrium strategy.  Abe plays some small negative-expected-return 
gambles and avoids many positive-expected-return investments.  Parameter 
values: a=169, b=140, M=120.  The horizontal axis is x (money gained upon 
winning lottery) and the vertical axis is y (money lost upon losing the lottery).  
Lotteries above (below) the diagonal line off er negative (positive) expected 
return.

Figure 5b.   Bob’s equilibrium strategy.  Bob does not avoid any positive-expected-return 
investments and plays many negative-expected-return gambles.  Same parameter 
values as above.
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Figure 6.   Probability density and cumulative distribution functions of post-game wealth 
corresponding to the equilibrium strategies in Figure 5.  The point mass at 
endowment points a=169 and b=140 represents probability of abstaining from 
lotteries (peak not shown to scale).  Parameter values: a=169, b=140, M=120.

fA(mA) fB(mB)

FA(mA) FB(mB)
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Figure 7a.   Abe’s best-response strategy when Bob maximizes his income. Parameter 
values: a=169, b=140, M=120.

Figure 7b.   Bob’s best-response strategy when Abe maximizes his income. Parameter 
values: a=169, b=140, M=120.
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Figure 8.   Probability density and cumulative distribution functions of post-game wealth 
corresponding to best-response strategies against an income-maximizing opponent 
shown in Figure 7.  The point mass at endowment points a=169 and b=140 
represents probability of abstaining from lotteries (peak not shown to scale). 
Parameter values: a=169, b=140, M=120.

fA(mA) fB(mB)

FA(mA) FB(mB)
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Figure 9a.   Diff erence between strategies in fi gures 5a and 7a.  Almost all of the shaded 
area represents lotteries played by Abe in equilibrium but not when best-
responding to an income-maximizing Bob.  Only the shaded lotteries circled in 
the lower left corner are not played in equilibrium but played when best-
responding to an income-maximizing Bob.

Figure 9b.   Diff erence between strategies in fi gures 5b and 7b.  Shaded area represents 
lotteries played by Bob in equilibrium but not when best-responding to an 
income-maximizing Abe. 
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6. Conclusion

We used a simple setting to explore how trying to get richer differs from trying to be richer than 

someone else.  Specifi cally, we examined the risk-taking behavior of two unequally endowed risk-neutral 

agents who are presented with identical opportunities to play binary lotteries.  We found that if the agents 

pursue rank in the wealth distribution as a primary objective and wealth as a secondary objective, their 

risk-taking behavior is distorted (relative to wealth-seeking) in a way that lowers their expected income 

and raises both inequality and wealth-rank mobility.  In equilibrium, the poor agent is willing to bet on 

all positive expected return lotteries and on many of the negative expected return lotteries as well; the 

rich agent abstains from many positive expected return lotteries but is willing to gamble on a small 

number of negative expected return lotteries.  It remains an open problem to generalize the analysis to 

many players and derive analytical expressions for the equilibrium strategies.  
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