
Figure 8: Graphical representation of the AKLT ground state. The black dots denote
auxiliary spin 1/2 “particles”, the ovals project on spin 1, and the lines mean that
two spins 1/2 form a singlet state. Since two of the four spin 1/2 on two adjacent
sites form a singlet, the maximal total spin is 1, so the projection on spin 2 gives
zero. Since this is true for all pairs, this state is clearly an eigenstate of HAKLT .
Also note the unpaired spins at the end of the chain, which are the fractionalized edge
modes. (Figure taken from the Wikipedia article: AKLT model.)

there will be a phase factor ei2πSQ. It follows that for integer spins this factor
is always 1, and we conclude that the chain is gapped. For half-integer chains
the problem is much more complicated. The large fluctuations responsible for
generating the mass gap typically have non-zero winding numbers and, because
of the sign, (−1)Q, there may be important cancellations. Thus, although the
argument based on the behaviour of the sigma model works for the integer
spin chains, it breaks down in the half-integer case. This observation, together
with the spin 1/2 chain being gapless, provides a motivation for the Haldane
conjecture. Note that the most surprising result – that the integer spin chain
is gapped – is natural in the language of the sigma model, while it was harder
to understand what happens in the half-integer case. Only later was it proven
that the θ = π sigma model really is gapless [48].

We now complement the above rather abstract argument, which also relied
on the assumption of large S, with a description of a very instructive and
exactly solvable model for S = 1, which is a close cousin of the Heisenberg
model in Eq. (1). The Hamiltonian for this AKLT chain, named after its
inventors Ian Affleck, Tom Kennedy, Elliott Lieb and Hal Tasaki, is [1]
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where �Si is a spin 1 operator at the lattice site i, and P2 projects on the
subspace corresponding to spin 2 on two adjacent lattice sites. To find the
ground state, we imagine that each link in the chain hosts two auxiliary spin
1/2 that are projected to a spin 1. As explained in Fig. 8, forming a spin
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Figure 9: The graph in the middle shows the energy of a spin excitation in a spin 1

chain as a function of momenta close to the Néel point Qc = 1, which corresponds

to a π phase difference between the Ni spins along the chains; the Haldane gap is

clearly visible. (Figure from Ref. [31].)

singlet at each link in the chain gives an eigenstate of the Hamiltonian with zero
energy. Since the Hamiltonian is a sum of projectors, the ground state energy
has to be non-negative and we conclude that we have constructed a ground
state of the full interacting model. From the figure we also see that there are
two “unpaired” spin 1/2 degrees of freedom at the two ends of the chain, which
is an example of quantum number fractionalization, since the original degrees
of freedom were spin 1! One can show that the unpaired spins give rise to a
double degeneracy of the ground state, but the most striking property of the
AKLT chain is that it has a Haldane gap, as was shown analytically in a later
article by the same authors [2].

The existence of the Haldane phase has been confirmed both by experi-
ments and by numerical simulations. The first experiment on CsNiCl3 was
done by Buyers et al. [13], and in Fig. 9 we show results from a more recent
experiment [31].

Later work has greatly deepened our understanding of the Haldane phase
of the Heisenberg antiferromagnetic chain. Although there is no local order
parameter, it is sometimes possible to characterise it by a non-local string order

parameter [30] introduced earlier in the context of statistical mechanics [16].
To define a distinct phase of matter, it is important that the characteristic
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provides the extra dimension, and the control parameter analogous to tempera-

ture is the ratio of two energy scales in the Hamiltonian [12, 49]. In this way,

the KT-transition forms the basis for understanding how a one-dimensional

chain of Josephson tunnel junctions undergoes a zero-temperature transition

from superconducting to insulating behaviour as the Josephson coupling be-

tween junctions is tuned [25]. The same model was later realized using ultra

cold atomic gases trapped to form discrete lattices, and also here one could

observe the KT-transition [14].

Both fermionic and bosonic atoms can be trapped in optical lattices, sim-

ilarly to electrons in a crystal lattice. This also makes it possible to engineer

topologically nontrivial bands, and we mention two recent examples.

In a 2014 experiment, the group led by Immanuel Bloch managed to design

a lattice with topologically non-trivial bands, similar to the ones studied in the

famous paper by Thouless et al. [51]. These bands were then populated by a

gas of cold bosonic
87

Rb atoms, and using an intricate measuring procedure,

they could experimentally determine the Chern number for the lowest band

to Cexp
1 = 0.99(5) [3].

Also in 2014, the group led by Tilman Esslinger made an experiment with

cold
40

K atoms in an optical lattice to simulate the precise model proposed

by Haldane in 1988 [29]. This shows that reality sometimes surpasses dreams.

At the end of his paper Haldane wrote: “While the particular model presented

here, is unlikely to be directly physically realizable, it indicates . . . ”. What

he could not imagine was that 25 years later, new experimental techniques

would make it possible to create an artificial state of matter that would indeed

provide that “unlikely” realization.
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