## Symbols and notations

## General

- $A:=B$ or $B=: A$ defines $A$ in terms of $B$.
- $I[\cdot]$ denotes the indicator function defined by $I[$ true $]=1, I[$ false $]=0$.
- The number of elements in a set $S$ is denoted as $|S|$.
- $\sum_{\substack{j=0 \\(j \neq i)}}^{\infty} f(j)$, for example, means that there is an extra condition $j \neq i$ in the sum.


## Lattice

- Most generally a lattice structure is specified as $(\Lambda, \mathcal{B})$, where the set of sites $\Lambda$ is a finite set, and the set of bonds $\mathcal{B}$ is a subset of $\Lambda \times \Lambda$ such that $(x, x) \notin \mathcal{B}$. We always identify $(x, y)$ with $(y, x)$.
- A lattice $(\Lambda, \mathcal{B})$ is connected if for any $x \neq y \in \Lambda$, there is a sequence $x_{0}, x_{1}, \ldots, x_{n} \in$ $\Lambda$ such that $x_{0}=x, x_{n}=y$, and $\left(x_{i}, x_{i+1}\right) \in \mathcal{B}$ for $i=0,1, \ldots, n-1$.
- A lattice $(\Lambda, \mathcal{B})$ is bipartite if $\Lambda$ is decomposed as $\Lambda=A \cup B$ where $A \cap B=\emptyset$, and $(x, y) \in \mathcal{B}$ implies $x \in A, y \in B$ or $x \in B, y \in A$.
- $d=1,2, \ldots$ dimension
- $\mathbb{Z}^{d}=\left\{x=\left(x_{1}, \ldots, x_{d}\right) \mid x_{j} \in \mathbb{Z}\right\} \quad$ infinite $d$-dimensional hypercubic lattice
- $\Lambda_{L}=\left\{x=\left(x_{1}, \ldots, x_{d}\right) \mid x_{j} \in \mathbb{Z},-L / 2<x_{j} \leq L / 2\right\} \subset \mathbb{Z}^{d} \quad$ finite $d$-dimensional hypercubic lattice. $L$ is even. For $d=1$, I sometimes use $\Lambda_{L}=\{1,2, \ldots, L\}$.
- $\mathcal{B}_{L}=\left\{(x, y)\left|x, y \in \Lambda_{L},|x-y|=1\right\}\right.$ the set of bonds. We use periodic boundary conditions, and include pairs of sites at the opposite ends of $\Lambda_{L}$ into $\mathcal{B}_{L}$. We always identify $(x, y)$ with $(y, x)$.


## Ising model

- $\sigma_{x} \in\{-1,+1\} \quad$ spin variable at site $x$
- $\boldsymbol{\sigma}=\left(\sigma_{x}\right)_{x \in \Lambda_{L}} \in\{-1,+1\}^{\Lambda_{L}} \quad$ spin configuration on $\Lambda_{L}$
- $H=-\sum_{(x, y) \in \mathcal{B}_{L}} \sigma_{x} \sigma_{y} \quad$ Hamiltonian without external magnetic field.
- $Z_{L}(\beta)=\sum_{\boldsymbol{\sigma}} e^{-\beta H} \quad$ partition function
- $\langle F\rangle_{\beta, L}=\left\{Z_{L}(\beta)\right\}^{-1} \sum_{\sigma} F e^{-\beta H} \quad$ expectation value at the inverse temperature $\beta$ and vanishing external magnetic field.
- $\mathcal{O}=\sum_{x \in \Lambda_{L}} \sigma_{x}$ order parameter or total magnetization
- $H_{h}=H-h \mathcal{O}$ Hamiltonian under magnetic field $h \geq 0$
- $\langle F\rangle_{\beta, h, L}=\frac{\sum_{\boldsymbol{\sigma}} F e^{-\beta H_{h}}}{\sum_{\boldsymbol{\sigma}} e^{-\beta H_{h}}}$ expectation value at the inverse temperature $\beta$ and under external magnetic field $h$.


## Classical Heisenberg model

- $S_{x}=\left(S_{x}^{(1)}, S_{x}^{(2)}, S_{x}^{(3)}\right)$ with $\sum_{\alpha=1}^{3}\left\{S_{x}^{(\alpha)}\right\}^{2}=1 \quad$ spin variable at site $x$
- $d S_{x}=d S_{x}^{(1)} d S_{x}^{(2)} d S_{x}^{(3)} \delta\left(\sum_{\alpha=1}^{3}\left\{S_{x}^{(\alpha)}\right\}^{2}-1\right)$


## Quantum spin systems

- $S=1 / 2,1,3 / 2,2, \ldots$ the "magnitude" of spin, which is a fixed constant
- $\mathcal{H}_{x}=\mathbb{C}^{2 S+1}$ the Hilbert space at site $x \in \Lambda$
- $\hat{\boldsymbol{S}}_{x}=\left(\hat{S}_{x}^{(1)}, \hat{S}_{x}^{(2)}, \hat{S}_{x}^{(3)}\right) \quad$ spin operator acting on $\mathcal{H}_{x}$, which satisfies $\left[\hat{S}_{x}^{(\alpha)}, \hat{S}_{x}^{(\beta)}\right]=$ $i \sum_{\gamma} \epsilon_{\alpha, \beta, \gamma} \hat{S}_{x}^{(\gamma)}$ and $\left(\hat{\boldsymbol{S}}_{x}\right)^{2}=S(S+1)$
- $\hat{S}_{x}^{ \pm}:=\hat{S}_{x}^{(1)} \pm i \hat{S}_{x}^{(2)}$
- $\psi_{x}^{\sigma}$ with $\sigma=-S,-S+1, \ldots, S$ denote the standard basis states of $\mathcal{H}_{x}$, which satisfies $\hat{S}_{x}^{(3)} \psi_{x}^{\sigma}=\sigma \psi_{x}^{\sigma}$ and $\hat{S}_{x}^{ \pm} \psi_{x}^{\sigma}=\sqrt{S(S+1)-\sigma(\sigma \pm 1)} \psi_{x}^{\sigma \pm 1}$
- $\mathcal{H}:=\bigotimes_{x \in \Lambda} \mathcal{H}_{x} \quad$ the whole Hilbert space
- $\Psi^{\boldsymbol{\sigma}}:=\bigotimes_{x \in \Lambda} \psi_{x}^{\sigma_{x}}$ with $\boldsymbol{\sigma}=\left(\sigma_{x}\right)_{x \in \Lambda}$ are the basis states
- $\hat{\boldsymbol{S}}_{\mathrm{tot}}:=\sum_{x \in \Lambda} \hat{\boldsymbol{S}}_{x}, \hat{S}_{\mathrm{tot}}^{ \pm}:=\sum_{x \in \Lambda} \hat{S}_{x}^{ \pm}, \hat{S}_{\mathrm{tot}}^{(3)}:=\sum_{x \in \Lambda} \hat{S}_{x}^{(3)}$, and the eigenvalues of $\left(\hat{\boldsymbol{S}}_{\mathrm{tot}}\right)^{2}$ are denoted as $S_{\mathrm{tot}}\left(S_{\mathrm{tot}}+1\right)$ with $S_{\mathrm{tot}}=0,1,2, \ldots, N S$ or $S_{\mathrm{tot}}=$ $1 / 2,3 / 2, \ldots, N S$
- $\hat{H}=\sum_{(x, y) \in \mathcal{B}_{L}} \hat{\boldsymbol{S}}_{x} \cdot \hat{\boldsymbol{S}}_{y}$ Hamiltonian for the Heisenberg antiferromagnet
- $\hat{\mathcal{O}}^{(\alpha)}=\sum_{x \in \Lambda_{L}}(-1)^{x} \hat{S}_{x}^{(\alpha)}$ with $\alpha=1,2,3$ antiferromagnetic order parameter
- $\hat{\mathcal{O}}^{ \pm}=\hat{\mathcal{O}}^{(1)} \pm i \hat{\mathcal{O}}^{(2)} \quad$ the corresponding raising and lowering operators
- $\omega(\cdot)$ state of an infinite (quantum) system


## Bosons on a lattice

- $\hat{a}_{x}, \hat{a}_{x}^{\dagger}$ annihilation and creation operators of a bosonic particle at site $x$. They satisfy canonical commutation relations $\left[\hat{a}_{x}, \hat{a}_{y}\right]=\left[\hat{a}_{x}^{\dagger}, \hat{a}_{y}^{\dagger}\right]=0,\left[\hat{a}_{x}, \hat{a}_{y}^{\dagger}\right]=\delta_{x, y}$ for any $x$ and $y$
- $\Phi_{\mathrm{vac}}$ the state with no particles on the lattice. We have $\hat{a}_{x} \Phi_{\mathrm{vac}}=0$ for any $x$.
- The Hilbert space with $N$ bosons is spanned by the basis states $\hat{a}_{x_{1}}^{\dagger} \hat{a}_{x_{2}}^{\dagger} \cdots \hat{a}_{x_{N}}^{\dagger} \Phi_{\text {vac }}$ with any $x_{1}, x_{2}, \ldots, x_{N}$.


## Electrons on a lattice

- $\hat{c}_{x, \sigma}, \hat{c}_{x, \sigma}^{\dagger}$ annihilation and creation operators of an electron at site $x$ with spin $\sigma \in$ $\{\uparrow, \downarrow\}$. They satisfy canonical anticommutation relations $\left\{\hat{c}_{x, \sigma}, \hat{c}_{y, \tau}\right\}=\left\{\hat{c}_{x, \sigma}^{\dagger}, \hat{c}_{y, \tau}^{\dagger}\right\}=$ $0,\left\{\hat{c}_{x, \sigma}, \hat{c}_{y, \tau}^{\dagger}\right\}=\delta_{x, y} \delta_{\sigma, \tau}$ for any $x, y, \sigma$, and $\tau$.
- $\Phi_{\mathrm{vac}}$ the state with no particles on the lattice. We have $\hat{c}_{x, \sigma} \Phi_{\mathrm{vac}}=0$ for any $x$, $\sigma$.
- The Hilbert space with $N$ electrons is spanned by the basis states $\hat{c}_{x_{1}, \sigma_{1}}^{\dagger} \hat{c}_{x_{2}, \sigma_{2}}^{\dagger} \cdots \hat{c}_{x_{N}, \sigma_{N}}^{\dagger} \Phi_{\text {vac }}$ with any $x_{1}, x_{2}, \ldots, x_{N}$ and $\sigma_{1}, \ldots, \sigma_{N}$.

