Linear response formula for current-like observables ${ }^{1}$

Hal Tasaki, Feb. 5, 2012
For any f_{x}, we have seen in the lecture that

$$
\begin{align*}
\langle f\rangle_{\overline{\boldsymbol{p}}} & =\langle f\rangle_{p^{\mathrm{eq}}}+\sum_{t=0}^{N-1}\langle\psi(t) f(N)\rangle^{\mathrm{eq}}+O\left(\varepsilon^{2}\right) \\
& =\langle f\rangle_{p^{\mathrm{eq}}}+\sum_{t=-\infty}^{-1}\langle\psi(t) f(0)\rangle^{\mathrm{eq}}+O\left(\varepsilon^{2}\right) \tag{1}
\end{align*}
$$

where the second formula is obtained by shifting and extending the time interval. This is OK.

Now let us consider an arbitrary "current-like" observable $g_{x \rightarrow y}$, which satisfies $g_{x \rightarrow y}=-g_{y \rightarrow x}$. As in the lecture the corresponding observable with a single x is defined as

$$
\begin{equation*}
\tilde{g}_{x}:=\sum_{y \in \mathcal{S}} \tau_{x \rightarrow y} g_{x \rightarrow y} . \tag{2}
\end{equation*}
$$

By substituting this into (1), we have ${ }^{2}$

$$
\begin{equation*}
\langle\tilde{g}\rangle_{\overline{\boldsymbol{p}}}=\langle\tilde{g}\rangle_{\boldsymbol{p}^{\mathrm{eq}}}+\sum_{t=-\infty}^{-1}\langle\psi(t) g(0)\rangle^{\mathrm{eq}}+O\left(\varepsilon^{2}\right), \tag{3}
\end{equation*}
$$

where $g(t)[\hat{x}]:=g_{x(t) \rightarrow x(t+1)}$ is the quantity g viewed as a function of path \hat{x}. When I was preparing the lecture, I thought (carelessly) that the first term $\langle\tilde{g}\rangle_{p_{\text {eq }}}$ was negligible, as its counterpart in continuous time formulation is indeed vanishing. But (as you know) I realized that something was wrong here when I was explaining this part in the lecture. I did not have enough time to think it back during the short lunch break, and had forgot about this. I apologize you for the mistake and for having left it unexplained.

The truth is that $\langle\tilde{g}\rangle_{p^{\text {eq }}}$ has a nonvanishing contribution, and it makes the final expression neat. Let me explain this.

From the definitions, we have

$$
\begin{equation*}
\langle\tilde{g}\rangle_{p^{\mathrm{eq}}}=\sum_{x, y \in \mathcal{S}} \frac{e^{-\beta H_{x}}}{Z} \tau_{x \rightarrow y} g_{x \rightarrow y} . \tag{4}
\end{equation*}
$$

Noting that the definition of $\psi_{x \rightarrow y}$ implies 3

$$
\begin{equation*}
e^{-\beta H_{x}} \tau_{x \rightarrow y}=e^{-\beta H_{y}-\psi_{y \rightarrow x}} \tau_{y \rightarrow x} \tag{5}
\end{equation*}
$$

[^0]and recalling that $g_{x \rightarrow y}=-g_{y \rightarrow x}$, one has
\[

$$
\begin{equation*}
\langle\tilde{g}\rangle_{\boldsymbol{p}^{\mathrm{eq}}}=-\sum_{x, y \in \mathcal{S}} \frac{e^{-\beta H_{y}-\psi_{y \rightarrow x}}}{Z} \tau_{y \rightarrow x} g_{y \rightarrow x}=-\sum_{x, y \in \mathcal{S}} \frac{e^{-\beta H_{x}-\psi_{x \rightarrow y}}}{Z} \tau_{x \rightarrow y} g_{x \rightarrow y}, \tag{6}
\end{equation*}
$$

\]

where we have simply switched the two dummy variables x and y to get the final expression. By averaging (4) and (6), we see

$$
\begin{equation*}
\langle\tilde{g}\rangle_{\boldsymbol{p}^{\mathrm{eq}}}=\frac{1}{2} \sum_{x, y \in \mathcal{S}} \frac{e^{-\beta H_{x}}}{Z} \tau_{x \rightarrow y} g_{x \rightarrow y} \psi_{x \rightarrow y}+O\left(\varepsilon^{2}\right)=\frac{1}{2}\langle\widetilde{g \psi}\rangle_{\boldsymbol{p}^{\mathrm{eq}}}+O\left(\varepsilon^{2}\right), \tag{7}
\end{equation*}
$$

where $(\widetilde{g \psi})_{x}:=\sum_{y \in \mathcal{S}} \tau_{x \rightarrow y} g_{x \rightarrow y} \psi_{x \rightarrow y}$. Going to the path-space formalism, one finds that

$$
\begin{equation*}
\langle\widetilde{g \psi}\rangle_{p^{\mathrm{eq}}}=\langle g(t) \psi(t)\rangle^{\mathrm{eq}} \tag{8}
\end{equation*}
$$

with an arbitrary t in the interval ${ }^{4}$. Thus the expression (7) becomes

$$
\begin{align*}
\langle\tilde{g}\rangle_{\overline{\boldsymbol{p}}} & =\sum_{t=-\infty}^{-1}\langle\psi(t) g(0)\rangle^{\mathrm{eq}}+\frac{1}{2}\langle\psi(0) g(0)\rangle^{\mathrm{eq}}+O\left(\varepsilon^{2}\right) \\
& =\frac{1}{2} \sum_{t=-\infty}^{\infty}\langle g(0) \psi(t)\rangle^{\mathrm{eq}}+O\left(\varepsilon^{2}\right) \tag{9}
\end{align*}
$$

where we have used the time reversal symmetry to get the final expression. As you see the demonstration of the reciprocal relation becomes automatic with this neat form.

[^1]
[^0]: ${ }^{1}$ This is a supplement to a series of lectures that I gave in U. Osaka recently, and does not make quite sense by itself.
 ${ }^{2}$ For simplicity I assume $g=O(1)$.
 ${ }^{3}$ This is nothing but the detailed balance condition if $\psi_{x \rightarrow y}=0$.

[^1]: ${ }^{4}$ To be precise the whole time interval must at least contain t and $t+1$.

