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Abstract

It is shown that in causal inference based on choice-based samples, the consis-
tent estimation and t-tests of propensity scores and average treatment effects can
be performed only from biased subsamples without external knowledge about the
original random samples. Thus, program evaluation becomes more feasible.
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1 Introduction

Due to the cost of data collection, program evaluation is often conducted with matched

subsamples. The subsamples from which an econometrician arbitrarily selects treatment

and control groups are called choice-based samples. Choice-based or endogenous sam-

pling has the advantage of simple to implement because, unlike exogenous sampling with

multivariate exogenous variables or propensity scores, the former method relies only on

treatment and control groups with the endogenous dummy variable. Generally, how-

ever, the subsamples are not representative because they are drawn differently from the

population ratio, which possibly leads to the selection bias in average treatment effects

(ATE) estimation.

Although there has been much development in causal inference under random and

choice-based samples with external knowledge, the following are the previous studies on

robustness when only choice-based samples are available. Heckman and Todd (2009)

suggested that even if the propensity scores has the bias, ATE can be identified from the

propensity score matching based on its odds. For ATE on the treated (ATT), Kenndy et

al. (2015) pointed out that ATT can be estimated using standard estimation methods

even if propensity score is not identified. As a different approach, we present a method

in which the propensity score is first estimated consistently, and the identification and

consistent estimator of ATE are obtained by inverse probability weighting (IPW).
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Our goal is to present consistent estimators and t-tests for the propensity score and

ATE when the original random sample size, n, is unknown and only choice-based samples

are available. First, we identify the population ratio of the treatment group by applying

the approach of Cosslett (1981) with the number of subsamples as random. Second,

the IPW estimator is extended to choice-based samples. Third, we demonstrate that

normalization and the standard error do not depend on n with regard to the ATE

significance test. Therefore, it is easier to evaluate a program as only biased subsamples

are needed without external knowledge.

The remainder of this paper is organized as follows. The next section provides an

overview of choice-based sampling and presents the t-tests on the propensity score and

the ATE. Section 3 describes the numerical experiments and the results and Section 4

is the conclusions. All proofs are summarized in the Appendix.

2 t-tests for propensity score and ATE

We consider the Rubin causal model:

y1i = y∗1iy2i , (2.1)

y0i = y∗0i(1− y2i) , (2.2)

where y∗1i and y
∗
0i are unobservable and only one of y1i or yi0 , yi = y1i+yi0 , is observed

for each subject i. y2i = 1I{β′xi + u2i ≥ 0} , where the indicator function 1I{.} takes the

value of 1 if the argument is true; otherwise, it takes 0. xi are the K-variate covariates

that are independent of u2i . The error term u2i follows the standard normal distribution,

i.e., the propensity score becomes the probit model.

pi = Pr(y2i = 1|xi)

= Φ(β′xi) , (2.3)

where Φ is the standard normal cumulative distribution function. The parameters of

interest are β, τ = E [y∗1i − y∗0i] as the ATE, and p = E [pi] which identifies τ .

2.1 Choice-based samples

For random samples (i = 1, · · · , n) , let n1 =
∑n

i=1 y2i be the number of the treatment

group and n0 =
∑n

i=1(1− y2i) be the number of the control group. Then, the following

holds:

n1
n

:
n0
n

� p : 1− p , (2.4)

where p is the proportion of the treatment group in the population,

p = Pr(y2i = 1) . (2.5)
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Choice-based samples (j = 1, · · · , m) are subsamples (m ≤ n) of random samples

arbitrarily collected by an econometrician for each treatment and control group. Hence,

the ratio r of the treatment group in the subsamples is known.

m1

m
:
m0

m
= r : 1− r , (2.6)

where m1 =
∑m

j=1 y2j , m0 =
∑m

j=1(1 − y2j) , and m = m1 +m0 . Hereafter, subscript

j indicates that the sample of subject j is drawn as the choice-based sample.

The IPW estimator for ATE is widely used in program evaluation.

τ̃ =
1

m

m∑
j=1

y1j
p̃j

− y0j
1− p̃j

, (2.7)

where p̃j = Φ(β̃
′
xj) and β̃ is the probit maximum likelihood estimator (MLE). However,

as the choice-based samples follow the biased distribution as r : 1 − r �= p : 1 − p in

general, there may be a selection bias.

First, we consider the consistent estimation of β in the propensity score. The con-

sistent estimation methods for dealing with choice-based samples are summarized in

Amemiya (1985, Ch. 9). Given the true value of p , Manski and Lerman (1977) pro-

posed the weighted MLE obtained by

m∑
j=1

p

r
y2j log pj +

1− p

1− r
(1− y2j) log(1− pj) . (2.8)

Thus, a bias can arise in p̃j where p/r and (1− p)/(1− r) are not weighted.

In practice, p is unknown. To obtain the feasible weighted MLE, Hsieh et al. (1985)

assigned the sample average p̃ to p ,

p̃ =
1

n

n∑
i=1

y2i . (2.9)

This method consistently estimates propensity scores. However, we eventually need

external knowledge about (n, n1) regarding the random sample for p̃ when estimating

with the choice-based sample, m . As described in the previous study, there may be few

datasets that cover all persons, including information necessary to determine whether a

person is eligible for the program. Hence, n is assumed to be unavailable or unknown.

Then, a feasible weighted MLE would be difficult to calculate.

Hence, we next consider another important estimation method described by Manski

and MacFadden (1981). They proposed the following log-likelihood function, given the

true value p :

l(β) =

m∑
j=1

log
[λ1pj]

y2j [λ0(1− pj)]
1−y2j

λ1pj + λ0(1− pj)
, (2.10)

where λ1 = r/p and λ0 = (1 − r)/(1 − p) . Cosslett (1981) proposed the generalized

choice-based sampling method, which for the binomial model is reduced to estimate λ1
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and λ0 as unknown parameters. When normalizing with λ0 = 1 , λ = λ1/λ0 becomes

the unknown parameter. Then the log-likelihood function of Cosslett (1981) becomes

l(β, λ) =

m∑
j=1

y2j log λpj + (1− y2j) log(1− pj)− log (λpj + (1− pj)) . (2.11)

The MLE λ̂ is the consistent estimator for the following odds ratio:

λ̂
p−→ 1− p

p

r

1− r
. (2.12)

Note that because r is known, by counting backwards, we can obtain the consistent

estimator for p by only subsamples:

p̂ =
r

r + λ̂(1− r)
. (2.13)

Although p is needed to identify the ATE, p̂ can replace the sample average p̃ . Cosslett’s

MLE is essential in our approach, as p̂ plays an important role in extending the IPW

estimation discussed next.

2.2 Cosslett’s MLE under a random subsample size

Importantly, the way subsamples are drawn affects the asymptotic distribution of

the estimator. To characterize the choice-based sample design, we introduce sampling

dummies (d1i, d0i) and the sampling probabilities (q1, q0) . If sample i is included in

subsample m in the treatment group, it is represented as d1i = 1 and 0 otherwise. If the

sample i is included in subsample m in the control group, it is represented as d0i = 1

and 0 otherwise. We put di = (d1i, di0)
′ and x∗

i = (x′
i, y

∗
1i, y

∗
i0)

′ .

Assumption 1: q1 = Pr(d1i = 1|y2i = 1) > 0 , q0 = Pr(d0i = 1|y2i = 0) > 0 , and

di ⊥⊥x∗
i | y2i .

Assumption 2: {di, x
∗
i , u2i}ni=1 are independent and identically distributed.

Assumption 1 implies choice-based or endogenous sampling in which sampling does not

depend on the exogenous variables xi . That is, it depends only on the endogenous vari-

able y2i . Because there are the latent variables, including (y∗1i, y
∗
i0) , x

∗
i is conditionally

independent of di .

In choice-based sampling, there are two ways to consider the numbers of subsamples

(m1, m0) as constant sequences or random variables. If (m1, m0) are fixed, then

conditioning
∑n

i=1 d1iy2i = m1 and
∑n

i=1 d0i(1 − y2i) = m0 means that the samples,

i = 1, · · · , n , are not mutually independent.

Assumption 3:
∑n

i=1 d1iy2i and
∑n

i=1 d0i(1− y2i) are not conditioned.

This study considers the case in which the random variables (m1, m0) are not given. As
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such, the results are derived from standard asymptotic theory for the sum of independent

random variables. For instance, if the number of the treatment group is small and

relatively rare, all of its samples may be collected. Hence, because q1 = 1 or m1 = n1 ,

it is suitable to let m1 be random. When (m1, m0) are random variables, the ratio,

r = m1/(m1 + m0) , is also a random variable. Therefore, we add the asymptotic

evaluation of
√
n(r − r0) to Cosslett’s MLE, where the probability limit r0 of r is

r0 =
q1p

q1p+ q0(1− p)
, (2.14)

as shown in the Appendix.

Based on the invariance property, we directly estimate p as follows:

l(β, p) =
m∑
j=1

y2j log
r

p
pj + (1− y2j) log

1− r

1− p
(1− pj)− log

(
r

p
pj +

1− r

1− p
(1− pj)

)

=

m∑
j=1

lj(ψ) (, say). (2.15)

Thus, with the maximization point as ψ̂ = (β̂
′
2, p̂)

′, the estimators of the propensity

scores p̂j = Φ(β̂
′
xj) and p̂ are simultaneously obtained. Notably, Cosslett’s MLE in-

cludes the probit MLE as a special case, i.e., p̂ = r . Hence, even if we can assume

random subsampling, applying Cosslett’s MLE provides a more robust estimation.

We prepare the notation l(β, p) =
∑n

i=1 li(ψ; r)di with subscript i for the following

assumptions, where

li(ψ; r) = log r d1iy2i
i (1− ri)

d0i(1−y2i) , (2.16)

ri =
rp−1pi

rp−1pi + (1− r)(1− p)−1(1− pi)
(2.17)

=
q1pi

q1pi + q0(1− pi)
+ op(1) , (2.18)

and di = d1iy2i + d0i(1 − y2i) , in Equation (2.18), r is evaluated at r0 . Thus l(β, p)

is asymptotically equivalent to the conditional log-likelihood function conditional on

subject i being drawn, i.e., given di = 1 and xi .

Assumption 4: (i) The parameter space of (ψ′, r0) is compact, and the true value of

ψ is an interior point. (ii) Given di = 1 , ψ �= ψ∗ implies li(ψ; r0) �= li(ψ
∗; r0) . (iii)

For some ε > 0 , ε ≤ pi ≤ 1− ε w.p.1 .

These assumptions are similar to the ones made by Cosslett (1981). The identification

condition of (ii) implicitly requires that xi is not multicollinear to identify coefficients β .

Condition (ii) also requires that at least one covariate, xi, exists and that its coefficient

is non-zero. If there is only a constant term β1 , then pi = Φ(β1) ∝ p , and p is

unidentifiable from Equation (2.17). For instance, it is sufficient if xi is a dummy variable

and pi takes two values, then p is identifiable. It is a mild condition that Pr(y2i = 1|xi)
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is not a constant; thus, p can be identified, even within biased subsamples. Condition

(iii) is referred to as the strict overlap assumption in the causal inference literature, and

it requires the index β′xi or xi be bounded random variables. This condition applies

to the IPW estimator described below, but it is also employed as the condition for the

existence of moments related to the MLE.

The result of Cosslett (1981) is slightly changed to match the case of a random sub-

sample size and parameterization to p :

Theorem 1: (i) Under Assumptions 1-4, as n→ ∞ , ψ̂
p−→ ψ and

√
m1 +m0(ψ̂ −ψ) d−→ N (0,Ω) , (2.19)

where ψ = (β′, p)′ and

Ω = Ψ−1(Σ1 +Σ12 +Σ2)Ψ
−1 . (2.20)

(ii) Under the same assumptions and the null hypothesis H0 : ψk = ψ0k ,

tk =
ψ̂k − ψ0k

σ̂k

d−→ N (0, 1) , (2.21)

where σ̂k refers to the standard error of ψ̂k for k = 1, · · · , K + 1 .

For the asymptotic variance-covariance matrix of (i), definitions from Ψ to Σ2 are given

in Equations (A.1) and (A.3) in the Appendix. Although Ψ and Σ1 correspond to

the Hessian and the squares of the score function, respectively, the covariance Σ12 and

variance Σ2 are added by Assumption 3.

With respect to the result of (ii), Ω depends on the nuisance parameters (q1, q0) �
(m1/n1, m0/(n − n1)) , however, the test statistic is also constructed without relying

on (n, n1) . The definition of σ̂2k is as follows:

σ̂2k = e′kΨ̂
−1

Σ̂Ψ̂
−1

ek , (2.22)

where ek = (0, · · · , 1, · · · , 0)′ is the vector with only the k-th element as 1 ,

Ψ̂ =
∂2l(ψ̂)

∂ψ∂ψ′ , (2.23)

Σ̂ =

m∑
j=1

(
∂lj(ψ̂)

∂ψ
+ γ̂1(y2j − r)

)(
∂lj(ψ̂)

∂ψ
+ γ̂1(y2j − r)

)′
, and (2.24)

γ̂1 =
1

m1 +m0

∂2l(ψ̂)

∂ψ∂r
. (2.25)

The t-value of the M-estimator is expressed as

√
m(ψ̂k − ψ0k)√

e′k(
1
mΨ̂)−1 1

mΣ̂( 1
mΨ̂)−1ek

=
ψ̂k − ψ0k

σ̂k
, (2.26)
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where the normalization 1/m of γ̂1 cannot be omitted on both sides of Equation (2.26).

Meanwhile, standard error σ̂k is computed without information on (n, n1) , and the

sampling probabilities (q1, q0) can be unknown. Following the consistent estimation of

β or the propensity score, we conclude that the asymptotic t-test is feasible given only

the choice-based samples.

The null hypothesis of the t-test for the coefficient is usually H0 : βk = 0 , however,

H0 : p = 0 is meaningless. On the other hand, the 95% confidence interval, p̂±1.96σ̂K+1 ,

would be useful for predicting the population ratio from the choice-based samples. More-

over, using t ∝ p̂−r , we can consider the specification test for being random subsampling

as H0 : p = r0 .

2.3 IPW for choice-based samples

This section describes the estimation and testing methods of the ATE under choice-

based samples, which is our main interest. For the IPW estimator, it is insufficient to

consistently estimate the propensity score 1/pj as the inverse weight. Hence, we add

1/q1 as an inverse weight:

1

q1
E
[
d1iy1i
pi

]
=

1

q1
E
[E [d1i|y2i = 1]y∗1iy2i

pi

]

= E
[E [y∗1i|xi]E [y2i|xi]

pi

]
= E [y∗1i] . (2.27)

Similarly, q−1
0 E [di0y0i(1− pi)

−1
]
= E [y∗0i] , where the first equality of (2.27) follows from

Assumption 1, and the second equality is from the following assumption,

Assumption 5: (y∗0i, y
∗
1i)⊥⊥ y2i | xi .

This condition set by Rosenbaum and Rubin (1983) is called the ignorability assumption

in the causal inference literature. Replacing the expectation with the sample average, it

follows that

1

q1

(
1

n

n∑
i=1

d1iy1i
pi

)
=

(
m1

np

)−1
⎛
⎝ 1

n

m∑
j=1

y1j
pj

⎞
⎠+ op(1) . (2.28)

Thus, we construct the estimator as the sample analogue of (2.27):

τ̂ =
1

m

m∑
j=1

p̂

r

y1j
p̂j

− 1− p̂

1− r

y0j
1− p̂j

. (2.29)

The difference from τ̃ is that Cosslett’s MLE β̂ is employed to estimate the propensity

score at the first stage. In the second stage, Cosslett’s MLE p̂ is employed and ( p̂/r, (1−
p̂)/(1 − r) ) are also added as inverse weights. We may call τ̂ the choice-based IPW
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(CIPW) estimator to distinguish it from τ̃ .

Assumption 6: The second order moment of (y∗1i, y
∗
0i) exists.

Alongside the overlap assumption of Assumption 4 (iii), the variance of τ̂ is guaranteed

to be finite, and the asymptotic normality holds.

Theorem 2: (i) Under Assumptions 1-6, as n→ ∞ , τ̂
p−→ E [y∗1i − y∗0i] and

√
m(τ̂ − n

m
μτ )

d−→ N (0, σ2) , (2.30)

where μτ = (q1p+ q0(1− p))τ .

(ii) Under the same assumptions and the null hypothesis H0 : E [y∗1i − y∗0i] = 0 ,

tτ =

√
m

σ̂
τ̂

d−→ N (0, 1) , (2.31)

where σ̂ stands for the standard error of
√
mτ̂ .

The definition of σ2 in result (i) is given by (A.12) in the Appendix. Notably, the

normalization of τ̂ depends on n; however, that of tτ does not depend on n under

H0 : τ = 0 . The estimate of the individual causal effect is expressed as

τ̂j =
p̂

r

y1j
p̂j

− 1− p̂

1− r

y0j
1− p̂j

. (2.32)

Then, regarding the definition of standard error in result (ii),

σ̂2 =
1

m

m∑
j=1

(
τ̂j + γ̂2(y2j − r) + γ̂ ′

3

∂lj(ψ̂)

∂ψ

)2

. (2.33)

The leading term corresponds to the sample variance of τ̂j . The second term is the

variation caused by the random subsample size, and the third term relates to the use of

estimates ψ̂, where (γ̂2, γ̂
′
3) = (δ̂r + γ̂

′
1γ̂3, −(δ̂

′
β, δ̂p)(m

−1Ψ̂)−1) ,

δ̂r =
1

m

m∑
j=1

− p̂

r2
y1j
p̂j

− 1− p̂

(1− r)2
y0j

1− p̂j
, (2.34)

δ̂β =
1

m

m∑
j=1

(
− p̂
r

y1j
p̂2j

− 1− p̂

1− r

y0j
(1− p̂j)2

)
φ(β̂

′
xj)xj , (2.35)

δ̂p =
1

m

m∑
j=1

1

r

y1j
p̂j

+
1

1− r

y0j
1− p̂j

, (2.36)

and φ represents the standard normal density function. The t-statistic tτ depends only

on the observable normalizer m . Therefore, the consistent estimation and significance

test for the ATE can be performed without external knowledge of (n, n1) from the

random sample.
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3 Monte Carlo experiments

(a) β (b) p

(c) τ

Fig. 1: Empirical cumulative distribution functions of t-statistics

The finite sample properties of a simple simulation are explained forthwith. The

exogenous variable is generated by xi ∼ Be(α∗, β∗) − 0.5 , and the true value is

β = 5 . Then, the support of βxi becomes [−2.5, 2.5] , where ε = Φ(−2.5) = 0.006 .

In an application scenario, p can be considered small. When the beta distribution is

(α∗, β∗) = (2, 4.19) , the right tail is longer and p is 0.25. When (α∗, β∗) = (2, 12.57) ,

p is 0.05. As the true value p cannot be obtained analytically, it is approximated by

p = N−1
∑N

i=1 Φ(βxi) for N = 104 × n . Then the effect on the asymptotic distri-

bution is Op(
√
n/N) , which is negligible. These true values are commonly used with

10000 iterations. Given (n1, n0) , subsamples (m1, m0) are drawn using uniform ran-

dom numbers, d1i = 1I{u1i ≤ q1} and d0i = 1I{u0i ≤ q0} . On average, the set-
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ting is r � 0.5 for 10000 iterations. When (p, q1, q0) = (0.25, 0.80, 0.267) and

n = 1000, it follows that (m1, m0) � (200, 200) on average. If n = 4000, we obtain

(m1, m0) � (800, 800) . When (p, q1, q0) = (0.05, 1.00, 0.053) and n = 4000, it holds

that (m1, m0) � (200, 200) on average. If n = 16000, we obtain (m1, m0) � (800, 800) .

The latent variables are y∗1i = β∗1xi + u∗1i and y∗0i = β∗0xi + u∗0i , where (u∗1i, u
∗
0i)

both follow the standard normal distribution. Under H0 : τ = 0 , the bias of the IPW

estimator is approximated by

E [τ̃ ]− 0 � q1β
∗
1E
[
xi
pi
p̃i

]
− q0β

∗
1E
[
xi
1− pi
1− p̃i

]
. (3.37)

If q1 = q0 or p = r0 , then choice-based sampling is reduced to random sampling. Under

q1 �= q0 , there are two sources of bias: q1 �= q0 and pi �= p̃i . When β∗1 = β∗0 = 0 , there

is no bias by chance; hence, we set β∗1 = 1.5 .

Figure 1 illustrates the empirical cumulative distribution functions of the t-statistic

for p = 0.25 and m1 � 800 . Figure 1-(a) shows that for coefficient β of the propensity

scores, the asymptotic t-distribution based on β̃ is shifted from the reference distribution

because the probit MLE β̃ is biased. Meanwhile, the asymptotic t distribution based on

Cosslett’s MLE β̂ is well approximated by N (0, 1) . Figure 1-(b) is for the population

ratio p . Because the probit MLE does not estimate p, we compare tK+1 and tK+1

without Σ12 and Σ2 in Theorem 1 (t w/o). It can be seen that these additional terms

make the standardization more precise. Figure 1-(c) illustrates the significance test for

ATE τ . The t distribution of the IPW estimator deviates from the reference distribution,

and that of the CIPW estimator tτ is well approximated.

Table 1 list the bias and standard deviation (SD) of the IPW estimators and the actual

size, Pr(|tτ | ≥ 1.96), of the corresponding t-test statistics under H0 : τ = 0 . From

the table we can see that the CIPW estimator has less bias than the IPW estimator.

Although the nominal size is 0.05, size distortions occur for the t-statistics of the IPW

estimator for both p = 0.25 and p = 0.05 . As m increases, the size based on the CIPW

estimator approaches the nominal size and the convergence in distribution is confirmed.

Conversely, as m increases, the size based on the IPW estimator increases due to the

inconsistency, i.e., the Type I error is not controlled.

Table 1: Finite sample properties of IPW estimators and t-statistics

IPW CIPW

r � 0.5, τ = 0 Bias SD Size Bias SD Size

p = 0.25, m1 � 200 0.144 0.113 0.200 -0.0001 0.173 0.064

800 0.145 0.057 0.656 0.0010 0.084 0.059

p = 0.05, m1 � 200 0.138 0.102 0.272 -0.0004 0.131 0.053

800 0.137 0.050 0.768 0.0001 0.064 0.050
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4 Conclusions

The Cosslett’s MLE includes the probit MLE as a special case, which provides the ro-

bust estimation for the propensity score in causal inference. This study applied Cosslett’s

MLE to identify the treatment group proportion of the population based only on choice-

based samples. By adding the estimated ratios as inverse weights, we extended the IPW

estimator to a choice-based samples version. The consistent estimation and significant

test for ATE can be performed without external information on the original random

sample. Thus, program evaluation would be made easier even when external informa-

tion is difficult to obtain.

Appendix

Proof of Theorem 1: (i) r is expressed as n−1
∑n

i=1 d1iy2i/(n
−1
∑n

i=1 d1iy2i+n
−1
∑n

i=1

d0i(1 − y2i)) , and the law of large numbers holds because E [(d1iy2i)2] < ∞ . Then,

r
p−→ r0 as E [d1iy2i] = q1p . The term involving only r in n−1l(ψ) converges in prob-

ability to E [d1iy2i] log r0 = E [d1iy2i log r0] . Then, using Assumptions 4 (i) and (iii),

n−1
∑n

i=1 li(ψ; r)di
p−→ E [li(ψ; r0)di] <∞ uniformly in ψ . Because n−1l(ψ) is the con-

ditional log-likelihood function when r = r0 , E [li(ψ∗; r0)|di = 1, xi] ≤ E [li(ψ; r0)|di =
1, xi] by Jensen’s inequality. Moreover, the inequality strictly holds due to Assump-

tion 4 (ii). Thus, E [E [li(ψ∗; r0)|di = 1, xi]di] < E [E [li(ψ; r0)|di = 1, xi]di] , because

E [di|xi] = q1pi + q0(1− pi) > 0 due to Assumption 1. As the maximum point is unique

at the true value, from the arguments of the consistency for the M-estimator, it follows

that ψ̂
p−→ ψ .

From the Taylor expansion with respect to ψ , 0 = m− 1
2
∑m

j=1 ∂lj(ψ)/∂ψ+Ψ
√
m(ψ̂−

ψ) + op(1) , where Pr(di = 1) = q1p+ q0(1− p) > 0 and

Ψ =
1

Pr(di = 1)
E
[
di
∂2li(ψ; r0)

∂ψ∂ψ′

]
. (A.1)

This is because from (m/n, r, ψ̂
′
)

p−→ (q1p+q0(1−p), r0, ψ′) , we have (n/m)n−1
∑n

i=1

di∂
2li(ψ̂ + op(1); r)/∂ψ∂ψ

′ = (n/m)E [dili(ψ; r0)/∂ψ∂ψ′] + op(1) . The true value is a

local maximum point, hence, ∂2E [li(ψ; r0)di]/∂ψ∂ψ′ is negative-definite. Under the

Assumption 4, all elements of li(ψ; r0)/∂ψ∂ψ
′ are bounded; thus, differentiation and

integration are interchangeable. Then, as shown in Akashi and Horie (2022), Ψ is also

negative-definite or invertible. Therefore,
√
m(ψ̂−ψ) = −Ψ−1m− 1

2
∑m

j=1 ∂lj(ψ)/∂ψ +

op(1) . By expanding at r0 , since the numerator of r is also the sum of independent

random variables,

1√
m

m∑
j=1

∂lj(ψ)

∂ψ
=

1√
m

n∑
i=1

di
∂li(ψ; r0)

∂ψ
+

1

m

n∑
i=1

di
∂2li(ψ; r0)

∂ψ∂r

√
m(r − r0) + op(1)

=

√
n

m

1√
n

n∑
i=1

si + op(1) , (A.2)
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where si = di∂li(ψ; r0)/∂ψ+γ1(d1iy2i−dir0) and γ1 = Pr(di = 1)−1E [di∂2li(ψ; r0)/∂ψ∂r] .
The conditional log-likelihood function implies that E [∂li(ψ; r0)/∂ψ|di = 1, xi] = 0 .

Hence, it holds that E [si] = 0 because E [dir0] = q1p . From Assumptions 2, and 3,

and the Lindeberg-Lévy central limit theorem, (n/m)
1
2n−

1
2
∑n

i=1 si
d−→ N (0, Σ) as

n→ ∞ , where Σ = Pr(di = 1)−1E [sis′i] . Therefore, for the notations of the asymptotic

covariance matrix of Theorem 1, we have

Σ1 =
1

pd
E
[
di
∂li(ψ; r0)

∂ψ

∂li(ψ; r0)

∂ψ′

]
, Σ2 =

E [(d1iy2i − dir0)
2]

pd
γ1γ

′
1 , and

Σ12 =
1

pd
E
[
d1iy2i

(
∂li(ψ; r0)

∂ψ
γ ′
1 + γ1

∂li(ψ; r0)

∂ψ′

)]
, (A.3)

where pd = Pr(di = 1) , di(d1iy2i) = d1iy2i , and E [(d1iy2i − dir0)
2] = q1p(1− r0) . Thus,

we obtain the representation that Ω = Ψ−1(Σ1 +Σ12 +Σ2)Ψ
−1 . �

(ii) From the above arguments, m−1Ψ̂
p−→ Ψ , γ̂1

p−→ γ1 , and m
−1Σ̂

p−→ Σ . By

Equation (2.26), the desired result is obtained. �

Proof of Theorem 2: (i) For the first term τ̂1 of τ̂ , from p̂ − p̃
p−→ 0 and β̂

p−→ β ,

we have τ̂1 = (p̂/m1)
∑m

j=1 y1j/p̂j = (n1/m1)n
−1
∑n

i=1 d1iy
∗
1iy2i/pi + op(1) . By the law

of large numbers and Assumption 1,

τ̂1 =
n1
m1

E
[E [d1i|y2i, x∗

i ]y
∗
1iy2i

pi

]
+ op(1) =

n1
m1

q1E [y∗1i] + op(1) . (A.4)

m1/n1 = q1 + op(1) ; hence, τ̂1
p−→ E [y∗1i] . Similarly, for the second term, τ̂0 = (1 −

p̂)/m0
∑m

j=1 y0j/(1 − p̂j)
p−→ E [y∗0i] . Therefore, τ̂ = τ̂1 − τ̂0

p−→ τ . 　
We next show the asymptotic normality. By expanding at (r0, β

′, p) , under the

assumptions,

√
m(τ̂ − n

m
pdτ) = eτ + δr

√
m(r − r0) + δ

′
β

√
m(β̂ − β) + δp

√
m(p̂− p) + op(1) , (A.5)

where E [√meτ ] = 0 and the law of large numbers leads to

eτ =
1√
m

n∑
i=1

p

r0

d1iy1i
pi

− 1− p

1− r0

d0iy0i
1− pi

− pdτ , (A.6)

δr =
1

pd
E
[
− p

r20

d1iy1i
pi

− 1− p

(1− r0)2
d0iy0i
1− pi

]
, (A.7)

δβ =
1

pd
E
[(

− p

r0

d1iy1i
p2i

− 1− p

1− r0

d0iy0i
(1− pi)2

)
φ(β′xi)xi

]
, and (A.8)

δp =
1

pd
E
[
1

r0

d1iy1i
pi

+
1

1− r0

d0iy0i
1− pi

]
. (A.9)

12



Moreover, expressing r − r0 and ψ̂ −ψ as asymptotically linear forms, we have

√
m(τ̂ − n

m
pdτ) = eτ +

δr√
m

n∑
i=1

(d1iy2i − dir0)− (δ′β, δp)Ψ
−1 1√

m

n∑
i=1

si + op(1)

=

√
n

m

1√
n

n∑
i=1

ei + op(1) , (A.10)

where

ei =

(
p

r0

d1iy2i
pi

− 1− p

1− r0

d0iy0i
1− pi

− pdτ

)
+ γ2(d1iy1i − dir0) + diγ

′
3

∂li(ψ; r0)

∂ψ
, (A.11)

γ ′
3 = −(δ′β, δp)Ψ

−1 , and γ2 = δr + γ
′
3γ1 . Because si contains (d1iy2i − dir0) , it is

collected as the second term of ei . It follows that E [ei] = 0 and E [e2i ] < ∞ under the

same assumptions. From the Lindeberg-Lévy theorem,
√
m(τ̂−nm−1pdτ)

d−→ N (0, σ2) .

Then, the definition of σ2 is given by

σ2 =
E [e2i ]
pd

. (A.12)

Thus, the desired result is obtained. �
(ii) From the results of Theorem 1 and (δ̂r, δ̂

′
β, δ̂p)

p−→ (δr, δ
′
β, δp) , we have

σ̂2
p−→ σ2 . Under H0 : τ = 0 , it holds that μτ = 0 . Thus, we conclude the asymptotic

normality of tτ . �
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