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1 Introduction

First, this study aims to briefly summarize the recent results of theoretical anal-

ysis in long panel data. Hsiao (2014) wrote one of the representative textbooks

of panel analysis and the book was translated into Japanese by Naoto Kunitomo.

The third edition complements a dynamic panel structural model. Moreover, Arel-

lano (2003a) wrote a textbook regarding dynamic panels, which incorporates many

empirical examples. However, in these textbooks, discussion on long panel data

is limited, which has been increasing in analysis with the accumulation of data in

recent years. Hence, we thought of focusing on long panel data. Long panel data

possibly become a problem because recent research showed that existing estima-

tion methods built into packaged software and programs (EViews, Stata, and Ox)

may not always work well. Distinguishing between short and long panel data in

empirical analyses may be difficult. Therefore, in this study, we will focus on fixed-

effects estimation because it can be a consistent estimation regardless of whether

panel data are short or long and is robust to the assumption of the individual

effect.

Second, this work focuses on endogeneity, which is one of the most important

issues in econometric empirical analyses. We apply limited information maximum
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likelihood (LIML) estimation for structural panel analysis based on the simul-

taneous equation model, which is often useful in testing economic models. We

introduce the backward filter and the long difference, which are relatively new

data transformations to exclude individual effects. Then, we present that the two

LIML estimators related to the transformations have the best properties in long

panel data. Of these, the doubly filtered LIML (D-LIML) estimator can be easily

calculated using package software after data transformation.

Third, we present some useful results for the procedures of structural panel

analysis. Although theoretical analyses of long panel data have discussed the esti-

mation problem, few studies were conducted for hypothesis testing. In particular,

a model selection based on the information criterion, the exogeneity test of instru-

mental variables, and the rank test for identification are constructed based on the

Anderson-Rubin test statistic. These procedures will give a deeper panel analysis.

This paper is further organized as follows. Part I summarizes the results of ex-

isting long panel data analyses for regression analysis using a simple panel AR(1)

model. Then, Part II considers a general model, discusses the estimation meth-

ods of several LIML estimators, and shows the simulation results under a finite

sample. Part III proposes the test statistics based on the D-LIML estimator for

structural analysis and shows the simulation results. The proofs of our theorems

are summarized in the Appendix.

2 Part I: Regression Analysis

Part I provides an overview of the results for the regression model and methods

of long panel data, which are also used in Parts II and III. A dynamic panel model

is given as follows:

yit = πyit−1 + ηi + vit , |π| < 1 . (2.1)

The individual effect ηi (i = 1, · · · , N) is just added to the AR(1) model, but this

effect makes the estimation problem difficult. The individual effect is a unique

formulation of panel analysis and represents the individual attributes that do not

change with time. Regarding the error term, we assume the homoscedastic variance

Var[vit] = ω, which can be extended to the AR(p) model. However, for simplicity,

only the results for AR(1) are summarized in Part I.

Example 1.1 : One of the simplest applications of the reduced form (2.1) is the

verification of growth rate convergence in the macro growth theory of Barro and

Sala-i-Martin (1995). The value of convergence is E [yit] = ηi/(1− π), but it varies

from country to country.
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Acemoglu et al. (2008) also conducted another influential empirical analysis.

They analyzed the relationship between a democratization indicator and logarith-

mic GDP per y
(2)
it−1 capita using data from more than 100 countries from 1960 to

2000 (T = 40),

y
(1)
it = π1y

(1)
it−1 + π2y

(2)
it−1 + ηi + vit .

The data were corrected to five-year data. Hence, the number of periods was

decreased. Arellano (2003a) provided empirical examples of the reduced form.

Let us compare the dynamic panel and the static panel model,

yit = πzit + ηi + vit .

In the static model, for an exogenous variable zit that is uncorrelated with the

error term, the following hypothesis can be considered:

H0 : E [zitηi] = 0 ,

and the test of Hausman (1978) is conducted. However, in the dynamic panel, this

hypothesis testing would not hold as shown below.

The first problem with the dynamic model is that although the individual effects

are random, the reduced form has the endogeneity problem. Substituting yit−1

repeatedly, we obtain the following:

E [yit−1ηi] = E
[(
vit−1 + πvit−2 + · · ·+ πt−2vi1 + πt−1yi0 +

1− πt−1

1− π
ηi

)
ηi

]

= E
[(
πt−1yi0 +

1− πt−1

1− π
ηi

)
ηi

]
�= 0 .

From the above equation, yit−1 is a function of ηi. Therefore, this function corre-

lates with the individual effect, and the initial value of the first term is also highly

possible to correlate with ηi.

Hence, let us consider a fixed-effects estimation that excludes individual effects.

The covariance (CV) estimator is the standard method in static models. This

estimator is also called the least square dummy variable estimator or the within

groups (WG) estimator. Let the mean of within group as ȳi =
∑

t yit , and we

have the following:

yit − ȳi = π(yit−1 − ȳi,−1) + (vit − v̄i) ,

which does not depend on individual effects.

4



With the application of ordinary least squares (OLS) estimation after data trans-

formation, the CV estimator is given as follows:

π̃CV =

∑N
i=1

∑T
t=1(yit − ȳi)(yit−1 − ȳi,−1)∑N

i=1

∑T
t=1(yit−1 − ȳi,−1)2

.

However, in the dynamic panel model,

E [(yit−1 − ȳi,−1)(vit − v̄i)] = E [(yit−1 − ȳi,−1)(−v̄i)]
�= 0 ,

endogeneity will occur because of data transformation, and then, the CV estimator

is biased. According to Nickel (1981) and Anderson and Hsiao (1982), the bias is

as follows:

π̃CV − π
p−→

N→∞

− 1+π
T−1

[
1− 1

T
1−πT

1−π

]
1− 2π

(T−1)(1−π)

[
1− 1−πT

T (1−π)

]
p−→

N, T→∞
0 ,

and the inconsistency in the short panel data (T < ∞) is well known. In the

long panel data (T → ∞), the bias of the CV estimator becomes weaker and

is the consistent estimation. However, constructing the t-test using the CV es-

timator is difficult, as will be further discussed later. Hence, the instrumental

variable method or the maximum likelihood method in the dynamic panel should

be considered.

2.1 Long Panel Data

Considering the properties of long panel data, although the total number of

panel data is n = NT , either N or T must be considered large enough for the

asymptotic inference.2 A long panel is defined by T → ∞. In actual, T is finite

such as T = 100, and such data are not observed even nowadays. What matters

is the relative ratio of T to N ,

T

N
→ c > 0 .

A problem arises when the ratio cannot be ignored as 0. We formally represent

an estimator π̂ as follows:

π̂ = (π + b0) +
z√
NT

+ · · · ,
2Depending on the estimators n may become N(T − 1) or N(T − 2), but it does not affect

the asymptotic theory because (T − 1)/T → 1.
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where z ∼ N (b1, v) due to the asymptotic normality. As will be further discussed

later, the bias term b0 and the noncentral parameter b1 often depend on the ratio of

the sequences such as T/N or its reciprocal N/T . Hence, the ratio is the important

value for a long panel data. For example, if (N, T ) = (100, 10) or (200, 20), then

the ratio becomes c = 0.1. However, the small value might have a non-negligible

effect on estimators from the numerical experiments of the previous studies. Such

a situation may occur because of the accumulation of data in recent years. As for

hypothesis testing, notably, the t-test or χ2-test cannot be conducted when b1 �= 0,

and the CV estimator under long panel data is an example.

In the usual short panel data (N → ∞, T < ∞) of empirical analyses, c is

regarded as 0. Thus, the estimation is based on the asymptotic theory in the

cross sectional data (N → ∞, T = 1). In the long panel data, we are interested

in the behavior of the estimator when T also increases, and thus, we consider it

based on the double asymptotics (N → ∞, T → ∞). Alternatively, the repeated

measurements of the time series data (N < ∞, T → ∞) can also be included

in the long panel data (cf. Anderson, 1978a). Therefore, we allow the situation

N < T , such as (N, T ) = (5, 30). In terms of application, this study focuses on

the estimation method such that the estimators does not depend on the sample

size of N . That is, we consider the consistent estimators regardless of whether N

is fixed or tends to infinity.

2.2 Incidental Parameters Problem

The second problem is the initial values. (2.1) is equivalent to the following

state-space representation:

yit = wit + μi , (2.2)

wit = πwit−1 + vit ,

where μi = ηi/(1 − π). Assuming that μi follows a certain distribution, the indi-

vidual effect becomes a random effect, which means Var[μi] = ωμ. For instance, if

yit is considered a household income, then μi may follow the Pareto distribution.

Meanwhile, if yit is the growth rate of each country, then assuming what type of

distribution μi follows may be difficult. However, if the heteroscedastic variance

Var[μi] = ωμi (i = 1, · · · , N), then it depends on many parameters. The random-

effects maximum likelihood estimation (MLE) is valid when the model has a finite

number of unknown parameters.

Anderson and Hsiao (1981) verified for the first time that the initial value is

another issue in the dynamic panel model, even if the random effect is assumed
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for the individual effect. We do not have much information on the distribution of

the initial value yi0 = wi0+μi and make almost no assumption if wi0 is considered

as fixed.

When (μi, vit) is normally distributed the likelihood function is given as follows:

fi(yi0, yi1, · · · , yiT )

=

(
1√
2πω

)T
exp

{
− 1

2ω

T∑
t=1

[(yit − yi0 + wi0)− π(yit−1 − yi0 + wi0)]
2

}

× 1√
2πωμ

exp

{
− 1

2ωμ
(yi0 − wi0)

2

}
.

The random-effects MLE π̃RM is obtained by maximizing this log-likelihood func-

tion with respect to (π, ω , ωμ) and (w10, · · · , wN0). They pointed out the inciden-

tal parameters problem such that the random-effects MLE would be inconsistent

in the short panel data, which is caused by many equations:

∂�i
∂wi0

= 0 , (i = 1, · · · , N) , (2.3)

where �i = log fi is the log-likelihood function of each individual. By estimating

wi0, π̃RM becomes inconsistent if T is not large. The reason is that π̃RM cannot be

solved independently from the normal equations of (2.3). This has been known as

the incidental parameters problem, as noted by Neyman and Scott (1948).

As T → ∞,

π̃RM = π̃CV + op(1) ,

they also showed that the random-effects MLE is asymptotically equivalent to the

CV estimator. The CV estimator is consistent in the long panel data but has the

noncentrality parameter as we will show later.

In empirical analyses, deciding whether it is short or long panel data is difficult.

The use of different estimation methods depending on whether T is fixed or not

would be inconvenient. Therefore, in this study, we also focus on the estimators

that are consistent even if T → ∞ or T <∞. Moreover, Section 3.7.1 shows that

some maximum likelihood estimator can avoid the incidental parameters problem.

2.3 Fixed-Effects Estimation

If the individual effects are fixed rather than random, then a method that can

consistently estimate is called a fixed-effects estimation. Anderson and Hsiao

(1981) considered a fixed-effects method that does not depend on the assumptions
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of individual effects or initial values. A simple instrumental variable estimator

is presented and is one of the main estimation methods in the early stages of

panel analysis. The instrumental variable (IV) estimator is based on the following

orthogonal condition,

E [yit−2Δvit] = 0 .

Taking the first-difference in (2.1),

Δyit = yit − yit−1

= πΔyit−1 +Δvit ,

where the difference Δuit = uit − uit−1 does not include the individual effects

and is uncorrelated with the level yit−2, which becomes an instrumental variable.

Similarly, the difference Δyit−2 is also an instrumental variable, and thus, the

orthogonal condition E [Δyit−2Δuit] = 0 is satisfied. The first-difference of panel

data is obtained from DTyi, where yi = (yi1, · · · , yiT )′ and

DT
(T−1)×T

=

⎛
⎜⎜⎜⎝

−1 1 0 · · · 0

0 −1 1 · · · 0
...

...
. . .

...
...

0 · · · 0 −1 1

⎞
⎟⎟⎟⎠ . (2.4)

We refer to the estimators of Anderson and Hsiao (1981) as AH estimators, and

they are as follows:

π̃IV =

∑N
i=1

∑T
t=3 ΔyitΔyit−2∑N

i=1

∑T
t=3 Δyit−1Δyit−2

,

π̄IV =

∑N
i=1

∑T
t=3 Δyityit−2∑N

i=1

∑T
t=3 Δyit−1yit−2

.

The assumptions for the following theorems are given by the following:

(a1) {vit} (t = 1, · · · , T ; i = 1, · · · , N) are i.i.d across time and individuals. vit
is independent of yi0 with E [vit] = 0, Var[vit] = ω, and has a finite moment up to

the eighth order.

(a2) The initial observations satisfy the following:

yi0 =
ηi

1− π
+ wi0 , (i = 1, · · · , N) ,

where wi0 =
∑∞

h=0 π
svi,−h is independent of ηi.

(a3) ηi are i.i.d. across individuals. ηi is independent from {vit} with E [ηi] =
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0, Var[ηi] = ωη, and has a finite moment up to the fourth order.

(a4) (1/N)
∑N

i=1 η
2
i = O(1) and vit ∼ N (0, ω).

These assumptions are the same as those of Alvarez and Arellano (2003) and

simplify the derivation and expression of theorems. Assumptions (a2) and (a3)

are for setting a random-effects model, but the fixed-effects estimators may not

need the assumptions of the individual effects or initial conditions. If the random-

effects model is correct, then the issue will be whether the fixed-effects estimator

can achieve the same efficiency as the random-effects MLE. Assumption (a1) means

the homoscedasticity of the error terms, and assumption (a4) is used in deriving

the lower bound of efficiency. Assumption (a2) is regarding the initial conditions.

If the data is generated from a sufficient past before the initial value, then the

next relation may be natural,

lim
t→∞

1− πt−1

1− π
ηi =

1

1− π
ηi .

From the expression of (2.2),

yit − yit−1 = wit − wit−1 .

Notably, the individual effect disappears by the first-difference Δyit at all t. Hayakawa

(2008) examined the IV estimator when the initial condition is different from

ηi/(1− π), but the initial effect diminishes in the stationary process and does not

affect the consistency.

The following results hold.3

Theorem 1.1 (Anderson and Hsiao, 1981) : Supposing assumptions (a1)-

(a3) hold, then as N → ∞ or T → ∞ or both, π̃IV
p→ π and π̄IV

p→ π .

Provided T → ∞ ,

√
NT (π̃IV − π)

d−→ N
(

0,
2(1 + π)(3− π)

(1− π)2

)
,

√
NT (π̄IV − π)

d−→ N ( 0, 2(1 + π) ) .

3The derivation of the asymptotic variance is based on the studies by Hsiao and Zhang (2015)
and Phillips and Han (2014).
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The AH estimators are consistent estimators for short and long panel data,

and assumptions (a2) and (a3) are not necessary for consistency. Regarding the

two asymptotic variances, π̄IV is smaller because (3 − π)/(1 − π)2 > 1. However,

Anderson and Hsiao (1981) pointed out that AH estimators are the simplest IV

estimators, so that efficiency can be further improved.

The next issue is the improvement of efficiency, but White (1999, Ch.4) ex-

plained that increasing the instrumental variables can improve efficiency in the

usual situation. Therefore, the variability of an estimator is suppressed by the

orthogonal conditions as the correct constraint increases. As a lagged endogenous

variable, the instrumental variable is not only yit−2 but also yit−3. Therefore, in

each period t ,

E [yit−sΔvit] = 0 , s = 2, 3, · · · , t ,

that is, (t− 1) orthogonal conditions exist. As a whole,

T∑
t=2

(t− 1) =
T (T − 1)

2
.

Let the (T − 1)× 1 vector of the first-order difference be

Δyi = πΔyi,−1 +Δvi .

If the (T − 1)× T (T − 1)/2 matrix of the instrumental variables is

Zi =

⎛
⎜⎜⎜⎝
yi0 0 0 · · · · · · 0

0 yi0 yi1 · · · · · · 0
...

...
. . .

...
...

...

0 · · · 0 yi0 · · · yiT−1

⎞
⎟⎟⎟⎠ , (2.5)

then the orthogonal conditions are collectively E [Z′
ivi] = 0.

Notably, the error term becomes the moving average process MA(1) by taking

the difference with the serial correlation E [Δvit−1,Δvit] = −ω,

E
[
ΔviΔv

′
i

]
(T−1)×(T−1)

= ωW

= ω

⎛
⎜⎜⎜⎜⎜⎜⎝

2 −1 0 · · · 0

−1 2 −1 · · · 0
...

...
. . .

...
...

0 · · · −1 2 −1

0 · · · 0 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎠

. (2.6)
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Arellano and Bond (1991) proposed the generalized method of moment (GMM)

estimator which efficiently estimates under serial correlation. This method belongs

to the efficient GMM estimator in the framework of the moment method. Their

AB estimator becomes

π̃GM =

∑N
i=1Δy

′
i,−1Zi

(∑N
i=1 Z

′
iWZi

)−1∑N
i=1 Z

′
iΔyi∑N

i=1Δy
′
i,−1Zi

(∑N
i=1 Z

′
iWZi

)−1∑N
i=1 Z

′
iΔyi,−1

. (2.7)

Theorem 1.2 (Arellano and Bond, 1991) : Supposing assumptions (a1)-

(a3) hold, then as N → ∞ and T is fixed,

√
N (π̃GM − π)

d−→ N ( 0,
ω

φT
) ,

where

φT = E
[
Δy

′
i,−1Zi

]
E
[
Z

′
iWZi

]−1

E
[
Z

′
iΔyi,−1

]
.

The above equation is the result under the short panel data. Therefore, the asymp-

totic variance depends on T . Arellano and Bond (1991) estimated the UK wage

equation in short panel data (N = 611, T = 6) and stated that efficiency was

significantly improved by the AB estimator. Moreover, they found that the esti-

mation results were stable compared with those using the AH estimator. After

that, the AB estimator is known as a representative in the estimation of the dy-

namic panel model and is installed in the package software.

However, in the AB estimator, the number of instrumental variables increases

rapidly on the order of O(T 2) as T increases. Wooldrige (2002, Ch. 11) showed

that the finite sample properties of GMM were not so good when the instrumental

variables were increased. The use of many instrumental variables is not recom-

mended. Although these are empirical discussions, the next section will clarify the

point of the problems.

2.4 Forward Orthogonal Deviation

This section considers the properties of the GMM estimator in the long panel

data. In preparation for that, we look at a simpler expression of the GMM esti-

mator. Although the serial correlations by E [ΔviΔv
′
i] = ωDTD

′
T exist, the data
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transformation in which the serial correlation does not occur from the beginning

is given as follows:

Df
(T−1)×T

= (DTD
′
T )

− 1
2DT . (2.8)

Then,

DfD
′
f = IT−1 ,

by the definition. In particular, Arellano and Bover (1995) noted that

Df = diag

[√
T − 1

T
, ...,

√
1

2

]
⎛
⎜⎜⎜⎜⎜⎜⎝

1 − 1
T−1

− 1
T−1

· · · − 1
T−1

− 1
T−1

− 1
T−1

0 1 − 1
T−2

· · · − 1
T−2

− 1
T−2

− 1
T−2

...
...

...
. . .

...
...

...

0 0 0 · · · 1 −1
2

−1
2

0 0 0 · · · 0 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Considering that the sum of each column is zero, the individual effects disappear

from the regression equation when this transformation is applied.

y
(f)
i = πy

(f)
i,−1 + v

(f)
i , (2.9)

where (y
(f)
i ,y

(f)
i,−1) = Df(yi,yi,−1) and v

(f)
i = Dfvi. As this transformation is

orthogonal, the homoscedasticity is maintained, and no serial correlation exists:

E
[
v
(f)2
it

]
= ω ,

E
[
v
(f)
it±sv

(f)
it

]
= 0 , (s �= 0) .

The transformed error becomes

v
(f)
it = ft

[
vit − 1

T − t
(vit+1 + · · ·+ viT )

]
,

where

f 2
t =

T − t

T − t+ 1
,

with respect to t = 1, · · · , T − 1. As the average after period t is subtracted, the

orthogonal condition of each t can be

E
[
yisv

(f)
it

]
= 0 , (s = 0, 1, · · · , t− 1) .

However, notably, the y
(f)
it−1 on the right-hand side of (2.9) correlates with the

transformed error term,

E
[
y
(f)
it−1v

(f)
it

]
�= 0 .
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From the above properties, we may call the forward orthogonal deviation the

forward filter in this work.

Next, the AB estimator is equivalent to the GMM estimator with the forward

filter. Given the n× 1 vector y(f),

y(f) =
(
y
(f)′
1 , · · · ,y(f)′

N

)′

.

Similarly, y
(f)
−1 is defined. Then, the simple expression of the AB estimator becomes

π̃GM =
y
(f)′
−1 Py(f)

y
(f)′
−1 Py

(f)
−1

, (2.10)

where the projection matrix is P = Z
(
Z

′
Z
)−1

Z
′
constructed by

Z = (Z
′
1, · · · ,Z

′
N )

′
.

As the serial correlation disappears, the weighted matrix becomes W = I, so that

it is expressed by the two-stage least squares estimator. As for another expression,

π̃GM =

∑T−1
t=1 y

(f)′
t−1Pty

(f)
t∑T−1

t=1 y
(f)′
t−1Pty

(f)
t−1

, (2.11)

where the N × 1 vector y
(f)
t is

y
(f)
t = (y1t, · · · yNt)′ , (t = 1, · · · , T − 1) .

Similarly, y
(f)
t,−1 is defined. The projection matrix of each t becomesPt = Zt

(
Z

′
tZt
)−1

Z
′
t,

and then, the i-th row of the N × t matrix Zt is (yi0, · · · , yit−1). Although the

forward filter is complicated at first glance, calculating the asymptotic property

in the long panel data based on (2.7) is difficult. That is, the calculation of (2.11)

is still easier.

Let us check why they are numerically equivalent. Using the relation of (2.8),

π̃GM =

∑N
i=1 y

′
i,−1D

′
TZi

(∑N
i=1 Z

′
iDTD

′
TZi

)−1∑N
i=1 Z

′
iDTyi∑N

i=1 y
′
i,−1D

′
TZi

(∑N
i=1 Z

′
iDTD

′
TZi

)−1∑N
i=1 Z

′
iDTyi,−1

=
y

′
−1

(
IN ⊗D

′
f

)
Z
[
Z

′ (
IN ⊗DfD

′
f

)
Z
]−1

Z
′
(IN ⊗Df )y

y
′
−1

(
IN ⊗D

′
f

)
Z
[
Z′ (IN ⊗DfD

′
f

)
Z
]−1

Z′ (IN ⊗Df)y−1

.

Therefore, (2.7) is equal to (2.10). Next, rearranging the rows with 	J
′
nZ = diag(Zt)

gives

π̃GM =

y
(f)′
−1
	Jn

(
	J

′
nZ
)[(

	J
′
nZ
)′ (

	J
′
nZ
)]−1 (

	J
′
nZ
)′
	J

′
ny

(f)

y
(f)′
−1
	Jn

(
	J′
nZ
)[(

	J′
nZ
)′ (

	J′
nZ
)]−1 (

	J′
nZ
)′
	J′
ny

(f)
−1

.
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Hence, (2.10) is equal to (2.11) because 	Jn	J
′
n = In.

The CV estimator can also be expressed in the form of OLS, because

D
′
fDf

T×T
= QT

= IT − 1

T
ιι

′
.

Using this relation, we have

π̃CV =
y
(f)′
−1 y

(f)

y
(f)′
−1 y

(f)
−1

.

Regarding the LIML estimator, Alonso-Borrego and Arellano (1999) examined the

estimator using the same instrumental variables as that in the AB estimator. The

detail will be discussed in Part II, given as follows:

π̃LI =
y
(f)′
−1 Py(f) − λ̃y

(f)′
−1 y

(f)

y
(f)′
−1 Py

(f)
−1 − λ̃y

(f)′
−1 y

(f)
−1

,

where λ̃ is the minimum eigenvalue of some eigenvalue problem.

Using the representations by the forward filters, Alvarez and Arellano (2003)

derived the properties of these estimators under the double asymptotics (N, T →
∞) in a long panel data.

Theorem 1.3 (Alvarez and Arellano, 2003) : Supposing assumptions (a1)-

(a3) hold, then

[i] as T → ∞, regardless of N is fixed or tends to infinity, provided N/T 3 → 0,

√
NT (π̃CV − π)

d−→ N
(
−
√
d(1 + π), 1− π2

)
,

where d = limN/T such that 0 ≤ d <∞.

[ii] As N and T tend to infinity, provided (log T )2/N → 0,

√
NT (π̃GM − π)

d−→ N (−√
c(1 + π), 1− π2

)
,

where c = limT/N such that 0 ≤ c <∞.

[iii] As N and T tend to infinity,

√
NT (π̃LI − π)

d−→ N
(
−

√
c

2 − c
(1 + π), 1− π2

)
,

where c = limT/N such that 0 ≤ c ≤ 2.
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The model is quite simple, but the forward filter and many instruments make the

derivation complicated. Hence, their derivation of the noncentrality parameter is

a pioneering result in the theoretical analysis of the long panel data. In the long

panel data the number of instrumental variables can be O(T 2) → ∞. We will

discuss the many instruments problem in Prat II. Even in this situation, the three

estimators are consistent and have the same asymptotic variance. In a short panel

data, the CV estimator is inconsistent, because d becomes infinite. Meanwhile,

the noncentrality parameter of the AB estimator disappears because c = 0. In

the case of a long panel data, the noncentrality parameter appears because of the

effects of a large number of instrumental variables and the data transformation.

Thus, the property of the GMM estimator differs between the short and long panel

data.

Bias correction may be applied to the noncentrality parameter. Hahn and Kuer-

steiner (2002) considered the bias-corrected CV estimator and relating t test. The

GMM and LIML estimators also have the noncentrality parameter so that the t

test cannot be used as it is. T may be reduced to T0 (T0 < T ) and estimate it as

short panel data, but this method would not be a fundamental solution because

the speed of convergence drops from
√
NT to

√
NT0. In our simple model, π is

the only unknown parameter. Thus, the bias-corrected t test statistic is given as

follows:

t̃ =
1√

1− (π̃GM)2

(√
NT (π̃GM − π) +

√
T

N
(1 + π)

)
,

where π is assigned to a hypothetical value.

Next, we consider the property of the GMM estimator proposed by Blundell and

Bond (1998) in the long panel data, which is called the system GMM estimator.

This estimator widely used as often as the AB estimator. They pointed out that

the AB estimator is less efficient depending on the variance ratio ψ = ωη/ω when

π is close to the unit root or the variance of the individual effect is large. For an

instrumental variable to be valid, in addition to no correlation with the error term,

the condition of correlation with the endogenous variable is required. However,

when the variable is close to the unit root, the instrumental variable yit−1 as

the level becomes a weak instrumental variable, which can hardly explain Δyit.

Conversely, if the regression equation does not take the difference and the level

yit is used, then the difference Δyit−1 can be used as the instrumental variable.

Therefore, the influence of the near unit root will be mild. For the following

equations, [
Δyit
yit

]
= π

[
Δyit−1

yit−1

]
+

[
Δvit
ηi + vit

]
,
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the system GMM estimator is given as follows:

π̃SG =

∑T
t=3Δy

′
t−1PtΔyt +

∑T
t=3 y

′
t−1P

(Δ)
t yt∑T

t=3Δy
′
t−1PtΔyt−1 +

∑T
t=3 y

′
t−1P

(Δ)
t yt−1

,

where P
(Δ)
t = Δyt−1(Δy

′
t−1Δyt−1)

−1Δy
′
t−1.

The result of the short panel data shows that efficiency is significantly improved

over the AB estimator, particularly in π = 0.9 and so on. Moreover, the result of

the long panel data is as follows.

Theorem 1.4 (Hayakawa, 2006a) : Supposing assumptions, then as N and

T tend to infinity, provied that T/N → c (0 ≤ c ≤ 1),

π̃SG − π
p−→ − c

c + 3−2π
1+π

.

That is, the system GMM estimator is inconsistent in the long panel data.4 Al-

though the AB estimator uses the instrumental variables of the same order O(T 2),

the AB estimator is consistent. Alvarez and Arellano (2003) showed that a GMM

estimator that does not use the optimal weighted matrix W results in inconsis-

tency in the long panel data. Thus, the inefficiency of the system GMM estimator

may cause inconsistency.

These GMM estimators were derived in short panel data, and they are still

useful methods for short panel data. From the above discussions, the properties

of estimators significantly change between short and long panel data, which is one

of the motivations of research on long panel data in recent years.

2.5 Optimal Instrumental Variable

The IV and GMM estimators are robust to the assumptions of individual ef-

fects and initial conditions in the sense that they use only orthogonal conditions.

However, the GMM estimator may show poor properties under many orthogonal

conditions. Meanwhile, Wooldridge (2002, Ch.8) noted that an argument called

the optimal instrumental variable exists, which searches for an efficient estimator

with the minimum necessary orthogonal conditions. Arellano (2003b) considered

the optimal instrumental variable z
(∗)
it−1 in the dynamic panel model. In the case

4Bun and Windmeijer (2010) also discussed the bias of the system GMM estimator.
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of the AR(1) model,

π̆IV =

∑N
i=1

∑T−1
t=1 z

(∗)
it−1y

(f)
it∑N

i=1

∑T−1
t=1 z

(∗)
it−1y

(f)
it−1

,

where the condition of the optimal instrumental variable is given as follows:

z
(∗)
it−1 = E

[
y
(f)
it−1|yit−1

]
= ft

[
1− π(1− πT−t)

(T − t)(1− π)

] [
wit−1 +Op

(
1√
t

)]
.

Similar to AH estimators, the estimator uses one orthogonal condition for each

t, but π̆IV is infeasible because it depends on an unknown parameter. For the

optimum instrumental variable, the following conditions should be noted. If t is

large, then the instrumental variable does not depend on the individual effect, and

if T is large, then it becomes almost wit−1.

Hayakawa (2006b) considered the transformation y
(b)
i,−1 = Dbyi,−1, which is al-

most equivalent to the following,

Db
(T−1)×T

=

⎛
⎜⎜⎜⎜⎜⎜⎝

−1 1 0 · · · 0 0 0

−1
2

−1
2

1 · · · 0 0 0
...

...
...

. . .
...

...
...

− 1
T−2

− 1
T−2

− 1
T−2

· · · − 1
T−2

1 0

− 1
T−1

− 1
T−1

− 1
T−1

· · · − 1
T−1

− 1
T−1

1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where the sum of each column is zero and the individual effect disappears.

y
(b)
it−1 = bt

[
yit−1 − 1

t− 1
(yi0 + · · ·+ yit−2)

]

= wit−1 − 1

t− 1
(wi0 + · · ·+ wit−2) ,

bt = 1 , (2.12)

for t = 2, · · · , T .5 Such a transformation is called the backward orthogonal devi-

ation, or the recursive mean adjustment in So and Shin (1999) in the time series

analysis. In this work, we call this transformation the backward filter. In contrast

to the forward filter, the historical average is subtracted to have the orthogonal

conditions:

E
[
y
(b)
it−1u

(f)
it

]
= 0 , (t = 2, · · · , T − 1) .

5It may be replaced with b2t = (t− 1)/t or ft. As orthogonalizing the instrumental variables
is not necessary, it is simply set to 1. However, bt = ft is used only in Section 3.7.2.
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This instrumental variable does not depend on individual effects, wit−1 is the main

term, and thus, the condition of the optimal IV is satisfied. Considering that the

IV estimator is replaced with the optimal instrumental variable,

π̂IV =

∑N
i=1

∑T−1
t=2 y

(b)
it−1y

(f)
it∑N

i=1

∑T−1
t=2 y

(b)
it−1y

(f)
it−1

.

This is equivalent to the estimator proposed by Hayakawa (2009), and the next

result can be considered in the AR(p) model.

Theorem 1.5 (Hayakawa, 2009) : Supposing Assumptions (a1)-(a3) hold,

then, as N and T tend to infinity,

√
NT (π̂IV − π)

d−→ N (0, 1− π2) .

Similar to the AH estimator π̃IV, this estimator does not require assumption (a3)

because the individual effects disappear from the regression equation and the in-

strumental variables even under a finite sample. Therefore, this estimator is not

affected by the variance ratio ψ under a finite sample. In addition, the result

holds with T → ∞ alone. Above all, the noncentrality parameter disappears and

efficiency does not decrease compared with that of the GMM estimator, which is

an important result. In general, a trade-off exists such that when the number of

instrumental variables is large, the noncentrality parameter becomes large while

the efficiency increases. The IV estimator decreases the number of instrumental

variables, so that the noncentrality parameter becomes small. However, as this

estimator uses asymptotically optimal instruments, efficiency can be maintained.

Finally, we consider. the lower bound of the asymptotic efficiency. When as-

suming the individual effects ηi (i = 1, · · · , N) as incidental parameters, the lower

bound for π is not obvious because the parameters involved are infinite. The fol-

lowing result also holds for the panel VAR model in Holtz-Eakin et al. (1988).

Theorem 1.6 (Hahn and Kuersteiner, 2002) : Supposing assumptions

(a1), (a2), and (a4) hold, then as N and T tend to infinity, the asymptotic distri-

bution of any regular estimator of π cannot be more concentrated than N (0, 1−π2).

The lower bound is 1 − π2 and some of the estimators that we have seen above
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attain the bound. As suggested, the slope π can be estimated efficiently with-

out depending on the information of the individual effects. On the contrary, if

an asymptotic variance depends on the variance ratio ψ, then an estimator is

inefficient in long panel data.

We consider the optimal instrumental variables more intuitively. In the case

of the AR(1) model of the time series (N = 1), the individual effect can be

ηi = η = 0. If yt−1 = wt−1, then we should use the OLS estimator π̂LS without

using the instrumental variable (yt−2, yt−3, · · · ),

yt = πyt−1 + vt ,

π̂LS =

∑T
t=1 yt−1yt∑T
t=1 y

2
t−1

.

If the error term is normally distributed, as is well known, then the OLS is the

same as the MLE. The Cramer-Rao lower bound becomes 1−π2, and the coefficient

is estimated independently from the intercept. That is, the optimal instrumental

variable is E [yt−1|yt−1] = yt−1, which is the explanatory variable itself. As for π̂IV,

for a sufficiently large t,

y
(b)
t−1 = yt−1 + op(1) , y

(f)
t−1 = yt−1 + op(1) .

Although π̂IV is the IV estimator, it can be interpreted as it is fairly close to the

OLS estimator.

From the above discussions, regression analysis of long panel data has several

efficient estimators. From the viewpoint that no condition for the data sequence

exists, π̂IV has the most desirable result. As Anderson and Hsiao (1981) pointed

out at the beginning, in terms of the results, efficient estimation can be constructed

by the IV method if the appropriate data transformation is used.

In the next part, we will examine the structural analysis in the long panel data,

but the result may be different from that of the regression analysis because the

estimation problem becomes more difficult.

3 Part II: Structural Analysis

The simultaneous equation model was developed to verify the economic theory.

This model raises the issue of endogeneity and identification in the field of statistics

and is still one of the central issues in econometrics today. The structural form

considers an estimation problem in which endogenous variables are included on

the right-hand side. In the dynamic panel model, the instrumental variables have

been already used for the reduced form so that the estimation method does not
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change. However, in structural estimation, whether variables are predetermined is

important. Therefore, there are test procedures that are not used in the regression

analysis, such as the overidentification test and the identification test for structural

parameters. Then, the economic model can be verified deeply.

In the dynamic panel structural model, Bhargava and Sargan (1983) investi-

gated the random-effects LIML, and Moral-Benito (2013) considered the partial

system method. Moreover, Alonso-Borrego and Arellano (1999), Akashi and Ku-

nitomo (2012, 2015), and Hsiao and Zhou (2015) proposed the fixed-effects LIML

estimators. Huang and Quibria (2013) also used the fixed-effects LIML estimator

in their empirical analysis. In the next section, we consider the formulation and

estimation problem of the dynamic structural panel model.

3.1 Dynamic Panel Structural Equation Model

Let us start with the simplest structural equation,

y
(1)
it = βy

(2)
it + γy

(1)
it−1 + αi + uit, E [y(2)it (αi + uit)] �= 0 ,

where αi is an individual effect. The difference from the reduced form is that the

variable y
(2)
it on the right-hand side in period t correlates with the error term uit.

Following the notation of Anderson and Rubin (1949), β and γ stand for the

structural parameters, and the reduced form parameter is represented by π. Be-

fore considering a general model, we provide the examples of dynamic structural

panel models based on the economic models. The following is an example of why

simultaneity occurs in profit maximization.

Example 2.1 : Endogeneity can occur in the analysis of production functions,

as explained by Hayashi (2000, Ch.3). For simplicity, let y
(1)
it = αi(y

(2)
it )β exp(uit)

be a Cobb-Douglas production function, where y
(2)
it is the amount of labor, and

αi is the total factor productivity combined with the initial technology. If a firm

maximizes the expected profit given αi, then the first order condition is given as

follows:

αiβ(y
(2)
it )

β−1 = zt ,

where E [exp(uit)] = 1 is assumed. For the price taker, the real wage zt is an

exogenous variable. The logarithmic value of the supply function and the factor

demand function are as follows:

log(y
(1)
it ) = β log(y

(2)
it ) + log(αi) + uit ,

log(y
(2)
it ) = π log(zt)− π log(βαi) ,
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where π = 1/(β − 1). Therefore, log(y
(2)
it ) on the right-hand side becomes the

endogenous variable and correlates with the structural error through the individual

effects.

The next one is an example of the dynamics in structural and reduced forms.

Example 2.2 : Let y
(1)
it = β∗y(2)it be a linear production function, where y

(2)
it is

the capital. In empirical analyses, the output often has no data, and thus, the

amount of sales y
(2)
it is used as the proxy variable. However, sales are most likely

to include the inventory in the previous term,

y
(3)
it = (1− α∗)y(1)it + α∗y(1)it−1 + uit

= (1− α∗)β∗y(2)it + α∗β∗y(2)it−1 + uit

= βy
(2)
it + γy

(2)
it−1 + uit .

If the inventory-sales ratio α∗ = (1 + β/γ)−1 is obtained, then the original capital

coefficient β∗ = β/α∗ can be estimated. Using the identity of capital accumulation

as the reduced form,

y
(2)
it = (1− δ)y

(2)
it−1 + vit ,

where δ is a depletion rate. If the investment vit is determined by the error term

as an innovation with E [vit] = ηi > 0, then it becomes a panel AR(1) model.

We consider how the limited information method (single-equation method) is use-

ful in the example of utility maximization.

Example 2.3 : Let the Stone-Geary utility function be
∑G∗

g=1 βg log(y
(g)∗
it − u

(g)∗
it )

and the budget constraint be
∑G∗

g=1 z
(g)
t y

(g)∗
it ≤ zit. z

(g)
t is the price of good g, zit is

income, and u
(g)∗
it ≥ 0 is called the minimum required amount, which is different in

preferences and changes over time such that it cannot be observed by an econome-

trician. When maximized under a budget constraint, marginal utilities are equal

between two goods. In the first and second goods,

β1

z
(1)
t (y

(1)∗
it − u

(1)∗
it )

=
β2

z
(2)
t (y

(2)∗
it − u

(2)∗
it )

.

Then, the following structural equation is obtained,

β2y
(1)
it = β1y

(2)
it + γ1z

(1)
t + γ2z

(2)
t + u

(1)
it , (3.1)

where

y
(g)
it = z

(g)
t y

(g)∗
it
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is the expenditure function that is the endogenous variable,

γ1 = β2μ1 , γ2 = −β1μ2 , uit = β2(u
(1)∗
it − μ1)z

(1)
t − β1(u

(2)∗
it − μ2)z

(2)
t ,

where μg = E [u(g)∗it ]. Normalization such as
∑G∗

g=1 βg = 1 is required because the

utility function allows a monotonic transformation. The reduced form is known as

the linear expenditure system,

y
(g)
it =

K∑
k=1

πgkz
(k)
it + v

(g)
it , (g = 1, · · · , G∗) ,

where the number of instrumental variables is that of goods and income, that is,

K = G∗ + 1. In empirical analyses, the number of goods or services is reduced by

some classifications, but originally, many goods or services exist. When verifying

the optimization problem, estimating many structural forms simultaneously would

be difficult. The limited information method can estimate the first structural

equation of interest or can estimate individually. Instrumental variables become

many (K → ∞) even with one structural estimation, but the LIML estimator is

known to be robust in this situation.

An empirical analysis may not be strictly derived from an economic theory. How-

ever, a reverse causality exists, then, we can start with two structural equations.

For instance, a foreign exchange rate is influenced by a foreign exchange interven-

tion. Conversely, the authority decides to intervene depending on the fluctuation

of the exchange. When starting from the reduced form, having common factors in

endogenous variables is expected. For example, the relationship between income

and years of education is usually explained by common exogenous variables, such

as ability (IQ).

This section presents the simultaneous equation model with one endogenous

variable on the right-hand side and explains the estimation theory of the structural

form in the long panel data. We consider the two structural equations:

y
(1)
it = β2y

(2)
it + γ1y

(1)
it−1 + α

(1)
i + u

(1)
it , (3.2)

y
(2)
it = β1y

(1)
it + γ2y

(2)
it−1 + α

(2)
i + u

(2)
it .

One of the structural equations of interest to be estimated is called the first struc-

tural equation, such as (3.2). The number of endogenous variables on the right-

hand side of the first structural equation is equal to G2 = 1, and thus, the first

structural equaiton contains G = 1 + G2 = 2 endogenous variables. The reduced
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form solved for the endogenous variables in period t is as follows:

y
(1)
it =

1

1− β1β2
y
(1)
it−1 +

β2
1− β1β2

y
(2)
it−1 +

α
(1)
i + β2α

(2)
i

1− β1β2
+
u
(1)
it + β2u

(2)
it

1− β1β2

= π11y
(1)
it−1 + π12y

(2)
it−1 + π

(1)
i + v

(1)
it ,

y
(2)
it =

β1
1− β1β2

y
(1)
it−1 +

1

1− β1β2
y
(2)
it−1 +

β1α
(1)
i + α

(2)
i

1− β1β2
+
β1u

(1)
it + u

(2)
it

1− β1β2

= π21y
(1)
it−1 + π22y

(2)
it−1 + π

(2)
i + v

(2)
it ,

where from the discussion in the previous part, all variables (y
(1)
it−1, y

(1)
it , y

(2)
it−1, y

(2)
it )

correlate with the individual effect (π
(1)
i , π

(2)
i ). The endogenous variable on the

right-hand side of the first structural equation generally correlates with the fol-

lowing:

E
[
y
(2)
it u

(1)
it

]
= E

[
v
(2)
it u

(1)
it

]
�= 0 ,

and the structural error term u
(1)
it , which is called the simultaneity or the endogene-

ity in period t. That is, the source of endogeneity of the first structural equation is

due to the simultaneous equations behind it. In some cases, the variable in period

t on the right-hand side may also be exogenous,

E
[
y
(2)
it u

(1)
it

]
= 0 .

The above case occurs when the endogenous variable does not appear because

β1 = 0, and the reduced form error and the structural error are uncorrelated, that

is, E [u(1)it u(2)it ] = 0. Then, the structural equation is called a triangular or recursive

system, and y
(2)
it is determined independently of y

(1)
it . We can test whether the

variable is exogenous or endogenous.

The above expressions are based on the full information method (system method)

that specifies the two structural equations. Moreover, the limited information

method specifies and estimates only the first structural equation. The advan-

tage is that considering the specification and identification for the other structural

equations is unnecessary. All of the coefficients of the reduced form (π11 π12, π21,

and π22) are implicitly estimated by some estimator. Hence, we do not usually

denote the second reduced form in an empirical analysis. The limited information

method simplifies the estimation problem as follows:

y
(1)
it = β2y

(2)
it + γ1y

(1)
it−1 + α

(1)
i + u

(1)
it ,

zit = { y(1)it−1, y
(2)
it−1 } , (3.3)
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where zit is the list of instrumental variables that includes the predetermined

endogenous variables in the period t. By only setting the list of IVs, package soft-

ware can estimate the first structural equation. The zero constraints or exclusion

condition is necessary for the identification of the structural parameter. Part III

discusses the tests for endogeneity and identification.

Blundell and Bond (2000) considered a simple structural model with β1 = 0 in

the panel analysis of a production function.

y
(1)
it = β2y

(2)
it + γ1y

(1)
it−1 + α

(1)
i + u

(1)
it , (3.4)

y
(2)
it = γ2y

(2)
it−1 + ρα

(1)
i + u

(2)
it , (3.5)

where E [u(1)it u(2)it ] �= 0 and σ2 = E [(u(1)it )2]. Akashi and Kunitomo (2012) examined

the estimation method of this structural panel model. For a comparison with time

series analysis (N = 1), let us start with α
(1)
i = 0, that is, no individual effect

exists. Then, how should the first structural equation (3.4) be estimated?

Anderson and Rubin (1949) focused on the marginal likelihood function of only

G endogenous variables contained in the first structural equation for the first time.

The log-likelihood in this model becomes the following:

L = −T
2
log |Ω| − 1

2

T∑
t=1

[
y
(1)
it − π′

1zit, y
(2)
it − π′

2zit

]
Ω−1

[
y
(1)
it − π′

1zit

y
(2)
it − π′

2zit

]
,

where π1 = (π11, π12)
′, π2 = (π21, π22)

′, and Ω is the variance-covariance matrix

of the reduced form errors. They considered the constrained maximization problem

as follows:

max
β2, γ1, π1, π2, Ω

L ,

s.t. π11 − β2π21 = γ1, π12 − β2π22 = 0 .

The constraint is relating to the identification of structural parameters, which is

obtained by multiplying β = (1,−β2)′ on the left side of the reduced form. They

also derived the concentrated log-likelihood function for β2 and obtained the LIML

estimator β̂2 as follows:

min
β2

β
′
Gβ

β
′
Hβ

, (3.6)

where the T × 2 matrices consist of the following:

G
2×2

= Y
′
(P−P1)Y ,

H
2×2

= Y
′
(I−P)Y ,
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where Y = (y
(1)
it , y

(2)
it ), and P and P1 are projection matrices generated from

(y
(1)
it−1, y

(2)
it−1) and y

(1)
it−1, respectively. The derivation is similar to Lemma 2.3,

which will be described later.

Under the assumption of a normal distribution, the MLE is obtained as the OLS

in regression analysis by minimizing a quadratic form, that is, the sum of squares

of residuals. Meanwhile, in the case of structural analysis, they found that the

MLE can be obtained by minimizing the ratio of the quadratic forms. For the

LIML estimator θ̂LI of the parameters θ1 = (β2, γ1)
′
, the following result holds.

Theorem 2.1 (Anderson and Rubin, 1949, 1950) : Supposing assump-

tions (A1) and (A2) hold, then as T → ∞ and N = 1,

√
T

(
θ̂LI −

[
β2
γ1

])
d−→ N (0, σ2Φ−1) .

The notations and assumptions of Theorem 2.1 overlap with the general structural

models as discussed later. Hence, we describe them in Section 3.2. Theorem 2.1

shows that the LIML estimator is consistent and efficient in the time series analysis,

and the noncentrality parameter does not appear because individual effects exist.

The assumption that the error terms follow a normal distribution is not essential

for all MLE estimators mentioned in this work. The same result holds without the

normality assumption and the LIML estimator is considered a pseudo-MLE. The

LIML estimator can be also derived only by the orthogonal condition E [zitu(1)it ] = 0,

which is interpreted as a class of the moment method. The filters and appropriate

instrumental variables for the panel analysis should be considered as shown in Part

I. Therefore, we slightly improve the original LIML method.

Alvarez and Arellano (2003) examined the estimators of the simplest regression

under a long panel data. Meanwhile, we consider the same estimators with the

simplest structural equations (3.4) and (3.5). Using the forward filter, the CV

estimator is expressed as follows:

θ̃CV =

(
T−1∑
t=1

X
(f)′
t X

(f)
t

)−1 T−1∑
t=1

X
(f)′
t y

(1,f)
t ,

where X
(f)
t = (y

(2,f)
t , y

(1,f)
t−1 ) is the N × 2 matrix, and y

(2,f)
t is obtained by mul-

tiplying the endogenous variable y
(2)
it by the forward filter. y

(1,f)
t−1 and y

(1,f)
t are

defined in the same way. The AB estimator is based on the GMM method,

θ̃GM =

(
T−1∑
t=1

X
(f)′
t PtX

(f)
t

)−1 T−1∑
t=1

X
(f)′
t Pty

(1,f)
t ,
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where Pt is equivalent to the projection matrix provided in (2.11). The instru-

mental variables become (y
(1)
it−1, y

(2)
it−1), and thus, Zt is only replaced by the N ×2t

matrix. The LIML estimator should be the minimum solution θ̃LI of the following

ratio,

min
θ1

θ
′
G(f)θ

θ
′
H(f)θ

,

where θ = (1,−θ′
1)

′
and θ1 = (β2, γ1)

′
. If the log-likelihood function is also

cocentrated on γ1, then we have

G(f)

3×3
=

T−1∑
t=1

(
y
(1,f)′
t

X
(f)′
t

)
Pt

(
y
(1,f)
t , X

(f)
t

)
,

H(f)

3×3
=

T−1∑
t=1

(
y
(1,f)′
t

X
(f)′
t

)
[IN −Pt]

(
y
(1,f)
t , X

(f)
t

)
.

For the simple structural model of Blundel and Bond (2000), the asymptotic results

under the long panel data are as follows.

Theorem 2.2 (Akashi and Kunitomo, 2012) : Let assumptions (A1)-(A3)

hold, and suppose that (v
(1)
it , v

(2)
it ) follows a normal distribution.

[i] As T → ∞, regardless of N is fixed or tends to infinity,

θ̃CV −
[
β2
γ1

]
p−→

[
Φ+ ω22

(
1

0

)
(1, 0)

]−1 [
(0, 1)Ωβ

0

]
.

[ii] Assume T/N → c (0 ≤ c ≤ 1/2) as N and T → ∞. Then,

θ̃GM −
[
β2
γ1

]
p−→

[
Φ+ cω22

(
1

0

)
(1, 0)

]−1 [
c(0, 1)Ωβ

0

]
.

When c = 0, we additionally assume that 0 ≤ limN,T→∞(T 3/N) = d1 < ∞.

Then,
√
NT

(
θ̃GM −

[
β2
γ1

])
d−→ N (

b0, σ
2Φ−1

)
,

where

b0 =
√
d1Φ

−1

[
(0, 1)Ωβ

0

]
.

[iii] Assume N and T → ∞ and T/N → c (0 ≤ c ≤ 1/2). Then

√
NT

(
θ̃LI −

[
β2
γ1

])
d−→ N (

bc, σ
2Φ−1 + c∗Ψ

)
,
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where

bc =
−√

c

1− c
Φ−1Π

′
I
(I2 −Π)−1Ωβ,

Ψ = |Ω|Φ−1

(
1

0

)
(1, 0)Φ−1,

and c∗ = c/(1− c).

The notations and assumptions of Theorem 2.2 are also described in Section 3.2.

The assumption of the normal distribution is not essential but simplifies the rep-

resentation of the asymptotic variance under many instrumental variables.

First, the CV and GMM estimators are not consistent in the structural estima-

tion under the long panel data, which is the important difference from the regres-

sion analysis in Part I. Arellano (2003b) also pointed out an order for the bias of

the GMM estimator, where we clarify the form of the bias. If we compare the CV

and GMM estimators with the OLS and TSLS estimators in the cross-sectional

data, then the CV estimator has the simultaneous equation bias.Moreover, the

GMM estimator suffers from many instrumetal variables. In the case of Theorem

1.3, a correction of the noncentrality parameter can be considered using the con-

sistency result but cannot be corrected in the structural estimation. Therefore,

the structural analysis of long panel data by these well-known estimators is not

recommended.

Second, the LIML method can consistently estimate the structural parameters.

However, similar to Theorem 1.3, the noncentrality parameter remains because of

many instruments and the forward filters. Notably, b0 of the GMM estimator and

bc of the LIML estimator are different, where we make that of the LIML estima-

tor strict as a condition. For instance, the GMM method has the noncentrality

parameter even under c = 0, but the LIML is centered in the case of c = 0. As

for the asymptotic variance, unlike the regression analysis, the second term c∗Ψ
appears which is the same as the result of Anderson et al. (2010).

In the next section, we consider why these results are obtained from the per-

spective of many instruments problem in the dynamic panel model.

3.1.1 Many Weak Instruments Problem

Kunitomo (1980) and Anderson et al. (1982) conducted early studies of many

instruments problems, which are known as the comparative studies of LIML and

TSLS estimators. One of the applications was a large macroeconometric model.

In recent years, since the study of Angrist and Krueger (1991), discussions in the
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field of microeconometrics have been active. Moreover, Andesron et al. (2010)

and Kunitomo (2012) reaffirmed the superiority of the LIML estimator. In cross-

sectional analysis, the theory of many instruments is sometimes called the large-K

theory, but all of the results in this work are set as follows, except for Section

3.7.2,

K <∞ ,

where K is the number of instrumental variables included in the structural equa-

tion at period t. For instance, K is equal to 2 as in the simple model of (3.4) and

(3.5). Although it can be relaxed by K → ∞, even if the number K is finite, the

total number of instrumental variables of long panel data can be O(KT 2) → ∞,

as shown in the following example.

Example 2.4 : In the previous part, the reduced form is given by AR(1) model

y
(2)
it = πy

(2)
it−1 + ηi + vit, where the number becomes K = 1. However, the filtered

variable y
(2,f)
it becomes the actual endogenous variable. Arellano (2003a, CH. 7)

discussed the reduced form, which then becomes similar to the AR(t) model,

y
(2,f)
it = πtty

(2)
it−1 + π(t−1)ty

(2)
it−2 + · · ·+ π1ty

(2)
i0 + ṽit ,

where

(π1t, π2t, · · · , πtt)′ =
(
E
[
y
(2)
i,−1y

(2)′
i,−1

])−1

E
[
y
(2)
i,−1y

(2,f)
i

]
.

The number of instrumental variables in period t is Kt = t, and each coefficient

depends on t. When t and T are sufficiently large, we have

πst = O
(
πt−(s−1)

)− O

(
1

1 + t

)
−→ 0 .

If period s is separated from period t, then the correlation is reduced due to

the nature of AR model, and the instruments can be called the weak instrumental

variables. In this estimation, the number of total instruments is O(T 2) and includes

many weak instruments. Thus, the LIML method has the robustness to estimate

the structural parameter, even if many reduced form parameters πst exist.

We first consider why even if the correct orthogonal condition E [zituit] = 0 is used,

it causes inconsistency when the number of instruments is large. When ignoring

the influence of the forward filter and expressing the sampling error,

θ̃GM − θ ∝ 1

NT
E
[
y

′
Pu

]
=

tr(P)

NT
E [vituit]

=
1
2
KT 2

NT
E [vituit] . (3.7)
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If a variable is exogenous, that is, yit = zit, then (3.7) becomes 0 because the

sum of the orthogonal conditions is zero. However, in the case of an endogenous

variable, the sum of the squares of the error term does not become 0. However, in

general structural analysis, tr(P) = rank(P) = rank(Z) < ∞ due to the property

of the projection matrix. If the number of instruments variables is small, then it

can be ignored, and the consistency is held. Under many instruments, the ratio rn
of the total number of data and that of instrumental variables converge to nonzero:

rn =
1
2
KT 2

NT
−→ K

2
c �= 0 ,

and this causes inconsistency.

We consider the consistency of the LIML estimator in many instruments. When

viewed as an M-Estimator, which is obtained by minimizing an objective function,

the objective function of the GMM estimator is the numerator of (3.6),

β̃
′
Gβ̃　

p−→ 　 β
′
G0β +

K

2
cβ

′
Ωβ .

As the true value is the minimization point of β
′
G0β, the GMM estimator cannot

reach the point because it depends on c in the second term. However, with the

LIML objective function,

β̃
′
Gβ̃

β̃
′
Hβ̃
　

p−→ 　
β

′
G0β

σ2
+
K

2
c ,

where the relation σ2 = β
′
Ωβ > 0 exists. The second term is canceled by σ2.

Therefore, the minimization point can be reached only by the first term without

depending on c, whether the objective function is the quadratic form or the vari-

ance ratio is the crucial difference between LIML and GMM (TSLS) methods.6

Notably, the LIML method of Theorem 2.2 is based on data transformation and is

not derived as an exact maximum likelihood estimator, and thus, it is a variance

ratio estimator. However, Alvarez and Arellano (2003) and Akashi and Kunimoto

(2012, 2015) used the name LIML because of the characteristics of its objective

functions. Regarding the asymptotic variance of the LIML estimator, the first term

can be improved by increasing the instruments, but the second term c∗Ψ becomes

large as the instrumental variables increase. Therefore, the aforementioned discus-

sion of White (1999) is precise, if the number O(KT 2) of instrumental variables is

finite; that is, the discussion is limited to short panel data.

The above discussion is common to cross-sectional and time series analysis. In

the dynamic panel, we have the additional noncentrality parameter as shown in
6Anderson (2005) stated that the TSLS had already been derived in the work of Anderson

and Rubin (1949), and why LIML was adopted is discussed.
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the theorems. By the effect of the forward filter, even the exogenous variable zit on

the right-hand side changes into z
(f)
it , which is an endogenous variable. However,

the endogeneity is considered E [z(f)it u
(f)
it ] → 0 when T is large. Hence, its weak

endogeneity disappears asymptotically. In the case of regression analysis, only the

weak endogeneity exists, and then, the GMM estimator can maintain consistency.

If the weak endogeneity accumulates under many instruments and long panel data,

then the noncentrality parameter of the LIML estimator appears as follows:

bc ∝
√
NT

1

NT
E
[
z(f)

′
Pu(f)

]
=

√
NTO

(
1

N

)
= O

(√
c
)
.

3.2 D-LIML Estimator

In this section, we formulate a general model of the dynamic panel structural

equations for empirical analyses and describe the assumptions for the following

theorems. This section also shows the asymptotic results of estimation methods

in long panel data.

3.2.1 General Model

The first structural equation of the general model is as follows:

y
(1)
it = αi + β

′
2y

(2)
it + γ

′
1z

(1)
it + uit

= αi + θ
′
1xit + uit , (3.8)

where y
(1)
it and y

(2)
it = (y

(g)
it ) (g = 2, · · · , 1 + G2) are G = 1 + G2 endogenous

variables in period t. Hence, for the endogenous variables on the right-hand side,

E
[
y
(2)
it uit

]
�= 0 .

Let z
(1)
it be the K1 × 1 vector of the instrumental variable that appears in the first

structural equation. The unknown structural parameters are G2×1 and K1×1 for

β2 and γ1, respectively, and are collectively expressed as θ1. αi (i = 1, · · · , N)

are the individual effects, and uit stands for the structural error term assuming

E [uit] = 0 and E [u2it] = σ2.

30



The reduced form of G endogenous variables (y
(1)
it , · · · , y(G)

it ) appearing in the

first structural equation is given by

yit
G×1

= Π
′
1·

G×K1

z
(1)
it + Π

′
2·

G×K2

z
(2)
it + πi + vit

　 = Π
′
zit + πi + vit , (3.9)

where z
(2)
it is the instrumental variables that does not appear in the first structural

equation and is the K2×1 vector. Then, the number of the instrumental variables

zit = (z
(1)′
it , z

(2)′
it )

′
in period t becomes K1 + K2 = K < ∞. πi is the individual

effects of G×1, and vit stands for the reduced form error assuming E [vit] = 0 and

E [vitv′
it] = Ω > O (a positive definite matrix). For the instrumental variable,

E
[
zitv

′
it

]
= O , E [zituit] = 0 ,

hold in period t. More precisely, E [uit|zit] = 0 may be used by the conditional ex-

pectation. Notably, zit includes the endogenous variables (y
(g)
it−1, y

(g)
it−2, y

(g)
it−3, · · · )

as the lagged endogenous variables or the exogenous y
(g)
it (g �= 1) in period t, which

is separately determined by a triangular system. In the reduced form of the dy-

namic panel model, the instrumental variables are generally correlated with indi-

vidual effects,

E
[
zitπ

′
i

]
�= O .

However, in the fixed-effects method, they are not a concern. The instrumental

variables mentioned here are different from the instrumental variables used for

estimators, because the latter is transformed by some filters.

We look at the relation between the parameters of the first structural equation

and those of the reduced form parameter. Then, we divide the coefficients of the

reduced form as follows:

Π
′

G×(K1+K2)
=

(
π

′
11 π

′
21

Π
′
12 Π

′
22

)
　

} 1

} G2

,

If we set β = (1 ,−β′
2)

′
, then

　Πβ =

[
γ1

0

]
}K1

}K2

, β
′
Ωβ = σ2 , β

′
πi = αi ,

must be satisfied, because y
(1)
it in the first structural equation and that in the

reduced form are the same variables. The first K equations include the constraints

relating the overidentification. The details of the identification for the structural

31



parameters are discussed in the last section because the test of identification seems

more difficult than the estimation theory.

The data generation process of reduced form is necessary for the proof of theo-

retical analysis but, in practice, we do not have to care about it. The dynamics of

G-variate endogenous variables involved in the first structural equation may not be

autonomous systems, nor are these necessary. Then, we consider the reduced form

as a subset of the G∗-dimensional panel VAR(p) model of all possible endogenous

variables,

y∗
it

G∗×1

= Π∗
1y

∗
it−1

G∗×1

+ · · ·+Π∗
py

∗
it−p + πi + vit ,

where G ≤ G∗ by the definition, and each Π∗
p becomes the G∗×G∗ square matrix.

Moreover, we turn this panel VAR model into the following extended VAR(1)

representation:

z∗it
K∗×1

= Π∗′z∗it−1
K∗×1

+ π∗
i + v∗

it , (3.10)

where G∗ ≤ K∗ and Π∗′ are the K∗ ×K∗ square matrix. We call equation (3.10)

the companion reduced form, and the standard case is K∗ = G∗p, that is,

z∗it = (y∗′
it , y

∗′
it−1, · · · ,y∗′

i,t−(p−1))
′
,

z∗it =

⎛
⎜⎜⎜⎜⎜⎝

Π1 Π2 · · · Πp

Ip O · · · O

O Ip · · · O

· · ·
O O · · · Ip

⎞
⎟⎟⎟⎟⎟⎠ z∗it−1 + π

∗
i + v∗

it . (3.11)

In this work, as shown in example 2.5 below, equation (3.10) is made for the

minimal representation of the K-variate autonomous system. Then, the VAR(1)

representation holds even in the case of K∗ < G∗p.
Using the selection matrix J

′
1 = (IG, O) and J

′
whose elements are 1 or 0, let

the endogenous and exogenous variables of (3.9) be

yit = J
′
1z

∗
it , zit = J

′
z∗it−1 ,

where the representative subscript of zit is t but is uncorrelated with vit by defi-

nition. For convenience, the first G rows of z∗it are the endogenous variables yit.

Then, the relation J
′
1Π

∗′J = Π
′
exists because J1Π

∗′z∗it−1 = Π
′
zit, and J

′
J = IK .

Put μi = (I−Π∗′)−1π∗
i . Then, we have a state-space representation:

　 z∗it = wit + μi , (3.12)

wit
K∗×1

= Π∗′wit−1 + v∗
it .
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The following assumptions are made for the structural estimation in long panel

data.7

(A1) {v∗
it} (i = 1, · · · , N ; t = 1, · · · , T ) are i.i.d. across time and individuals

and independent of z∗i0 with E [v∗
it] = 0, E [v∗

itv
∗′
it ] = Ω∗, and E [‖v∗

it‖8] exsit. For

some J∗ ,

　J
′
∗Ω

∗J∗
K∗×K∗

=

(
Ω∗

G∗×G∗
O

O O

)
, (3.13)

where Ω∗ > O. All roots of |Π∗′ − �I| = 0 satisfy the stationarity condition

|�k| < 1 (k = 1, · · · , K∗) .

(A2) The initial observation satisfies y∗
i0 = (I−Π∗′)−1π∗

i +wi0 (i = 1, ..., N),

where wi0 =
∑∞

s=0(Π
∗′)sv∗

i,−s .

(A3) μi are i.i.d. across individuals with E [μi] = 0, E [μiμ′
i] = Ω∗

μ with the

finite moments up to fourth order and is independent of {v∗
it}.

These assumptions correspond to those of the regression analysis in the previous

part. In fixed-effects estimation, assumption (A3) is unnecessary for the results

presented in this work. Except for some proof of theorems, we do not need to define

the companion reduced form. As in (3.3), only the setting of the first structural

equation and the instrumental variables under the limited information method is

necessary for empirical analysis.

In the following example, we can confirm that the reduced form of thr dynamic

panel model corresponds to a subsystem of the panel VAR model.

Example 2.5 : The case of the model of Theorem 2.2 holds that J = I2 by

Π
′
= Π∗′ , and the reduced form is a two-dimensional panel VAR(1) model through

(3.4) and (3.5).

As for a slightly more general model,

y
(1)
it = β2y

(2)
it + γ11y

(1)
it−1 + γ12xit−1 + αi + uit ,

zit = { y(1)it−1, xit−1, y
(2)
it−1, y

(2)
it−2 } ,

where K1 = K2 = 2. We suppose that the following three-dimensional panel

7The existence of the eighth moment of (A1) is made for Theorem 2.2, 2.3, and the other
theorems need only that of the fourth moments.
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VAR(2) model is behind. Its companion’s reduced form becomes⎡
⎢⎢⎢⎢⎢⎢⎣

y
(1)
it

y
(2)
it

xit

y
(2)
it−1

xit−1

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎛
⎜⎜⎜⎜⎜⎝

π11 π12 π13 π15 0

π21 π22 π23 π25 0

0 0 π33 π35 π36
0 1 0 0 0

0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎢⎢⎣

y
(1)
it−1

y
(2)
it−1

xit−1

y
(2)
it−2

xit−2

⎤
⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎣

π
(1)
i

π
(2)
i

π
(3)
i

0

0

⎤
⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎣

v
(1)
it

v
(2)
it

εit
0

0

⎤
⎥⎥⎥⎥⎥⎦ , (3.14)

where the coefficient matrix of the reduced form Π
′
corresponds to the upper left

2× 4 matrix:

Π
′
=

(
π11 π12 π13 π15
π21 π22 π23 π25

)
.

As all information on the structural parameter is included in this coefficient ma-

trix, only Π
′
needs to be estimated. Although the reduced form simultaneously

determines the endogenous variable (y
(1)
it , y

(2)
it ) in period t, Π

′
may not be a square

matrix if several exogenous variables exist, and the dynamics are not determined

and not autonomous after period (t + 1). Thus, xit−2 is irrelevant to the reduced

form but is added for the VAR(1) representation.

If xit = y
(3)
it and εit = v

(3)
it , then G = 2 and G∗ = 3. Hence, xit−1 = y

(3)
it−1 in the

first structural equation is a lagged endogenous variable y
(3)
it that does not appear

in the structural equation. That is, the predetermined variables are not limited

to those of the G endogenous variables that appear in the structural equation. If

xit = y
(3)
it+1 and E [v(1)it v

(3)
it ] = E [v(2)it v

(3)
it ] = 0, then the data generating process of xit

means a triangular system. Hence, xit−1 = y
(3)
it in the first structural equation is

an exogenous variable in period t. The test of whether y
(3)
it is exogenous and the

model selection of the reduced form are examined in the next part.

As for the standard VAR(1) representation,⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

y
(1)
it

y
(2)
it

xit

y
(1)
it−1

y
(2)
it−1

xit−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

π11 π12 π13 0 π15 0

π21 π22 π23 0 π25 0

0 0 π33 0 π35 π36
1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

y
(1)
it−1

y
(2)
it−1

xit−1

y
(1)
it−2

y
(2)
it−2

xit−2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

π
(1)
i

π
(2)
i

π
(3)
i

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

v
(1)
it

v
(2)
it

εit
0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where the fourth row and column may be excluded because y
(1)
it−2 does not directly

affect the variables in period t. Then, the minimum expression becomes (3.14),

and we call the expression of (3.14) the companion reduced form.
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3.2.2 D-LIML and Other Estimators to the General Model

Considering a fixed-effects estimation for the general model, the first structural

equation applied the forward filter is given as follows:

y
(1,f)
it = β

′
2y

(2,f)
it + γ

′
1z

(1,f)
it−1 + u

(f)
it ,

Applying Df , the filtered data are obtained:

y
(1,f)
i

(T−1)×1

= ( y
(1,f)
it ) , Y

(2,f)
i

(T−1)×G2

= ( y
(2,f)′
it ) , Z

(1,f)
i

(T−1)×K1

= ( z
(1,f)′
it ) .

The data reorganized in each period t are expressed as follows:

y
(1,f)
t
N×1

= (y
(1,f)
it ) , Y

(2,f)
t

N×G2

= (y
(2,f)
it ) , Z

(1,f)
t

N×K1

= (z
(1,f)
it ) .

The variable on the right-hand side of the first structural equation is summarized

by the N × (G2 +K1) matrix:

X
(f)
t =

(
Y

(2,f)
t , Z

(1,f)′
t

)
.

The LIML method studied in Alonso-Borrego and Arellano (1999) is based on

the following two (G+K1)× (G+K1) matrices,

G(f) =
T−1∑
t=1

(
y
(1,f)′
t

X
(f)′
t

)
Pt

(
y
(1,f)
t , X

(f)
t

)
,

H(f) =

T−1∑
t=1

(
y
(1,f)′
t

X
(f)′
t

)
[IN −Pt]

(
y
(1,f)
t , X

(f)
t

)
,

For θ = (1, −θ′
1)

′, the estimator corresponds to the minimization point θ̃LI =

(β̃
′

LI
, γ̃

′
LI
)
′
of

VR =
θ

′
G(f)θ

θ
′
H(f)θ

.

The general case has one difference in terms of the instrumental variables, which

are included in the estimators. In the case of the general model, we have

E
[
zitu

(f)
it

]
K×1

= 0 , (t = 1, · · · , T − 1) .

The number of orthogonal conditions increases as period t becomes larger. How-

ever, for the projection matrix Pt = Zt(Z
′
tZt)

−1Zt, Zt = (zit) cannot always be

N × Kt. As in example 2.5, if the model consists of the AR(2) process, then
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(y
(2)
it−1, y

(2)
it−2, y

(2)
it−3 , · · · ) and (y

(2)
it−2, y

(2)
it−3, y

(2)
it−4 , · · · ) overlap in a set of instrumen-

tal variables in a certain period t, or redundant instruments exist. That is, the

rank of Zt is reduced, and thus, we have to set Zt as N ×G∗t by selecting the G∗

different series. In the case of example 2.5, G∗ is equal to 3 from (y
(1)
i· , y

(2)
i· , xi·),

and the number of total instrumental variables becomes O(G∗T 2).

We consider another estimation method as follows. In Part I, we introduced the

instrumental variables applied the backward filter, and Hayakawa (2006b) obtained

the same results as Theorem 1.5 based on a GMM estimator. As the reduced form

is implicitly estimated even in the structural estimation, the optimal instrumental

variables are expected to improve the LIML estimator. Akashi and Kunitomo

(2015) investigated the following fixed-effects estimation.

For the (G+K1)× (G+K1) matrices,

G(f,b) =
T−1∑
t=1

(
y
(1,f)′
t

X
(f)′
t

)
P

(b)
t

(
y
(1,f)
t , X

(f)
t

)
,

H(f,b) =

T−1∑
t=1

(
y
(1,f)′
t

X
(f)′
t

)[
IN −P

(b)
t

] (
y
(1,f)
t , X

(f)
t

)
,

let θ̂DL = (β̂
′

DL, γ̂
′
DL)

′
be the minimization point of the follwing:

VR1 =
θ

′
G(f,b)θ

θ
′
H(f,b)θ

. (3.15)

In this work, we call it D-LIML estimator. The difference from θ̃LI is that the

D-LIML estimator uses the projection matrix P
(b)
t = Z

(b)
t (Z

(b)′
t Z

(b)
t )−1Z

(b)
t , and the

number of orthogonal conditions is the same for each t,

E
[
z
(b)
it u

(f)
it

]
K×1

= 0 .

The instrumental variable is applied the backward filter Db,

z
(b)
it−1 =

[
zit−1 − 1

t
(zit−2 + · · ·+ zi0 + zi,−1)

]
,

where zi(−1) is included to simplify the notation regarding the range of subscript.

Then, the instrumental variable matrix Z
(b)
t = (z

(b)
it ) is N × K, and thus, the

number of total instrumental variables is reduced to O(KT ).

If minimizing the numerator of variance ratio VR1,

Q1 = θ
′
G(f,b)θ ,

then the GMM estimator (D-GMM) θ̂DG = (β̂
′

DG
, γ̂

′
DG
)
′
is obtained as the mini-

mization point. The explicit forms of these estimators are given in the section of

numerical experiments.
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We prepare the notations to state the results of the asymptotic theory. Regard-

ing the moment matrix of instrumental variables,

Γ0
K∗×K∗

= E [wit−1w
′
it−1

]
(3.16)

=
∞∑
h=0

(Π∗′)hΩ∗Π∗h > O ,

because Ω∗ > O (cf. Anderson (1971, Ch. 5)). Then, Ω > O and σ2 > 0 hold.

The leading term of the asymptotic variance becomes the same as that of the usual

LIML estimator,

Φ
(G2+K1)×(G2+K1)

= Π
′
I
J

′
Γ0JΠI , Π

′
I

(G2+K1)×K
=

(
Π

′
12 Π

′
22

IK1 O

)
. (3.17)

If rank(Π22) = G2, then Φ > O, which can be tested in the last section. The

noncentrality parameter may appear. From the previous discussion, the reason is

the influence of many instruments based on T/N → c. If depending on N/T → d,

then thw reason is the problem related to the initial value as shown in a later

section. Both noncentrality parameters are proportional to the following ρ∗:

ρ∗ = Φ−1Π
′
I
J

′
(I−Π∗′)−1Ω∗J1β ,

ρ0 = Φ−1

[
J

′
2Ωβ

0

]
,

where J
′
2 = (0, IG2).

In the structural estimation for the general model (3.8), the asymptotic results

of θ̃LI, θ̃DG, and θ̃DL in long panel data are as follows.

Theorem 2.3 (Akashi and Kunitomo, 2015) : Suppose assumptions (A1)

and (A2) and that vit follows a normal distribution.

[i] Provided 0 ≤ G∗ limN,T→∞(T/N) < 1 and assumption (A3), then as both N

and T → ∞,

√
NT

(
θ̃LI − θ1

)
d−→ N (

bc, σ
2Φ−1 + c∗Ψ

)
,

where

bc = −
√

G∗

2

√
c

1− c
ρ∗ ,

Ψ = Φ−1J12

[
σ2Ω−Ωββ′Ω

]
J

′
12Φ

−1,
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c∗ = c/(1− c), and J
′
12 = (J2, O) .

[ii] Suppose c1 = K/N > 0 or N is fixed. Then, as T → ∞,

θ̃DG − θ1 p−→
[
Φ+ c1

(
J

′
2ΩJ2 O

O O

)]−1 [
c1J

′
2Ωβ

O

]
,

As for c1 = 0 or N → ∞, provided 0 ≤ limN,T→∞(T/N) = c <∞, then

√
NT

(
θ̃DG − θ1

)
d−→ N (

b1·0, σ2Φ−1
)
,

where

b1·0 = K
√
cρ0 .

[iii] For 0 ≤ c1 < 1, then, as T → ∞,

√
NT

(
θ̃DL − θ1

)
d−→ N (

0, σ2Φ−1 + c1∗Ψ
)
,

where c1∗ = c1/(1− c1).

Similar to Theorem 2.2, the assumption of normality is to express the asymptotic

variance concisely. These results do not depend on the parameter of the individual

effect Ω∗
μ. The difference between the assumptions of [i] and those of [ii] and [iii] is

that the former must be the double asymptotics whereas the latter can be T → ∞
only. Hence, the definitions of c = limT/N and c1 = limK/N are also different.

First, we compare [i] with [iii], which are the results of the LIML methods. The

result of [i] is reduced to Theorem 2.2 when K = 2, but the correction of the non-

centrality parameter becomes difficult because Π∗ must be estimated. Moreover,

in a general model, the data sequence may be constrained by the following:

G∗T < N ⇒ T

N
<

1

G∗ ,

to define the projection matrix in period T , and thus, it cannot be provided for

any long panel data. To compare relative efficiency, set c1∗ = 0 or the double

asymptotics. Then, the difference in the asymptotic covariance matrices is given

by the following:

(σ2Φ−1 + c∗Ψ)− σ2Φ−1 ≥ O .

Therefore, the D-LIML estimator of [iii] is relatively efficient.

Second, we compare the D-GMM estimator of [ii] with the D-LIML estimator of

[iii]. The LIML method always does not have a noncentrality parameter. Although

the GMM estimator is consistent in the double asymptoitcs, if N is regarded as

fixed, then it becomes inconsistent. As for the approximation of the asymptotic
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distribution in a finite sample, the LIML estimator would be better because the

second term c1∗Ψ does not ignore the value of K/N when N is fixed. Therefore,

we conclude that the D-LIML estimator of [iii] has better asymptotic properties

than that of [i] and [ii]. The finite sample properties of D-LIML estimator are

expected to be better than those of the D-GMM estimator, and in fact, it will be.

There is a remark on the D-LIML estimator. The ratio of the number of instru-

ments to that of the data should satisfy r1n = K(T−1)/NT  K/N < 1. Although

K < N does not seem to be restricted in a cross-sectional analysis, it is somewhat

puzzling because it cannot be used in a time-series analysis (N = 1, T → ∞),

which is a special case of panel analysis. This is not a problem with the property

of the LIML method, but the usage of the orthogonal conditions can be further

improved. This problem is reconsidered and improved in a later section.

3.3 Transformed LIML Estimator

The transformed maximum likelihood method discussed by Hsiao (2014, Ch.

4) is another different approach from the fixed-effects estimation. Hsiao et al.

(2002), Binder et al. (2005), Hayakawa and Pesaran (2015), and Hsiao and Zhang

(2015) examined the transformed MLE with the regression analysis. In addition,

Hsiao and Zhou (2015) investigated the structural analysis. Although this method

is an exact maximum likelihood estimator, the approach is also different from

the random-effects MLE, which assumes the identical distribution for individual

effects. In previous studies, the finite sample properties show that the transformed

method is better than the estimator of Arellano and Bond (1991) for the reduced

form, and the estimator of Akashi and Kunitomo (2015) for the structural equation.

We reconsider the transformed maximum likelihood estimator in the following

sections.

Considering the reduced form of the AR(1) model again, if we take the firest-

difference in (2.1), then the individual effect ηi disappears.

Δyit = πΔyit−1 +Δvit , (t = 2, 3, · · · , T ) .

However, the right-hand side of Δyi1 in period t = 1 is the problem because Δyi0
cannot be observed. Through repeated substitution,

Δyi1 = πsΔyi1−s +
s−1∑
h=0

πhΔvi1−h

= πsΔyi1−s + εi1 ,
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where s < ∞ can be allowed. However, for the sake of simplicity, we put s → ∞
similar to assumption (a2). Then,

E [Δyi1] = 0 , Var[Δyi1] = 2ω

1 + π
= ω1 ,

and the correlations of the error term become

E [εi1Δvi2] = −ω , E [εi1Δvit] = 0 , (t ≥ 3) .

Hsiao et al. (2002) discussed some types of the data generation process for Δyi1,

and stated that even if the form of variance is different it can be expressed as

the free parameter ω1. Then, the correlation structure for the entire period is

determined, and thus, the joint distribution of

Δy∗
i

T×1

= (Δyi1, Δyi2, · · · ,ΔyiT )′

= (Δyi1, Δy
′
i)

′
,

is also obtained under the assumption of a normal distribution. The Jacobian of

the transformation form Δy∗
i to the following error vector is unity,

Δv∗
i

T×1

= (Δyi1, Δvi2, · · · ,ΔviT )′ .

The variance-covariance matrix of the error terms becomes

ΩΔ = ωW0 ,

where

W0
T×T

=

⎛
⎜⎜⎜⎜⎜⎜⎝

ω0 −1 0 · · · 0

−1

0 W
...

0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

W is given by (2.6), and ω0 = ω1/ω is redefined. Then, the log-likelihood function

for the joint distribution of unconditional Δy∗
i is as follows:

LΔ = −N
2
log |ΩΔ| − 1

2

N∑
i=1

Δv∗′
i Ω

−1
Δ Δv∗

i , (3.18)

except for the constant part, where

Δv∗
i

T×1

= (Δyi1, Δyi2 − πΔyi1, · · · ,ΔyiT − πΔyiT−1)
′
.
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Maximizing with respect to the unknown parameter (π, ω, ω0), the transformed

MLE π̂TM (T-MLE) is obtained. A feature is that it is the exact likelihood function

after the data transformation, which can be called a fixed-effects MLE, and does

not depend on the individual effect ηi. The first element Δyi1 of Δv∗
i that is

treated as an error term should be observed, and its variance is estimated by the

free parameter ω1. If we use the pseudo likelihood function of Δyi without the

initial distribution of Δyi1, then the objective function is equivalent to Lemma 2.1,

as wil be described later:

min
π

N∑
i=1

(yi − πyi,−1)
′
QT−1(yi − πyi,−1) .

　 That is, the CV estimator is obtained. The T-MLE has the asymptotic nor-

mality,

√
N (π̂TM − π)

d−→ N ( 0,
ω

φ0T

) ,

where the asymptotic variance is

φ0T = E
[(

0, Δy
′
i,−1

)
W−1

0

(
0

Δyi,−1

)]
.

Then, the following holds in the short panel data.

Theorem 2.4 (Hsiao et al., 2002) : Supposing assumptions (a1)-(a3) hold,

then as N → ∞ and T is fixed,

ω

φT
≥ ω

φ0T

.

That is, T-MLE is relatively efficient than the AB estimator in Part I. Hsiao et

al. (2002) suggested in the numerical experiment that the gain of efficiency by

estimating initial values is large in short panel data. The result should be held in

the limit of T → ∞, that is, the gain would also be more efficient in long panel

data. As ω/φT → 1 − π2, T-MLE may also reache the lower bound of efficiency.

Although we would like to confirm it in the asymptotic theory (T → ∞), the
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structure of the log-likelihood function is given by as follows:

|ΩΔ| = ω2T (1 + T (ω0 − 1)) ,

Ω−1
Δ =

1

ω
W−1

0 (3.19)

= 1
ω(1+T (ω0−1))

⎛
⎜⎜⎝

T T − 1 · · · 2 1
T − 1 (T − 1)ω0 · · · 2ω0 ω0

...
...

. . .
...

...
2 2ω0 · · · 2((T − 2)ω0 − (T − 3)) (T − 2)ω0 − (T − 3)
1 ω0 · · · (T − 2)ω0 − (T − 3) (T − 1)ω0 − (T − 2)

⎞
⎟⎟⎠ .

Thus, structure is highly nonlinear, and derivation becomes complicated as it is.

3.3.1 Long Difference

Grassetti (2011) provided another useful representation of the transformed max-

imum likelihood method:

D�y
∗
i = yi − yi0ι , (3.20)

where y∗
i = (yi0, yi1, , · · · , yiT )′ is (T + 1)× 1 including the initial value yi0, and

D�
T×(T+1)

=

⎛
⎜⎜⎜⎝

−1 1 0 · · · 0

−1 0 1 · · · 0

· · ·
−1 0 0 · · · 1

⎞
⎟⎟⎟⎠ .

The relations with the transformed method using the first-difference are given by

as follows:

D�y
∗
i = LΔy∗

i

= (LDT+1)y
∗
i ,

whereDT+1 is the T×(T+1) first-difference matrix of (2.4) and L is the cumulative

matrix, which is a lower triangular matrix, and is nonsingular:

L
T×T

=

⎛
⎜⎜⎜⎝

1 0 0 · · · 0

1 1 0 · · · 0

· · ·
1 1 1 · · · 1

⎞
⎟⎟⎟⎠ . (3.21)

Therefore, the first-difference, including Δyi1, is also represented by the difference

from the initial value yi0, and then, (3.20) is called the long difference.

Consider the reduced form of AR(1), for period t ≥ 1, an identity is formulated

as follows:

　 yit − yi0 = π(yit−1 − yi0) + (−yi0 + πyi0) + ηi + vit .
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Let y
(�)
it be the data applied the long difference,

　 y
(�)
it = πy

(�)
it−1 + (−yi0 + πyi0) + ηi + vit

= πy
(�)
it−1 − (1− π)

(
wi0 +

ηi
1− π

)
+ ηi + vit

= πy
(�)
it−1 + ξi + vit ,

where we note that y
(�)
i0 = 0. The second equation uses the state space represen-

tation of (2.2) so that the individual effect ηi disappears. However, ξi appears

instead of ηi ,

　ξi = −(1− π)wi0

= −(1− π)
∞∑
s=0

πsvi,−s ,

where ξi is invariant for t ≥ 1 so that the subscript becomes only i. That is,

the long difference eliminates the original individual effect ηi but uses an artificial

individual effect ξi as an error correction. Importantly, ξi can assume a random-

effect which follows the identical distribution.

The transformation Δy∗
i = DT+1y

∗
i is the shift by yi − yi0ι because of (3.20),

and it remains T × 1. Meanwhile, the filtered data DTyi are (T − 1) × 1. The

transformed maximum likelihood method is invariant to a regular transformation

T as follows.

Lemma 2.1 (Hsiao et al., 2002) : For DT+1y
∗
i , the log likelihood function

L0 of the transformed data TDT+1y
∗
i becomes

L0 = −N log |T|+ LΔ .

Therefore, we need to consider only the first-difference matrix DT+1 on how to

eliminate the individual effect. If T does not depend on unknown parameters of

interest, then we can select a retransformation T that is easy to calculate. In

the case of the long difference, T = L, and L does not depend on the unknown

parameters. From Lemma 2.1, we conclude that the long difference is another

expression of the transformed maximum likelihood method.

We consider the log-likelihood function L0. For the long difference, ηi can be

elimonated even with −yi1ι. However, if the initial value −yi0ι is used, then

E [ξivit] = 0 (t ≥ 1), which is the simplest. Then,

　Ωξv
T×T

= ωξιι
′
+ ωIT ,
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where ωξ = Var[ξi], which is equivalent to the correlation structure of the random-

effects MLE and is easy to handle. The log-likelihood function is given by

　L0 = −N
2
log |Ωξv| − 1

2

N∑
i=1

(y
(�)
i − πy

(�)
i,−1)

′
Ω−1
ξv (y

(�)
i − πy

(�)
i,−1) ,

where y
(�)
i = (y

(�)
i1 , · · · , y(�)iT )

′
and y

(�)
i,−1 = (0, · · · , y(�)iT−1)

′
. Moreover, when

maximized with respect to the unknown parameter (π, ω, ωξ), the transformed

MLE π̂TM(T-MLE) is obtained. This log-likelihood is simpler than (3.18), Grassetti

(2011) pointed out the advantage that it can be calculated through the random-

effects routine of existing packages.

Next, consider the case of structural estimation. For a simple structural model

presented in the previous section, Hsiao and Zhou (2015) proposed a transformed

LIML estimator using the expression by the long difference:

y
(1)
it = β2y

(2)
it + γ1y

(1)
it−1 + αi + uit , (3.22)

y
(2)
it = π21y

(1)
it−1 + π22y

(2)
it−1 + π

(2)
i + v

(2)
it ,

where y
(2)
it is represented as the reduced form by the limited information method.

With the long difference,

y
(1,�)
it = β2y

(2,�)
it + γ1y

(1,�)
it−1 + ξui + uit ,

y
(2,�)
it = π21y

(1,�)
it−1 + π22y

(2,�)
it−1 + ξ

(2)
i + vit ,

where y
(g,�)
it = y

(g)
it − y

(g)
i0 (g = 1, 2 ; t ≥ 0). (ξui, ξ

(2)
i ) turns out to be a random

individual effect generated from the initial state. The notations are regarded as

π2 = (π21, π22),

Ωu
2×2

= E
[
(uit, v

(2)
it )

′
(uit, v

(2)
it )

]
, Ωuξ

2×2

= E
[
(ξui, ξ

(2)
i )

′
(ξui, ξ

(2)
i )

]
,

and then, the correlation structure is as follows:

Ωξu
2T×2T

= Ωuξ ⊗ ιι′ +Ωu ⊗ IT .

The log-likelihood function under the limited information method is given by the

following:

　L1 = −N
2
log |Ωξu| − 1

2

N∑
i=1

v
(�)′
ui Ω

−1
ξu v

(�)
ui ,

where

　v
(�)
ui

2T×1

=

[
y
(1,�)
i −X

(�)
i θ1

y
(2,�)
i −Y

(�)
i,−1π2

]
, X

(�)
i

T×2

=
(
y
(2,�)
i , y

(1,�)
i,−1

)
, Y

(�)
i,−1
T×2

=
(
y
(1,�)
i,−1 , y

(2,�)
i,−1

)
.
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They provide the exact LIML estimator of the fixed effect method. If we set the

parameters as follows:

φ = (θ
′
1, π

′
2)

′
, ω∗ = (vec(Ωu)

′
, vec(Ωuξ)

′
)
′
,

then φ̂TL(T-LIML) is obtained by maximizing L1 with respect to φ and ω∗.

Theorem 2.5 (Hsiao and Zhou, 2015) : Supposing assumptions (A1) and

(A2) hold and that (v
(1)
it , v

(2)
it ) follows a normal distribution, then as N → ∞ or

T → ∞ or both,

√
NT

(
φ̂TL − φ

)
d−→ N

(
0, −(Hφφ −HφωH

−1
ωωH

′
φω)

−1
)
,

where

Hφφ = E
[

1

NT

∂2L
∂φ∂φ′

]
, Hφω = E

[
1

NT

∂2L
∂φ∂ω′

∗

]
, Hωω = E

[
1

NT

∂2L
∂ω∗∂ω

′
∗

]
.

As (ξui, ξ
(2)
i ) also follows a normal distribution due to the normality of the error

term, the asymptotic variance-covariance matrix of (φ̂TL, ω̂∗TL) is given by the

inverse of the information matrix, which becomes a simple structure. This result

is desirable because the noncentrality parameter is zero even if a nonnormality

assumption exists. Considering that T-LIML estimator is an exact maximum

likelihood method, the score functions corresponding to the orthogonal conditions

become a finite number which is equal to that of unknown parameters. Thus, the

many instruments problem does not occur. In the next section, we investigate the

results of Hsiao and Zhou (2015) in more detail.

3.3.2 Asymptotic Variance When T → ∞
This section clarifies the asymptotic variance for the structural parameter θ1

of interest within φ̂TL and compares it with other estimators. Before that, we

derive the asymptotic variance for the reduced form AR (1) model using the long

difference and confirm that the conjecture relating to Theorem 2.4 is correct. Hsiao

and Zhang (2015) derived the T-MLE with the first-difference, and Hsiao and

Zhou (2016) derived the T-LIML using the long difference when Ωξv is given. We

consider the following assumptions for the case when Ωξv is not given.

We generally refer to the log-likelihood functions of the transformed maximum

likelihood method as L. In deriving the maximum likelihood estimator, the fol-
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lowing is obtained by the Taylor series:

√
NT (ψ̂TL −ψ) = −

(
1

NT

∂2L
∂ψ∗∂ψ∗′

)−1
1√
NT

∂L
∂ψ

, (3.23)

where ψ denotes all parameters appearing in the transformed maximum likelihood

estimator. For instance, ψ = (φ
′
, ω

′
∗)

′
holds in the case of Theorem 2.5 and ψ∗ is

a mean value between the estimator ψ∗ and the true value ψ. The following are

made for the asymptotic results of the transformed methods.

(A3) [i] As N and T tend to infinity,

1

NT

∂2L
∂ψ∗∂ψ∗′

p−→ Hψψ = lim
N, T→∞

E
[

1

NT

∂2L
∂ψ∂ψ′

]
.

[ii] As T tends to infinity, (1/NT )L converges to a nonstchastic function which

attains a unique global maximum at ψ .

The transformed maximum likelihood estimator shows that some off-diagonal ele-

ments of Hψψ are zero. Thus we do not need to derive all elements of Hψψ under

assumption [i]. Then, we focus on the inverse matrix of the diagonal block of

Hψψ. Although the asymptotic property of the transformed maximum likelihood

method may be obtained under N < ∞, the law of large numbers then does not

hold for the terms related to the random effects ξi (i = 1, · · · , N). Thus, the

assumption [i] is not sufficient. The second assumption [ii] is made for the case of

N <∞
The results of Hsiao and Zhou (2016) also hold for π̂TM when the long difference

of (3.20) is applied.

Theorem 2.6 : Supposing assumptions (a1), (a2), and [i] of (A3) hold, then

as N and T tend to infinity,

√
NT (π̂TM − π)

d−→ N (0, 1− π2) .

This result is equivalent to Theorem 1.5 in Part I, that is, T-MLE attains the

lower bound of efficiency. Therefore, a consequence here is that the IV estimator

or T-MLE is the desirable methods for regression analyses in long panel data.

To derive the asymptotic variance for the structure estimation of (3.22), we

simplify the model as π21 = 0 because β1 = 0. Furthermore, we have to consider

the parameterization of the structural parameter θ1 = (β2, γ1)
′
regarding the
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maximization of the log-likelihood function. In the work of Hsiao and Zhou (2015),

the representation of the first structural equation is given by the following:

y
(1)
it = β2y

(2)
it + γ1y

(1)
it−1 + αi + uit .

Let us call this the first formulation. If we substitute the reduced form of y
(2)
it =

π22y
(2)
it−1 + π

(2)
i + v

(2)
it , then

y
(1)
it = β2π22y

(2)
it−1 + γ1y

(1)
it−1 + π

(1)
i + v

(1)
it . (3.24)

For instance, this formulation was used by Hahn (2002), and we refer to it as the

second formulation. A difference between the formulations whether the right-hand

side is represented by an endogenous variable. The first formulation is natural,

but the second one can easily derive the asymptotic variance. We confirm in the

following example that the asymptotic variance is invariant by these formulations.

Example 2.6 : We illustrate the asymptotic variance of the first formulation,

using the simplest simultaneous equations model under the cross-sectional data

(T = 1).

y
(1)
i = βy

(2)
i + ui ,

y
(2)
i = πzi + v

(2)
i ,

which is further simplified by Ω = I2 for the error terms of the reduced form.

Then, the variance-covariance matrix E [(ui, v(2)i )′(ui, v
(2)
i )] = Ωu of the structural

and reduced form error terms becomes the following:

Ω−1
u =

(
1 + β2 −β
−β 1

)−1

.

Regarding the Hessian of the log-likelihood function, we put ω− = vec(Ω−1
u ) and

φ = (β, π)
′
because of the invariance for parameter transformations of MLE. Then,
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the following are obtained:

Hφφ
2×2

= E
[
1

N

∂2L

∂φ∂φ′

]

=

(
−π2E [z2i ]− 1 −βπE [z2i ]
−βπE [z2i ] −(1 + β2)E [z2i ]

)
,

Hφω
2×4

= E
[
1

N

∂2L

∂φ∂ω−

]

=

(
−β 1

2
1
2

0

0 0 0 0

)
,

Hωω
4×4

= E
[
1

N

∂2L

∂ω−∂ω−

]

=
1

2

⎛
⎜⎜⎜⎝

−(1 + β2)2 β(1 + β2) β(1 + β2) −β2

β(1 + β2) −β2 −(1 + β2) β

β(1 + β2) −(1 + β2) −β2 β

−β2 β β −1

⎞
⎟⎟⎟⎠ .

In the second formulation, the (1,1) element of Hφφ is −π2E [z2i ]. Hence, −1 seems

to be different from the first formulation. Notably, Hφω = O in the second formu-

lation, whereas the first formulation is not a zero matrix because of endogeneity.

The asymptotic variance-covariance matrix of φ becomes the 2 × 2 submatrix of

the 6×6 inverse matrix. As shown in Theorem 2.5, we must evaluate the following:

−(Hφφ −HφωH
−1
ωωH

′
φω)

−1 . (3.25)

Finding only the upper left 3×3 matrix of H−1
ωω is sufficient, because Hφω contains

zeros as its elements. Using the formula for the submatrix of an inverse matrix,

(I3, 0)H
−1
ωω

(
I3
0

′

)
=

⎛
⎜⎝ −1

2
(1 + 2β2) 1

2
β 1

2
β

1
2
β 0 −1

2
1
2
β −1

2
0

⎞
⎟⎠

−1

= −2

⎛
⎜⎝ 1 β β

β β2 1 + β2

β 1 + β2 β2

⎞
⎟⎠ .

Therefore, we have that

HφωH
−1
ωωH

′
φω =

(
−1 0

0 0

)
.

That is, the variance-covariance matrix of each formulation for φ is the same as in

(3.25). Therefore, the asymptotic variance for θ1 = β, which is the (1,1) element,
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is also the same.

In panel estimation, the covariance Ωuξ of the individual effect must be consid-

ered, but Hφω = O holds asymptotically. We adopt the second formulation for

deriviation using the long difference:

y
(1,�)
it = β2π22y

(2,�)
it−1 + γ1y

(1,�)
it−1 + ξ

(1)
i + v

(1)
it ,

y
(2,�)
it = π22y

(2,�)
it−1 + ξ

(2)
i + v

(2)
it .

Then, we correct the notation slightly,

Ωξ
2×2

= E
[
(ξ

(1)
i , ξ

(2)
i )

′
(ξ

(1)
i , ξ

(2)
i )

]
, Ωξv

2T×2T

= Ωξ ⊗ ιι′ +Ω⊗ IT . (3.26)

We replace the log-likelihood function L1 of the limited information method with

　L2 = −N
2
log |Ωξv| − 1

2

N∑
i=1

v
(�)′
i Ω−1

ξv v
(�)
i , (3.27)

where

　v
(�)
i

2T×1

=

[
y
(1,�)
i −Y

(�)
i,−1( γ1, β2π22)

′

y
(2,�)
i −Y

(�)
i,−1π2

]
, π2 = (0, π22)

′
.

For the T-LIML estimators obtained by maximizing φ and (vec(Ω)
′
, vec(Ωξ)

′
)
′
,

the following holds for the estimator of the parameters of interest θ̂TL = (β̂2TL, γ̂1TL)
′
.

Theorem 2.7 : Supposing assumptions (A1), (A2), and (A3) hold, then as

T → ∞, regardless of N is fixed or tends to infinity,

√
NT

(
θ̂TL − θ1

)
d−→ N (0, σ2Φ−1) .

This result clarifies the expression of Theorem 2.5. When T → ∞, the normality

assumption of the error term would not be necessary. We compare it with the

D-LIML estimator of Theorem 2.2 [iii]. Although the result of Theorem 2.2 is for

a general model, the form of the asymptotic variance does not change in the case

of (3.22). Under the double asymptotics, the D-LIML and T-LIML estimators

do not have the noncentrality parameter and have the same asymptotic variance

σ2Φ−1. However, when N is fixed, we conclude that

　 (σ2Φ−1 + c1∗Ψ)− σ2Φ−1 ≥ O ,
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where c1 = K/N = 2/N . That is, the T-LIML estimator is more efficient than

the D-LIML estimator and is expected to have better finite sample properties with

fixed N .

3.4 Extension of the T-LIML Estimator to General Models

From the discussions in the previous section the T-LIML estimator is the best

method, but two issues should be to consider as far as the author knowns. Weakly

exogenous variables and AR(2) models are considered the first extensions to the

model. Previous studies on the transformed maximum likelihood method focused

on AR(1) or VAR(1) models, and strongly exogenous variables are assumed. Thus,

we extend the model as follows.

3.4.1 Weak Exogeneity

In this section, we consider why strong exogeneity is necessary and demonstrate

the estimation method under weak exogeneity using a simple model. Let us con-

sider an additional exogenous variable zit, which is not the lagged endogenous

variable of (y
(1)
it , y

(2)
it ):

y
(1)
it = β2y

(2)
it + γ11y

(1)
it−1 + γ12zit + αi + uit .

The reduced form is as follows:

y
(1)
it = π11y

(1)
it−1 + π12y

(2)
it−1 + π13zit + π

(1)
i + v

(1)
it ,

y
(2)
it = π21y

(1)
it−1 + π22y

(2)
it−1 + π23zit + π

(2)
i + v

(2)
it .

In vector representation,

yit
2×1

= Π
′

2×3
zit + πi + vit

= Π
′
12

2×2

yit−1 + π3zit + πi + vit ,

where π3 = (π13, π23)
′
. The linear process is assumed for the exogenous variable:

zit = ηi +
∞∑
h=0

θhεit−h ,
∞∑
h=0

|θh| <∞ , (3.28)

To eliminate the individual effect πi, the long difference is taken with respect to

yi0:

yi0 = (I2 −Π
′
12L)

−1π3zi0 + (I2 −Π
′
12L)

−1πi + (I2 −Π
′
12L)

−1vi0 ,
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where L is the lag operator such that Lyit = yit−1.

y
(�)
it = Π

′
12y

(�)
it−1 + π3zit + ξi + vit

= Π
′
12y

(�)
it−1 + π3zit + (ξi,z + ξi,v) + vit ,

where

ξi = πi − (I2 −Π
′
12)yi0

= −(I2 −Π
′
12)(I2 −Π

′
12L)

−1π3zi0 − (I2 −Π
′
12)(I2 −Π

′
12L)

−1vi0

= ξi,z + ξi,v .

The individual effect disappears at the second equality from the following fact:

(I2 −Π
′
12)(I2 −Π

′
12L)

−1πi = πi .

For simplicity, suppose that we can observe ξi,z.
8 If not observed, zit and ξi,z

correlate, thereby causing endogeneity. If observed, then the strong exogeneity is

also necessary for the following orthogonal condition,

E [zit(ξi,v + vit)] = 0 .

For instance, if vit and εis are independent for all (t, s), then

E [zitvis] = 0 , (t, s = 1, · · · T ) .
However, this assumption is strong for the dynamic panel model. We would like

to consider the variable zit as a weakly exogenous one,

E [zitvit] = 0 , E [zitvis] �= 0 , (s ≤ t− 1) .

That is, this variable is uncorrelated in period t but is allowed to correlate with

the past vis. As the reduced form is considered a panel VAR model in this work,

the exogenous variables in period t generally become weakly exogenous, which are

generated by a triangular system. If we change the model of example. 2.5 into

　　　　　　 zit = φ1zit−1 + φ2y
(2)
it−1 + ηi + εit , E [vitεit] = 0 ,

then this bariable is weakly exogenous such that the feedback loop with y
(2)
it−1 exists.

The representation in MA(∞) process is given as follows:

zit = e
′
3(I3 −Π∗′)−1π∗

i + e
′
3

∞∑
h=0

(Π∗′)hv∗
it−1−h ,

v
(3)
it−1 = φ2v

(2)
it−1 + εit ,

8In previous studies, the regression ξi,z on z̄i = (1/T )
∑

t zit is adopted.
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where v∗
it−1 = (v

′
it−1, v

(3)
it−1)

′
and e3 = (0, 0, 1)

′
. Thus, we can confirme that the

variable is weakly exogenous.

Next, we consider the estimation method. In the first place, the lagged endoge-

nous variable that applied the long difference has the following properties,

　 E [y(�)
it−1(ξi,v + vit)

′
] = E [y(�)

it−1ξ
′
i,v]

�= O .

The orthogonal condition is not satisfied because of the correlation with the initial

value. However, the transformed maximum likelihood estimator is the consistent

estimation because one-to-one correspondence exists between the observed data

and the error terms as a T -variate system:

　
{
y
(�)
i0 , y

(�)
i1 , · · · , y(�)

iT

}
�

{
ξi,v, vi1, , · · · , viT

}
.

If the exogenous variable zit is also treated such as a lagged endogenous variable,

then parameters can be estimated consistently using the long difference z
(�)
it . For

this purpose, we consider the companion reduced form that extends the two re-

duced forms of (3.28) into three equations. Notably, zit is not an endogenous

variable in period t, so that it must be included in the right-hand side in the

reduced form. To express the companion reduced form, we introduce the lead

variable zit+1:

y
(1)
it = π11y

(1)
it−1 + π12y

(2)
it−1 + π13zit + π

(1)
i + v

(1)
it ,

y
(2)
it = π21y

(1)
it−1 + π22y

(2)
it−1 + π23zit + π

(2)
i + v

(2)
it ,

zit+1 = φ1zit + φ2y
(2)
it + ηi + εit . (3.29)

We would like to summarize the left-hand side as z∗it = (y
(1)
it , y

(2)
it , zit+1)

′
, but y

(2)
it

remains on the right-hand side.9 By transposing this to the left-hand side and

solving it or substituting (3.29) into y
(2)
it , the companion reduced form is obtained:⎡

⎢⎣ y
(1)
it

y
(2)
it

zit+1

⎤
⎥⎦ =

⎛
⎜⎝ π11 π12 π13

π21 π22 π23
φ2π21 φ2π22 φ1 + φ2π23

⎞
⎟⎠
⎡
⎢⎣ y

(1)
it−1

y
(2)
it−1

zit

⎤
⎥⎦+

⎡
⎢⎣ π

(1)
i

π
(2)
i

π
(3)
i

⎤
⎥⎦+

⎡
⎢⎣ v

(1)
it

v
(2)
it

v
(3)
it

⎤
⎥⎦ .

In the vector representation defined in the previous section,

z∗it = Π∗′
3×3

z∗it−1 + π
∗
i + v∗

it ,

9In example 2.5, the lead variable becomes zit+1 = π33zit + π35y
(2)
it−1 + π36zit−1 + · · · , and

thus, the endogenous variable y
(2)
it does not appear on the right-hand side.
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where the original coefficient of reduced form Π
′
is invariant. Using Π∗′ , the

MA expression of (3.28) is obtained. Applying the long difference, we have the

following:

z
∗(�)
it = Π∗′z∗(�)it−1 + ξ

∗
i + v∗

it , (3.30)

where z
∗(�)
it−1 = zit − zi1.

From the above discussions, if we add an exogenous variable following a panel

VAR(1) model, then the exogenous variable should be treated as a lagged en-

dogenous variable. Moreover, we consider the companion reduced form, which is

applied the long difference. On the contrary, only applying the long difference is

not sufficient, and Π∗ should be estimated instead of the original Π. The same is

true when adding multiple exogenous variables. By setting a lead variables on the

left side, we extend the dimension from G to G∗, regarded as a natural extension.

The D-LIML estimator implicitly estimates only Π, but the T-LIML has to es-

timate Π∗. We consider the effect of estimating Π∗ on the estimation of structural

parameters. Although zit is the exogenous variable in period t, the lead variable

zit+1 is endogenous as follows:

E [v(3)it vit] = ω13 �= 0 , Ω∗
3×3

=

(
Ω ω13

ω
′
13 ω33

)
.

However, this variable can be considered as an endogenous variable that does not

appear in the first structural equation, that is,

zit+1 = y
(3)
it .

If the reduced form of the endogenous variable that does not appear is estimated,

then what happens to the asymptotic variance or the efficiency for the structural

parameters of interest?

Theorem 2.8 : Supposing Assumptions (A1), (A2), and (A3) and that the

exogenous variables z∗it−1 are common, then the structure of asymptotic variance-

covariance matrix is invariant, that is, σ2Φ−1.

In a simultaneous equations model, the error terms of the reduced form are gen-

erally correlated between equations. Hence, this model is the seemingly an unre-

lated regression model (SUR) by Zellner (1962). When estimated with common

instrumental variables, the efficiency for the coefficient of reduced form Π does

not change even if estimated as a system (cf. Amemiya (1985)). Meanwhile, in

the estimation of the structural parameter θ1, estimating the companion reduced
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form through the transformed maximum likelihood method has no effect if the

estimation is conducted for endogenous variables that do not appear. In addition,

σ2 = β
′
Ωβ is affected by Ω but not by v

(3)
it . If we added the structural equations

of the additional endogenous variables, then we could obtain a full information

maximum likelihood method.

3.4.2 Higher Order VAR

Hsiao et al. (2002) stated that when a variable has a higher order than the

AR(2) structure, the transformed maximum likelihood method can be applied,

but it becomes complicated. In the case of the VAR(1) model, the estimation

method is a natural extension even if the dimension of the variables increases as

shown in the previous section. However, the case of VAR(2) model cannot be

called a natural extension in the expression by the long difference. Therefore,

the generalization for the higher orders seems more difficult than that for the

additional exogenous variables.

In the following example, we consider how to apply the transformed maximum

likelihood method when the AR(2) model is included.

y
(1)
it = β2y

(2)
it + γ11y

(1)
it−1 + γ12y

(1)
it−2 + αi + uit . (3.31)

The reduced form is as follows:

y
(1)
it = π11y

(1)
it−1 + π12y

(2)
it−1 + π13y

(1)
it−2 + π

(1)
i + v

(1)
it ,

y
(2)
it = π22y

(2)
it−1 + π

(2)
i + v

(2)
it .

For simplicity, we suppose that the reduced form of y
(2)
it is AR(1), and only y

(1)
it is

VAR(2). In vector representation, using the companion reduced form, the following

is formulated:⎡
⎢⎣ y

(1)
it

y
(2)
it

y
(1)
it−1

⎤
⎥⎦ =

⎛
⎜⎝π11 π12 π13

0 π22 0

1 0 0

⎞
⎟⎠
⎡
⎢⎣ y

(1)
it−1

y
(2)
it−1

y
(1)
it−2

⎤
⎥⎦+

⎡
⎢⎣ π

(1)
i

π
(2)
i

0

⎤
⎥⎦+

⎡
⎢⎣ v

(1)
it

v
(2)
it

0

⎤
⎥⎦ ,

where the third equation is the identity y
(1)
it−1 = y

(1)
it−1. In the case of the AR(p)

model, we suppose that data are available from (yi0, · · · , yi,1−p). The initial value
eliminating the individual effect πi can be either yi,0 or yi,−1, which is adopt as

follows:⎡
⎢⎣ y

(1)
it − y

(1)
i0

y
(2)
it − y

(2)
i0

y
(1)
it−1 − y

(1)
i,−1

⎤
⎥⎦ =

⎛
⎜⎝ π11 π12 π13

0 π22 0

1 0 0

⎞
⎟⎠
⎡
⎢⎣ y

(1)
it−1 − y

(1)
i0

y
(2)
it−1 − y

(2)
i0

y
(1)
it−2 − y

(1)
i,−1

⎤
⎥⎦+

⎡
⎢⎣ ξ

(1)
i

ξ
(2)
i

ξ
(01)
i

⎤
⎥⎦+

⎡
⎢⎣ v

(1)
it

v
(2)
it

0

⎤
⎥⎦ .
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In vector representation such as (3.30),

z
∗(�)
it = Π∗′z∗(�)it−1 + ξ

∗
i + v∗

it , (3.32)

where the vector of initial values in the long difference z
∗(�)
it = z∗it − z∗i0 is given as

follows:

z∗i0 =
(
y
(1)
i0 , y

(2)
i0 , y

(1)
i,−1

)′

, (3.33)

and z
∗(�)
i0 = 0. As for ξ∗i ,

ξ∗i =
(
ξ
(1)
i , ξ

(2)
i , ξ

(01)
i

)′

= −(I−Π∗′)wi0 ,

is the same as before. Using the long difference, the third identity of (3.32) slightly

changes into (
y
(1)
it−1 − y

(1)
i,−1

)
=
(
y
(1)
it−1 − y

(1)
i0

)
+ ξ

(01)
i . (3.34)

Unlike time series analyses, the new individual effect ξ
(01)
i is unknown, so that this

identity should be included in the likelihood function. As the representation of ex-

tended VAR(1) is obtained, we consider whether the likelihood function forms the

same as before. In the transformed maximum likelihood method, the expression is

simplified using the long difference because it can be the following random-effects

model:

	J
′
TΩ

∗
ξv
	JT

3T×3T

=

⎛
⎜⎜⎜⎝

Ω∗ O · · · O

O Ω∗ · · · O
...

...
. . .

...

O · · · O Ω∗

⎞
⎟⎟⎟⎠+

⎛
⎜⎜⎜⎝

Ω∗
ξ Ω∗

ξ · · · Ω∗
ξ

Ω∗
ξ Ω∗

ξ · · · Ω∗
ξ

...
...

. . .
...

Ω∗
ξ · · · Ω∗

ξ Ω∗
ξ

⎞
⎟⎟⎟⎠ ,

where 	J
′
T is a sort matrix. Then, the expression of the inverse matrix becomes

simple, and the following result can be applied,

Ω−1
ξv = (Ωξ ⊗ ιι′ +Ω⊗ IT )

−1

= Ω−1 ⊗QT + (Ω+ TΩξ)
−1 ⊗ JT , (3.35)

where JT = (1/T )ιι′.
However, if a structure of AR(2) is included, then the variance-covariance matrix

for the error terms of the companion reduced form is given by

Ω∗
3×3

=

(
Ω∗
2×2

0

0
′

0

)
,
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where the notation in (3.13) is used. From the assumption Ω∗ = Ω > O, but Ω∗

is clearly singular. If T = 1, then 	J
′
TΩ

∗
ξv
	JT is nonsingular because it is the sum of

the positive and semi-invertible matrices. However, if T ≥ 2, then it is singular:

|Ω∗
ξv| = |	J′

TΩ
∗
ξv
	JT | = 0 .

Under the singularity z
∗(�)
it follows a degenerated normal distribution, so that the

likelihood function cannot be constructed as it is (cf. Anderson (2003)). That is,

if one of the G∗ variables has the structure of AR(2), then the simple expression of

(3.35) cannot be obtained, which is also clear because (3.34) holds for any period

t. In other words, T − 1 equations are redundant, and (3.34) is equivalent to the

following initial conditions.

y
(1)
i0 = y

(1)
i,−1 + ξ

(01)
i .

In the case of the AR(1) model, the effect of the initial values can be replaced with

a new individual effect by the long difference, but in the case of the AR(2) model,

another initial condition needs to be added.

Excluding the redundant conditions, the log-likelihood function including AR(2)

structure of (3.32) is given by the following:

　L2 = −N
2
log |Ω∗

ξv| −
1

2

N∑
i=1

v
(�)′
i Ω∗−1

ξv v
(�)
i , (3.36)

where the initial conditions are as follows:

　 v
(�)
i

(1+2T )×1

=

⎡
⎢⎣ y

(1)
i0 − y

(1)
i,−1

y
(1,�)
i −Y

(�)
i,−1( γ11, β2π22, γ12)

′

y
(2,�)
i −Y

(�)
i,−1π2

⎤
⎥⎦ , π2 = (0, π22, 0)

′
,

and

Y
(�)
i,−1

2T×3

=
(
y
(1,�)
i,−1 , y

(2,�)
i,−1 , y

(1,�)
i,−2

)
, y

(1,�)
i,−2
T×1

=
(
y
(1,�)
i,t−2

)
.

Notably, y
(1,�)
i,t−2 = y

(1)
i,t−2 − y

(1)
i,−1 . Regarding the variance-covariance matrix,

Ω∗
ξv

(1+2T )×(1+2T )

=

(
ωξ0 ω

′
ξι

ωξι Ωξv

)
,

where

ωξ0 = E
[
(ξ

(01)
i )2

]
,

ω
′
ξι

1×2T

= E
[
ξ
(01)
i (ξ

(1)
i ι

′
, ξ

(2)
i ι

′
)
]
= ω

′
0ξ ⊗ ι

′
.
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Ωξv is the same as the variance-covariance matrix in (3.26) of the VAR(1) model.

If the following holds,

ω∗ξ0 = ωξ0 − ω′
ξιΩ

−1
ξv ωξι

�= 0 ,

then the inverse matrix becomes the following from (6.18) and (6.3):

Ω∗−1
ξv =

1

ω∗ξ0

(
1 −ω′

ξιΩ
−1
ξv

−Ω−1
ξv ωξι ω∗ξ0Ω−1

ξv +Ω−1
ξv ωξιω

′
ξιΩ

−1
ξv

)
.

The inverse matrix is more complicated than Ω−1
ξv because the bordered matrix

has to include the additional initial conditions. However, as the long difference

is applied, the dependence of T on each element becomes uniform through Ω−1
ξv

as compared with the inverse matrix in (6.3). The, the determinant becomes the

following:

|Ω∗
ξv| = ω∗ξ0|Ωξv| .

.

The model of (3.31) is the case when only one initial condition is added. From

the above discussions, if the number of exogenous variables or the order of AR

model increases by one, then the dimension of Ω∗
ξv must also increase by one. In

the following, we give the T-LIML estimation method for the general structural

model in Section 3.2. To simplify the expression, the order of the VAR model is

p(≥ 2) using the standard representation in (3.11).

　L2 = −N
2
log |Ω∗

ξv| −
1

2

N∑
i=1

v
(�)′
i Ω∗−1

ξv v
(�)
i , (3.37)

where

　 v
(�)
i

(G∗(p−1)+G∗T )×1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Δy∗
i0

...

Δy∗
i,−(p−2)

y
(1,�)
i − Z

(�)
i,−1

(
(γ

′
1 + β

′
2Π

′
12), β

′
2Π

′
22

)′

y
(2,�)
i − Z

∗(�)
i,−1Π

∗e2
...

y
(G∗,�)
i − Z

∗(�)
i,−1Π

∗eG∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

the only gth element of eg (g = 2, · · · , G∗) is 1 and 0, otherewise.

Z
(�)
i,−1

T×(K1+K2)

=
(
z
(1,�)′
it , z

(2,�)′
it

)
, Z

∗(�)
i,−1

T×K∗
=
(
z
∗(�)′
it−1

)
.
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.

Regarding the exogenous variables in period t, the lead variables ofG+1, · · · , G∗

must also be included in addition to the original G variables of the first structural

equation. The initial conditions represented by the first-difference before t = 0

should be added, and the number becomes G∗(p − 1) in total. In the general

model, the log-likelihood is expressed by the first-difference and the long differ-

ence. Notably, for the long differences, each element of the initial value has to be

in the representation of the extended VAR(1), as shown in (3.33). That is,

z∗i0 =
(
y
(1)
i0 , · · · , y(G

∗)
i0 , · · · , y(1)i,−(p−1), · · · , y(G

∗)
i,−(p−1)

)′

.

The variance-covariance matrix is given as follows:

Ω∗
ξv

(G∗(p−1)+G∗T )2
=

(
Ωξ0 Ω

′
ξι

Ωξι Ω∗ξv

)
,

where ξ
(0)
i = (Δy∗′

i0, · · · , Δy∗′
i,−(p−2))

′
,

Ωξ0
G∗(p−1)×G∗(p−1)

= E
[
ξ
(0)
i ξ

(0)′
i

]
,

Ω
′
ξι

G∗(p−1)×G∗T
= Ω

′
0ξ ⊗ ι

′
,

and

Ω−1
∗ξv

G∗T×G∗T
= Ω−1

∗
G∗×G∗

⊗QT + (Ω∗ + TΩ∗ξ)−1 ⊗ JT .

The upper left submatrix of Ω∗ is the G× G matrix Ω. From (6.18), the inverse

matrix becomes

Ω∗−1
ξv =

(
Ω−1

∗ξ0 −Ω−1
∗ξ0Ω

′
ξιΩ

−1
∗ξv

−Ω−1
∗ξvΩξιΩ

−1
∗ξ0 Ω−1

∗ξv +Ω−1
∗ξvΩξιΩ

−1
∗ξ0Ω

′
ξιΩ

−1
∗ξv

)
,

where Ω∗
ξ0 = Ωξ0 −Ω

′
ξιΩ

−1
∗ξvΩξι. As for the determinant,

|Ω∗
ξv| = |Ω∗ξ0||Ωξv| .

Although the parameters of interest is θ1 = (β
′
2, γ

′
1)

′
, the maximization procedure

has to be performed using the following parameters:

{θ1, Π12, Π22, Π
∗eG+1, · · · , Π∗eG∗ , Ωξ0, Ω0ξ, Ω∗, Ω∗ξ} .

Thus, in the case of the general model, the likelihood function of the T-LIML

estimator becomes complicated and the number of parameters to be estimated

can be quite large.
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3.5 D-LIML Estimator Revisited

In the case of the general model, T-LIML estimation is not a natural extension

of the VAR(1) model, and the calculation becomes complicated. Moreover, as the

D-LIML is based on orthogonal conditions, this estimator has the advantage that

the calculation does not change even with the general model. However, as shown

in Section 3.3, if N is fixed, then the D-LIML estimator is inferior in asymptotic

efficiency to the T-LIML estimator. In the following, we discuss that the D-LIML

and T-LIML estimators are asymptotically equivalent under T → ∞ by slightly

modifying the projection matrix of the D-LIML estimator.

3.5.1 Improving the Projection Matrix

In the estimation method of Arellano and Bond (1995), the matrix of instrumen-

tal variables contains zeros as shown in (3.11). This corresponds to the orthogonal

condition being considered in each period t and may be called the sequential mo-

ment condition. Akashi and Kunitomo (2015) applied the instrumental variables

with the backward filtere, but its construction is the same as the sequential mo-

ment condition. That is,

E
[
z
(b)
it u

(f)
it

]
= 0

K×1
,

for t = 1; · · · , T − 1. If all periods are collectively represented by a matrix, then

E
[
Z(b)′

∗ u(f)
∗
]
= 0

K(T−1)×1
,

where

Z(b)′
∗

K(T−1)×N(T−1)

=

⎛
⎜⎜⎜⎜⎝

Z
(b)′
1 O · · · O

O Z
(b)′
2 · · · O

...
. . .

... O

O O · · · Z
(b)′
T−1

⎞
⎟⎟⎟⎟⎠ , Z

(b)′
t

K×N
=
(
z
(b)
1t , · · · , z(b)Nt

)
,

and

u(f)
∗

N(T−1)×1

=
(
u
(f)′
1 , · · · , u(f)′

T−1

)′

.

Unlike regression analyses, structural estimation is generally overidentified (K >

G2+K1). Thus, a projection matrix is used in the objective function. If evaluated

by the true value θ, then the numerator of the objective function of the D-LIML

estimator is as follows:

u(f)′
∗ P(b)

∗ u(f)
∗ = u(f)′

∗ Z(b)′
∗
(
Z(b)′

∗ Z(b)
∗
)−1

Z(b)′
∗ u(f)

∗

=
T−1∑
t=1

u
(f)′
t P

(b)
t u

(f)
t ,
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where P
(b)
∗ is a diagonal matrix in the case of sequential moment condition, so

the objective function is expressed as the sum of the quadratic form similar to

Alvarez and Arellano (2003). From Theorem 2.3-[iii], the asymptotic variance of

the D-LIML estimator is as follows:

σ2Φ−1 + c1∗Ψ . (3.38)

In structural estimation, the first term σ2Φ−1 can be smaller if many instrumen-

tal variables are used, but the second term c∗Ψ becomes larger on the contrary.

Regarding c1∗ = c1/(1− c1), as discussed in Section 3.1.1, c1 is the ratio such that

c1 = lim
T→∞

rank(P
(b)
∗ )

n

=
K

N
,

which depends on the total number of orthogonal conditions and the total data

n = NT . If we consider reducing only the second term, then the number of

orthogonal conditions should be decreased. Therefore, instead of the sequential

moment condition, we consider the orthogonal condition added over the entire

period:

E
[
T−1∑
t=1

z
(b)
it u

(f)
it

]
= 0

K×1
. (3.39)

When expressed collectively as a matrix,

E
[
Z(b)′u(f)

]
= E

[(
Z

(b)′
1 , · · ·Z(b)′

T−1

)
u(f)
∗
]

= 0
K×1

, (3.40)

where in the case of arranging data in each i, we have the following:

Z(b)′

K×N(T−1)
=
(
Z

(b)′
1 , · · · ,Z(b)′

N

)
, Z

(b)′
i

K×(T−1)

=
(
z
(b)
i0 , · · · , z(b)i(T−1)

)
,

and

u(f)

N(T−1)×1
=
(
u
(f)′
1 , · · · , u(f)′

N

)′

.

Then, the projection matrix is given as follows:

P(b) = Z(b)(Z(b)′Z(b))−1Z(b)′ ,

where the construction of Z(b) becomes simple such that the vectors z
(b)
it are re-

arranged into n. In addition, each instrumental variable is the same as that of
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Akashi and Kunitomo (2015). The numerator of the objective function is based

on the K orthogonal conditions in (3.40) compared with (3.15), that is,

u(f)′P(b)u(f) .

Then,10

c2 = lim
T→∞

rank(P(b))

n

= lim
T→∞

K

NT
= 0 .

Therefore, the second term Ψ may disappear.11 However, we need to confirm

that the efficiency of the first term σ2Φ is not reduced by the summed orthogonal

condition in (3.39).

We redefine the D-LIML estimator using the projection matrix above. The data

are rearranged into n = N(T − 1) pieces,

y(1,f)

N(T−1)×1

=
(
y
(1,f)′
1 , · · · ,y(1,f)′

N

)′

, X(f)′

(G2+K1)×N(T−1)
=
(
X

(f)′
1 , · · · ,X(f)′

N

)
,

where

y
(1,f)′
i

1×(T−1)

=
(
y
(1,f)
i1 , · · · , y(1,f)i(T−1)

)
, X

(1,f)′
i

(G2+K1)×(T−1)

=
(
x
(f)
i1 , · · · ,x(f)

i(T−1)

)
,

and

x
(f)′
it =

(
y
(2,f)′
it , z

(1,f)′
it

)
.

For the two (G+K1)× (G+K1) matrices,

G(f,b)
n =

(
y(1,f)′

X(f)′

)
P(b)

(
y(1,f),X(f)

)
and

H(f,b)
n =

(
y(1,f)′

X(f)′

)
[In −P(b)]

(
y(1,f),X(f)

)
.

Let θ̂DL = (β̂
′

DL, γ̂
′
DL)

′
be the minimization point of

VR2 =
θ

′
G

(f,b)
n θ

θ
′
H

(f,b)
n θ

. (3.41)

10Rigorously speaking, the expectation of the numerator becomes E [u(f)′P(b)u(f)/n] �= σ2K/n.
This detail is described in Section 3.7.2.

11Hsiao (2014) and Hsiao and Zhou (2015) also discussed why the efficiency decreases in
sequential moment conditions.
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Then, unlike the D-LIML estimator θ̃DL in Theorem 2.3-[iii], the following holds

for the new D-LIML estimator θ̂DL.

Theorem 2.9 : Supposing assumptions (A1) and (A2) hold, then, as T → ∞,

regardless of N is fixed or tends to infinity,

√
NT

(
θ̂DL − θ1

)
d−→ N (0, σ2Φ−1) .

As the asymptotic variance-covariance matrix is the same as the first term of (3.38),

this result improves Theorem 2.3 of Akashi and Kunitomo (2015). Moreover, the

revised D-LIML and T-LIML estimators are asymptotically equivalent in long

panel data without depending on N because the result is the same as that of

Theorem 2.7.

The following also holds for the GMM estimator based on (3.39).

Corollary 2.1 : The D-GMM estimator θ̂DG obtained by minimizing the fol-

lowing objective function

Q2 = θ
′
G(f,b)
n θ

is asymptotically equivalent to θ̂DL.

We summarize the results regarding the asymptotic efficiency of the LIML esti-

mators. In the works of Alvarez and Arellano (2003) and Akashi and Kunitomo

(2012), the ratio rn/n of the number of instruments to the total data n = NT is

presented as follows:

K

2

T (T − 1)

NT
−→ c =

K

2
lim

N,T→∞
T

N
,

where K is the number of instrumental variables for the structural model in pe-

riod t. In the work of Akashi and Kunitomo (2015), the asymptotically optimal

instrumental variables are used, and the number is reduced such that

K(T − 1)

NT
−→ c1 =

K

N
.

If N → ∞, then c1 becomes zero. Furthermore, when the sequential moment

condition is improved such as in Theorem 2.9, we obtain the following:

K

NT
−→ c2 = 0 .
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As the first term σ2Φ−1 of the asymptotic variance is common to the three estima-

tion methods, the third estimation method gives the best result. Meanwhile, if the

normal equations of the T-LIML estimator are regarded as the orthogonal condi-

tions, then the number of the conditions is equal to that of estimated parameters.

The number is finite, and this method does not cause incidental parameter prob-

lems. In Theorem 2.9, the number of orthogonal conditions is also K, so that the

D-LMIL and T-LIML estimators have the same asymptotic property. In addition,

when the ratio rn/n is zero, the many instruments problem does not occur. Hence,

the LIML and GMM estimators can also be asymptotically equivalent. That is, if

K <∞, then the number of orthogonal conditions can be finite even in long panel

data. The comparison between the LIML and GMM estimators under K → ∞ is

examined in a later section.

3.5.2 Relation between T-LIML and D-LIML Estimators

As the objective functions have a similar form, we confirm that the asymptotic

properties of the T-LIML and D-LIML are equivalent. That is, the variance ra-

tio of D-LIML is an asymptotic approximation of the concentrated log-likelihood

function of the transformed method.

For simplicity, we consider a VAR(1) model with G = G∗. The log-likelihood

function L2 of (3.37) represented by the long difference becomes

　L2 = −N
2
log |Ωξv| − 1

2

N∑
i=1

v
(�)′
i Ω−1

ξv v
(�)
i .

By applying the inverse transformation such as Lemma 2.1, the function is returned

to the expression by the first-difference:

L2Δ = −N
2
log |Ω2Δ| − 1

2

N∑
i=1

Δv∗′
i Ω

−1
2ΔΔv∗

i .

where

Ω2Δ
GT×GT

=

⎛
⎜⎜⎜⎜⎜⎜⎝

Ω1 −Ω O · · · O

−Ω

O ΩΔ

...

O

⎞
⎟⎟⎟⎟⎟⎟⎠

,

Ω1
G×G

= E [Δyi1Δy
′
i1] ,

Δv∗
i

GT×1

= (Δy
′
i1, Δv

′
it)

′
.

63



This function is a multivariate version of the transformed maximum likelihood

method in Section 3.3. This log-likelihood is devided into the pseudo likelihood

L2·0 and the term R0, in which the initial value Δyi1 is included:

L2Δ = L2·0 +R0 ,

where

L2·0 = −N
2
log |ΩΔ| − 1

2

N∑
i=1

Δv
′
iΩ

−1
Δ Δvi , (3.42)

ΩΔ
G(T−1)×G(T−1)

=

⎛
⎜⎜⎜⎝

2Ω −Ω · · · O

−Ω 2Ω · · · O
...

...
. . .

...

O · · · −Ω 2Ω

⎞
⎟⎟⎟⎠ .

L2·0 resembles a conditional likelihood function given the initial value Δyi1. The

first-difference of the initial value is an endogenous variable that correlates with the

first-difference of the error term, so it is not the conditional likelihood function.12

Thus, we call L2·0 the pseudo log-likelihood function of the transformed method.

As for the D-LIML estimator, we replace the projection matrix P(b) of L2 with

P(f) = Z(f)(Z(f)′Z(f))−1Z(f)′ .

We define the objective function expressed only by the forward filter as follows:

VR2·0 =
θ

′
G

(f,f)
n θ

θ
′
H

(f,f)
n θ

,

where the instrumental variable matrix that applied the forward filter is

Z(f)′

K×N(T−1)
=

(
z
(f)
11 , · · · , z(f)1T−1, · · · , z(f)N1, · · · , z(f)NT−1

)
.

Then, the following holds.

Lemma 2.2 : Suppose assumptions (A1), (A2), and (A3) hold.

[i] Maximizing the concentrated pseudo log-likelihood function of θ1 is identical

to minimizing the variance ratio:

argmax
θ1

L2·0 = argmin
θ1

VR2·0 .

12Although it is a random-effects model, the correct conditional likelihood method given the
initial value is examined by Alvarez and Arellano (2003).
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[ii] As T → ∞ and N is fixed

plim argmax L2 = plim argmin VR2·0

= plim argmin VR2 ,

and these estimators have the same asymptotic distribution.

The estimator obtained by the pseudo log-likelihood L2·0 is the pseudo T-LIML

estimator θ̆PL. Lemma 2.2-[i] states that this estimator is derived from the min-

imization of the concentrated pseudo log-likelihood function VR2·0. When N is

fixed, the result of [ii] implies the following:

1

n
max
θ1

L2
p−→ const.− log(1 +

1

n
min
θ1

VR2) .

That is, the concentrated log-likelihood function of T-LIML is asymptotically equal

to VR2, which is the objective function of the D-LIML estimator, and thus, they

have the same asymptotic distribution. Another implication of [ii] is as follows.

When N is fixed, the variance Ωξ of the random-effects or Ω1 of the initial value

cannot be consistently estimated (cf. Hsiao (2014)). However, the structural

estimator for θ1 is unaffected and is consistent such as Theorem 2.7.

Next, we confirm the properties of the pseudo T-LIML estimator θ̆PL, which

is the case when the initial value Δyi1 is not used in the transformed maximum

likelihood method and is expressed as follows:

J
′
0DT+1y

∗
i = DTyi ,

where J0 = (0, IT−1).
13 Hsiao and Zhou (2015) showed that the T-LIML estimator

without initial values has the noncentrality parameter whose order is O(d
1
2 ). We

clarify the noncentrality parameter in the following. From Lemma 2.2, the pseudo

T-LIML estimator is the D-LIML estimator based on the incorrect orthogonal

condition:

E
[
z
(f)
it−1u

(f)
it

]
�= 0 .

To state the results first, as discussed in Section 3.1.1, this endogeneity is weakened

as T → ∞, so that the pseudo T-LIML estimator is consistent but has the non-

centrality parameter −√
dρ∗ of (3.43). Similar to Hahn and Kuersteiner (2002),

the noncentrality parameter can be consistently estimated by other statistics, and

the corrected estimator becomes

˘̆
θPL = θ̆PL +

1

T
ρ̆∗ ,

13Hsiao and Zhou (2015) considered J
′
0LDT+1y

∗
i without the initial value y

(�)
i1 expressed by

the long difference, which is slightly different from our formulation.
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where the detail of correction term ρ̆∗ is given in the proof of Theorem 2.10. The

following holds for the general model of (3.8).

Theorem 2.10 : Supposing assumptions (A1) and (A2) hold, then as T → ∞,

regardless of N is fixed or tends to infinity,

[i]Under N/T → 0 ≤ d <∞,

√
NT

(
θ̆PL − θ1

)
d−→ N (bd, σ

2Φ−1) ,

where

bd = −
√
dρ∗ . (3.43)

[ii]Under N/T → 0 ≤ d <∞,

√
NT

(
˘̆
θPL − θ1

)
d−→ N (0, σ2Φ−1) .

The corrected estimation of [ii] must estimate Π∗ compared with the D-LIML

estimation and has the constraint on d < ∞. Hence, the corrected estimation is

not recommended.

From the results so far, the following implications are obtained. First, asymp-

totic efficiency does not change without using the initial value, but the noncen-

trality parameter occurs depending on d = limN/T . For instance, a time series

analysis (N = 1) does not have the noncentrality parameter because d = 0. Thus,

the dynamic panel analysis is more sensitive to the initial values. The reasen is

that the bias of O(1/T ) accumulates as N increases. Second, the noncentrality

parameters depending on d are due to the initial value, and those depending on

c are caused by many instruments. For instance, the CV estimator in Theorem

1.3 has the noncentrality parameters depending on d because its objective func-

tion is the same as the pseudo-log-likelihood function in (3.42). The noncentrality

parameter based on the instrumental variables also depends on K, and the bias

of O(1/N) may accumulate as T increases in the case of the sequential orthogonal

conditions.

3.6 Lower Bounds of Asymptotic Efficiency

In the dynamic panel structure model, we have examined several estimators for

the structural parameter θ1. The lower bound for efficinecy under the long panel

data shoul be considered a criterion for deciding which estimation method to use.
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First, we extend the result of Theorem 1.6 of Hahn and Kuersteiner (2002) to

the dynamic structural model. Hahn (2002), a related study, which investigated

the effeciency lower bound using the Hajek-type convolution theorem when many

instruments in a structural model of cross-sectional data has many instruments.

In a panel model, if the individual effect αi is regarded as the fixed-effects, then

these become the incidental parameters under N → ∞. Thus, the Cramer-Rao

lower bound for θ1 may not be evident because the incidental parameters αi (i =

1, · · · , N) exist. Similar to Hahn and Kuersteiner (2002), we make the following

assumptions,

(A4) (1/N)
∑N

i=1μ
′
iμi = O(1) and vit ∼ N (0,Ω) .

For estimation methods to the structural parameter of the general model (3.8),

the following holds.

Theorem 2.11 : Supposing assumptions (A1), (A2), and (A4) hold, then as

N and T tend to infinity, the asymptotic distribution of any regular estimator of

θ1 cannot be more concentrated than N (0, σ2Φ−1).

The lower bound is σ2Φ−1 which appears in the theorems and does not depend on

incidental parameters such as the result of regression analysis. That is, the bound

is the same as when N < ∞. Although the theorem does not state whether it is

attainable, our results suggest the following.

Corollary 2.2 : Under assumptions (A1), (A2), and (A4), the T-LIML, D-

LIML, and D-GMM estimators are asymptotically efficient.

The T-LIML, D-LIML and D-GMM estimators here correspond to Theorem 2.7,

Theorem 2.9, and Corollary 2.1, respectively. The asymptotic normality of these

estimators does not depend on normality of the error term vit, but whether the

form of the lower bound is σ2Φ−1 depends on the normality assumption (A4).

Other estimators attain the lower bound, but the additional constraint on T/N

or N/T is then necessary. Therefore, the conclusion so far is that the estimation

methods of Corollary 2.2 have the desirable properties in the structural estimation

in long panel data.

The above results need the assumption that the error term follows a normal

distribution. Second, let us consider another approach to show the lower bound

without the normality assumption. Anderson et al.(2010) investigated an esti-

mator φ(G,H) based on the sufficient statistics for the structural parameter θ1,
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where G and H correspond to the sufficient statistics in the cross-sectional or time

series data under the normality assumption. In the panel analysis, the asymptotic

sufficient statistics of the transformed maximum likelihood estimator can be in-

terpreted as G
(f,f)
n and H

(f,f)
n by Lemma 2.2. The transformed method does not

depend on the individual effects, but the pseudo T-LIML estimator may have the

noncentrality parameter when N is fixed. Although the noncentrality parameter

is irrelevant to the lower bound, we replace G
(f,f)
n with G

(b,f)
n to obtain simple

results, where G
(b,f)
n satisfies the orthogonal condition in (3.40). We consider the

class of the estimators as follows:

θ̂1 = φ(
1

n
G(b,f)
n ) .

For simplicity, set γ1 = 0 or θ1 = β2, that is, the exogenous variable does not

appear in the first structural equation:

y
(1)
it = β

′
2y

(2)
it + αi + uit .

Moreover the reduced form is supposed as the VAR(1) model.

(A4
′
) [i] φ(.) is the consistent estimator of θ for any N and T → ∞. [ii] φ(.)

is a continuously differentiable function that does not depend on n, and the first

order derivative is bounded in the neighborhood of any true value θ. [iii] For any

T , φ(G
(b,f)
T0 ) = β2, where

G
(b,f)
T0 = G

(b,f)′
10

(
G

(b,f)
20

)−1

G
(b,f)
10 ,

G
(b,f)
10 =

1

T − 1

T−1∑
t=1

E
[
z
(b)
it y

(f)′
it

]
,

G
(b,f)
20 =

1

T − 1

T−1∑
t=1

E
[
z
(b)
it z

(b)′
it

]
.

Assumptions [i] and [ii] are equivalent to those of Anderson et al.(2010). Assump-

tion [iii] is related to the possibility of the asymptotics under N → ∞ or T → ∞,

and the meaning of this assumption is explained by the following example.

Example 2.7 : Suppose N → ∞ and T = 2, and consider the TSLS estimator

with the following objective function:

min
b

b
′E [y(f)

it z
(b)′
it ]

(
E [z(b)it z(b)

′
it ]

)−1

E [z(b)it y(f)′
it ]b .

This solution is immediately obtained by the true value b = β, because the or-

thogonal condition of E [z(b)it u(f)it ] = 0 is then satisfied. Although the expectations
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are unknown, they are approximated by a law of large numbers. Similarly, they are

also consistently estimated under N → ∞ and T < ∞. Therefore, the meaning

of assumption [iii] is to consider a class of consistent estimators even in the short

panel data.

Under the assumptions, the result for the simple case of Anderson et al. (2010)

holds.

Theorem 2.12 : Supposing assumptions (A1), (A2), and (A4
′
) hold, then as

T → ∞, regardless of N is fixed or tends to infinity,

√
NT

(
φ(

1

n
G(b,f)
n )− θ1

)
d−→ N (0, σ2Φ−1) ,

for any function φ.

This asymptotic variance is the lower bound in the sense that any φ cannot be

smaller than σ2Φ−1, which is the same as that of Theorem 2.11. As K < ∞ is

assumed here, the usual bound appears, but importantly, this approach can obtain

the lower bound even under K → ∞. Then, Anderson et al. (2010) showed that

the lower bound becomes larger such as (3.38), and the LIML estimator can attain

the bound. Although the D-GMM estimator, which is based only on G
(b,f)
n , can

be consistent and attain the bound under K < ∞, the next section considers the

setting K → ∞ in the dynamic panel model.

3.7 Incidental Parameters Problem Revisited

Under standard assumptions, the T-LIML, D-LIML, and D-GMM estimators

have the desirable properties. This section relaxes the standard assumptions and

investigates the two incidental parameter problems. First, Anderson and Hsiao

(1981) raised the problem of the initial value in Section 2.2, which is related to

the robustness of the T-LIML estimator for the initial value. Second, we com-

pare the D-LIML and D-GMM estimators under the large-K theory and show the

superiority of the D-LIML estimator.

3.7.1 Robustness of T-LIML for the Initial Condition

The finite sample properties of the T-LIML estimator are better than those of

other methods using the filters as shown in the next section. One of the reasons

is that the number of total data decreases from NT to N(T − 1) when filtered.
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However, in order for the transformed maximum likelihood estimator to use all

data, assuming the random-effects on the initial values is important. Hence, we

consider the asymptotic properties of the T-LIML estimator when the initial values

are incidental parameters.

Regarding the setting of the initial value, we consider the case when the maxi-

mum likelihood method falls into the incidental parameters problem as discussed

by Anderson and Hsiao (1981). That is, the initial state wi0, which is not ob-

servable unlike yi0, is heterogeneous even if individual effects are removed. The

structural model is the one considered in Section 3.3.1, expressed by the long

difference,

y
(1,�)
it = β2π22y

(2,�)
it−1 + γ1y

(1,�)
it−1 + ξ

(1)
i + v

(1)
it ,

y
(2,�)
it = π22y

(2,�)
it−1 + ξ

(2)
i + v

(2)
it .

The estimation method is based on (3.27). That is, even if the initial values are

incidental parameters, we regarded it as a random-effects model. Therefore, we ex-

amine the property of the maximum likelihood method under the misspecification

as in the work of White (1982).

y
(2,�)
it = π20 + π22y

(2,�)
it−1 + ξ

(2)
i + v

(2)
it ,

unlike Hsiao and Zhou (2015), the estimator is made without including the con-

stant term π20 for absorbing the initial value. Instead of assumption (A2) for the

initial value, we consider the initial state wi0 (i = 1, · · · , N) as incidental pa-

rameters; that is, ξi is also set as an incidental parameter.

(A2
′
) [i] Let Ωξ ≥ O be the parameter space. Suppose that ‖ξi‖ (i = 1, · · · , N)

are bounded and that

Ω̄N
2×2

=
1

N

N∑
i=1

ξiξ
′
i −→

N→∞
Ω̄ξ ,

where the (1,1) and (2,2) elements of Ω̄ξ are not zero.

[ii] Hψψ of (A3) exists when evaluated at Ω̄ξ .

Although ωξ,11 ≥ 0 and ωξ,22 ≥ 0 by definition, we assume ω̄ξ,11 �= 0 and ω̄ξ,22 �= 0

to avoid a corner solution.14 |Ω̄ξ| > 0 generally holds, but if the model has a

constant term ξi = ξ for all i, then |Ω̄ξ| = 0. The case of starting from the

common initial state is included:

wi0 = w0 =⇒ Ω̄ξ = (I2 −Π
′
)w0w

′
0 (I2 −Π) .

14If short panel data (T < ∞), Ω̄N would be an interior point.
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When the initial states wi0 (i = 1, · · · , N) are the incidental parameters, the

following holds.

Theorem 2.13 : Supposing assumptions (A1) and (A2’) hold, then as both N

and T tend to infinity,

θ̂1TL

p−→ θ1 , Ω̂ξTL

p−→ Ω̄ξ .

If |Ω̄ξ| > 0 , then

√
NT

(
θ̂TL − θ1

)
d−→ N (0, σ2Φ−1) .

Even if the initial values are incidental parameters, the result is the same as that

of Theorem 2.7. Therefore, the T-LIML estimator can be said to be robust to

the incidental parameters of the initial value. However, when Ω̄ξ is a semidefinite

matrix, a more detailed examination would be required.

This result may have issues. First, the maximum likelihood method can be a

consistent estimator without a noncentrality parameter. In the work of Anderson

and Hsiao (1981), estimating many initial states causes the incidental parameters

problem, which is the motivation to develop the instrumental variable method.

However, the maximum likelihood method works well under the misspecification,

thereby providing a solution to the problem. Second, the asymptotic variance

of Theorem 2.7 does not depend on Ω̄ξ. That is, whether the initial value is

random or an incidental parameter does not affect the asymptotic efficiency in long

panel data. Third, including a constant term is not necessary. The transformed

maximum likelihood method can include a constant term to absorb the effect of

the initial value. When the constant term π20 is added, then we have the following:

π̂20TL

p−→ lim
N→∞

1

N

N∑
i=1

ξ
(2)
i .

That is, the constant term estimates the average value of the individual effect that

depends on the initial state. Meanwhile, the T-LIML estimator can absorb the

influence by the average of the second moment Ω̄ξ without the constant term.

The transformed maximum likelihood method is an approach that combines

the fixed-effects and random-effects estimations and has the form of the random-

effects MLE under the assumption that the initial value is random. Notably, our

result can be interpreted as the robustness of the random effects-MLE itself to
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the incidental parameters. Hence, we reconsider why we need to care about the

random-effects or the fixed-effects. Binder et al. (2005) discussed the settings of

several random-effects. A nonrandom-effects is not to follow the same distribution

independently, and the following examples clarify the several cases.

Example 2.8 : When the original individual effect ηi does not follow the identical

distribution, the following two cases can be considered.

[i] The expectation varies between individuals with zero variance,

E [ηi] = ηi .

That is, N constant terms or incidental parameters exist.

[ii] The individual effect have a distribution but the variance is not homogeneous,

Var[η2i ] = ωi > 0 ,

then, the effects depend on the parameters of N distributions. However, a counter

example is such that

　　ηi ∼ N (μi, ωi) , μi ∼ N (μ, ωμ) , ωi ∼ χ2
1 ,

and μi and ωi are independent. If (μi, ωi) is conditioned, then the distribution is

not identical, but the unconditional expectation and variance are given as follows:

　　 E [ηi] = μ , Var[ηi] = ωμ + 1 .

That is, a random-effects model follows the identical distribution with only two

parameters (μ, ωμ). When parameter μi or ωi is constant, it is not a random-effects

model.

The followings are related to the assumption of independence.

[iii] The individual effect correlates with other variables. When correlated with

zit on the right-hand side,

　 E [ηizit] �= 0 ,

or with the error term,

　 E [ηivit] = ρit , (t = 1, · · · , T ) ,

then the model can include NT parameters.

[iv] The effects are not independent between individuals,

　 E [ηiηj ] = ωij , (i, j = 1, · · · , N) ,

then, the order of parameters can be O(N2).
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[v] Although the distribution is identical, the moments E [ηi] or E [η2i ] does not

exist.

Even in the above cases, no problem with the T-LIML and D-LIML estimators

exists because they eliminate individual effects ηi. The case of [i] is related to the

setting of Anderson and Hsiao (1981) or the incidental parameters problem of the

initial states ξi, if ηi is regreded as ξi. In relation to [ii], Hayakawa and Pesaran

(2015) suggested that the transformed maximum likelihood method is robust when

the error term of the reduced form is not identical, Var[v(2)it ] = ω2i. Even when

[i] and [ii] are combined, the T-LIML method without adding a constant term

consistently estimates the second moment (1/N)
∑

i(η
2
i + ωi) and is not affected

by the incidental parameters. We may call Ω̄ξ the averaged parameter for the

incidental parameters. If the random-effects MLE consistently estimates a finite

number of averaged parameters, then it can be a consistent estimator without

the homogeneous assumption of the individual effect. The fixed-effects estimation

eliminates the individual effect by subtraction, but the random-effects estimation

can be interpreted as adding up the individual effects to eliminate the individual

effect.

Thus, in linear panel data models, the problem with the random-effects esti-

mation may not be significant for the heterogeneity of individual effects, but the

correlations between individual effects and other variables may be crucial such as

the case of [iii]. In empirical analyses, Hausmann test often suggests a correlation

between the individual effect ηi and the explanatory variable zit. In the dynamic

model, of course, a correlation exists because zit = yit−1, but the random-effects

MLE is consistent. The reason is that the AR structure completely describes the

data generation process in the likelihood function. Therefore, the correlation is

also not the problem, but whether the correlation between all variables zit and the

individual effect ηi can be specified and added to the likelihood function is im-

portant. For instance, Hsiao and Zhou (2015) suggested that the random-effects

MLE is biased when the individual effect correlates with the exogenous variable zit,

which does not follow an AR model. The formulation of the random-effects model

requires additional attention to the endogeneity biases based on the individual

effects.

3.7.2 Robustness of D-LIML for Large-K Asymptotics

This section closely compares the D-LIML estimator of Theorem 2.9 with the

D-GMM estimator of Corollary 2.1. From the numerical experiments in the next
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section, their finite sample properties can be quite different. For instance, when

N = 100 and T = 25, if the number of instrumental variables is Kn = 2, then

the finite sample properties are similar. However, if Kn = 10, then the empirical

distribution of the D-GMM estimator seems to have a noncentrality parameter.

The results of Theorem 2.9 cannot explain this phenomenon because the LIML

and GMM estimators have the same asymptotic distribution under the standard

assumptions.

As shown in example 2.3, many instrumental variables are available in some

cases. The advantages of panel analysis is that the total data n = NT is large,

so that the number of explanatory variables Kn can be increased. However, Kn/n

is usually considered as almost zero, that is, Kn/n = 10/2500  0 in the above

example. Therefore, for long panel data,

　
Kn

NT
−→ c2 = 0 ,

may be natural even in Kn → ∞. However, the following is possible,

　
(Kn)

2

NT
−→ d2 �= 0 . (3.44)

Then, the asymptotic properties differ between the LIML and GMM estimators.

In the previous example, K2
n/n = 100/2500 may be better not regarded as zero.

In the following, we explain the difference in finite sample properties by using the

large-K theory. In the long panel data, a sufficient condition for d2 �= 0 is as

follows:

　
Kn

T
−→ c3 > 0 ,

T

N
−→ c > 0 .

Then, d2 = c23c > 0 is obtained, and the assumption of c3 ≥ 0 is relatively weak

than the standard assumption c3 = 0. That is, if the ratio Kn/T in the long

panel is not regarded as 0, then the situation of c2 = 0 and d2 > 0 most likely

occurs. This asymptotics is more accurate, so the differences in the finite sample

properties can be explained.

Considering the simple structural model in Section 3.1,

y
(1)
it = β2y

(2)
it + γ1y

(1)
it−1 + αi + uit , (3.45)

y
(2)
it = π22y

(2)
it−1 +

K2n+2∑
k=3

π2k,ny
(k)
it−1 + π

(2)
i + v

(2)
it ,

π2k,n =
π2k√
K2n

,

where the many weak instrumental variables are added. Then, the reduced form

of the first structural equation becomes

y
(1)
it = π11y

(1)
it−1 + π12y

(2)
it−1 +

K2n+2∑
k=3

π1k,ny
(k)
it−1 + π

(1)
i + v

(1)
it ,
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y
(1)
it−1 (K1 = 1) appears in the first structural equation, and the number of in-

strumental variables that do not appear becomes K2 = 1 + K2n. y
(k)
it−1 (k =

3, · · · , Kn = K2n + 2) are K2n instrumental variables that can increase, and we

assume AR(1) models as follows:

y
(k)
it = π3ky

(k)
it−1 + π

(k)
i + v

(k)
it , (k = 3, · · · , Kn) (3.46)

and

Kn = 2 +K2n −→ ∞ .

Thus, incidental prameters as the coefficients π1k,n and π2k,n (k = 3, · · · , Kn)

exist.

We consider the setting under the large-K asymptotics in the dynamic structural

panel model, which is different from the previous sections or the previous studies

in cross-sectional analysis. First, the reduced form becomes the high dimensional

VAR(1) model (cf. Davis et al. (2016)). Then, the number of potential endogenous

variables is also large, so the stationarity condition should be confirmed. To be a

covariance stationary process under K2n → ∞, the following is required,

Var
[
y
(2)
it

]
= O(1) .

If y
(k)
it−1 (k = 3, · · · , Kn) are mutually independent and

π2k,n = O
(
K

− 1
2

2n

)
, (3.47)

then the variance becomes bounded, which can be interpreted that the contribution

of each coefficient is small when the number of explanatory variables is large.15

Second, the dimension of the projection matrix is large, and we have to evaluate

the effects of the filters in the panel data analysis. For instance, we need to evaluate

the following quantity,

1

n
v(2)′P(b)ūT∼ =

(
1

n
v(2)′Z(b)

)
1×Kn

(
1

n
Z(b)′Z(b)

)−1

Kn×Kn

(
1

n
Z(b)′ ūT∼

)
Kn×1

.

As Kn → ∞, evaluating each of the three terms by a law of large numbers such

as the estimator in Theorem 2.9, is not possible, which is a difficulty of the large-

K asymptotics. Moreover, if the error terms have heterogeneous variances such

as Chao et al. (2012) and Kunitomo and Akashi (2010), or a serial correlation

15The case of the cross-sectional analysis is usually expressed on the order of π2k,n = O(N− 1
2 ).

As Kn = O(N), it has the same meaning.
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such as Alvarez and Arellano (2003) and Akashi and Kunitomo (2015), then the

calculation becomes complicated. By the influence due to the filter,

ūT∼
n×1

=

(
ūit,T
ft

)
, ūit,T =

1

T − t+ 1
(uit + · · ·+ uiT ) ,

are heterogeneous and have a series correlation. To reduce the calculation, we

consider the technical conditions for (3.44),

　N = O(T
1
2 ) , K2n = O(T

3
4 ) ,

and then, K2
2n/n = O(1) holds again.

Third, the model has weakly exogenous variables under the large-K asymptotics.

The weakly exogenous variables (y
(1)
it−1, y

(2)
it−1) are included in the n ×Kn instru-

mental variable matrix Z(b), and many terms correlate with u = (uit). Then, for

the conditional expectations given Z(b),

E
[
u

′
P(b)u|Z(b)

]
�= σ2tr(P(b))

= σ2Kn .

In cross-sectional analysis, P(b) can be treated as constant so that the first equality

holds, but more careful evaluation is required in the dynamic model. However, if

K <∞ or the sequential moment conditions, then it does not matter.

The objective functions of the D-LIML and D-GMM estimators are the same as

Theorem 2.9 and Corollary 2.1, respectively. That is,

VR2 =
θ

′
G

(f,b)
n θ

θ
′
H

(f,b)
n θ

,

and

Q2 = θ
′
G(f,b)
n θ .

Instead of (2.12), we use the following:

　 bt = ft ,

this is not essential but simplifies the evaluation of the filters.

Instead of assumption (A1), we make the following assumption.

(A1
′
) [i] {v∗

it} (i = 1, · · · , N ; t = 1, · · · , T ) are i.i.d. across time and individu-

als, normally distributed random variables, and independent of z∗i0 with E [v∗
it] = 0

and E [v∗
itv

∗′
it ] = Ω∗, where

　 Ω∗
K∗×K∗ =

(
Ω
2×2

O
′

O ω3IK2n

)
.
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All absolute values of π11, π22, and π3k = π33 are less than 1, and

π2k,n =
π2√
K2n

, (k = 3, · · · , Kn) .

[ii] N = O(T
1
2 ), K2n = O(T

3
4 ), and K2

2n/n → d2 as N, T , and K2n tend to

infinity.

From the assumption of Ω∗, the K2n variables are strongly exogenous instrumental

variables and are mutually independent, so that the order of (3.47) is supposed.

As for the required stationary condition, π2 is not included in the condition unlike

the assumption in (A1). However, π2 affects the asymptotic variance through Π1n

as follows:

Φ∗ = Π
′
InΓ0nΠIn

= Π
′
1IΓ1Π1I +Π

′
1nΓ1nΠ1I +Π

′
1IΓ

′
1nΠ1n + σ2

3Π
′
1nΠ1n ,

where the notations are given in the proof. The simplification of the coefficients

is as follows:

　π2k = π2 , π3k = π33 , Var[v(k)it ] = ω3 , (k = 3, · · · , Kn) ,

these may not be essential. The following is the result under the triple asymptotics

that N , T , and K2n go to infinity.

Theorem 2.14 : Supposing assumptions (A1’) and (A2) hold, then K2n/n→
c2 = 0, K2

2n/n→ d2, and

[i] √
NT

(
θ̂DG − θ1

)
d−→ N (

b2·0, σ2Φ∗−1
)
,

where

b2·0 =
√
d2ρ0 .

[ii] √
NT

(
θ̂DL − θ1

)
d−→ N (0, σ2Φ∗−1) .

Unlike Theorem 2.9 and Corollary 2.1, the asymptotic distributions of the D-

LIML and D-GMM estimators are not the same. The D-GMM estimator has the

noncentrality parameter, whhereas the D-LIML estimator is still centered. Φ∗ of

the asymptotic variance corresponds to the first term so far, and the second term

Ψ does not appear because c2 = 0. The D-LIML estimation is robust because

the same result as the usual asymptotics can be obtained even if the explanatory

variables increase. Theorem 2.14 can explain the difference between the D-LIML

and D-GMM estimators in the finite sample properties as shown in the next section.

77



3.8 Simulation

This section compares the finite sample properties of various estimation meth-

ods. Following Akashi and Kunitomo (2012, 2015), we use the cumulative empir-

ical distribution, which is the most informative. Although the normalization of

β = (1, −β2) is commonly used in econometric analyses, the exact moments of

the LIML estimator may not exist. Thus, the comparison by the mean square

error is meaningless and should be based on such as the median of the empirical

distribution.16

First, the calculation method for each LIML estimator is shown. Although

the LIML estimator can be obtained numerically by maximizing the objective

function such as −VR2, the following simple procedures are usually taken. We

represent the LIML estimators from Theorem 2.3 to Theorem 2.10 as a generic

θ̂1 = (β̂
′

2, γ̂
′
1)

′
, and then, (1, −θ̂

′

1)
′
becomes an eigenvector from the first-order

condition of minimization,

[G− λnH]

[
1

−θ̂1

]
= 0 , (3.48)

λn is the smallest root of the following eigenvalue equation,17

|G− lH| = 0 ,

where G = G(f), G(f,b), G
(f,b)
n , and G

(f,f)
n for Theorems 2.2, 2.3, 2.9 (2.14), and

2.10, respectively. H is defined in the same way, for example H = H
(f,b)
n for

Theorem 2.9. The minimum eigenvalue λn is also related to the minimum value,

and if the generic variance ratio is expressed as VRn, then

λn = min
θ1

VRn .

Once the minimum eigenvalue λn is obtained, by solving (3.48) for θ̂1, the LIML

estimator is calculated as follows:

θ̂1
(G2+K1)×1

=
(
J

′
01GJ01 − λnJ

′
01HJ01

)−1 (
J

′
01Ge1 − λnJ

′
01He1

)
,

where J
′
01 = (0, IG2+K1) is the (G2 + K1) × (G + K1) selection matrix, and

e1 = (1, 0, · · · , 0)′ is the (G +K1) vector. The corresponding GMM estimator

can be obtained by putting λn = 0.

16However, Anderson (2010) observed a moment under the natural normalization of β
′
Ωβ =

σ2 = 1.
17In the case of Ox, the generalized eigenvectors and eigenvalues are obtained by eigensym-

gen(mG, mH, &vlambda, &vtheta). As for a usual command, the smallest root is obtained by
|H−1/2′GH−1/2 − lI| = 0. Ox is provided by Jurgen A. Doornik.
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The T-LIML estimator is obtained by maximizing the log-likelihood function

for all parameters. For example, in the case of (3.36), the T-LIML estimator is

maximized with respect to π22, Ω, and Ωξ in addition to the parameter θ1 of

interest. Hsiao et al. (2002) and Han and Phillips (2013) noted that in a nearly

nonstationary process, the behavior can considerably change.18

The following settings compare the estimators based on the cumulative standard

normal distribution, which requires the same standardization for all estimators.

We represent each estimator as θ̂
[j]

1 (j = 1, · · · , J), for example, θ̂
[1]

1 = θ̂DL or

θ̂
[2]

1 = θ̃DG. Then, the estimator of the k-th parameter θ
′
1ek (k = 1, · · · , G2+K1)

becomes θ̂
′

1ek (k = 1, · · · , G2 + K1). The number of endogenous variables on

the right side is G2 = 1; for example, we have that θ
′
1e1 = β2 or θ

′
1e2 = γ2.

The asymptotic variance of many estimators becomes σ2Φ−1 in this work. Using

the D-LIML estimator θ̂ = (1,−θ̂
′

DL)
′
of Theorem 2.9, we define the consistent

variance estimator for the standardization as follows,

V̂ =

(
1

n
θ̂

′
H(f,b)
n θ̂

)(
1

n
J

′
01G

(f,b)
n J01

)−1

p→ σ2Φ−1 .

The empirical distribution of the standardized statistic tjk for the k-th parameter

of a certain j-th estimation method is summarized in each figure,

tjk =

√
n

e
′
kV̂ek

(
θ̂
[j]

1 − θ[j]1

)′

ek , (3.49)

where n = N(T−2) because the D-LIML estimator uses the forward and backward

filters. If the asymptotic variance of the j-th estimator is actually σ2Φ−1, then

tjk
d→ N (0, 1); that is, it becomes a t-test statistic.

Regarding Theorem 2.2, Akashi and Kunitomo (2012) already compared the

finite sample properties in detail, so that they are omitted. Akashi and Kunitomo

(2015) compared Theorem 2.2 with Theorem 2.3 and found that the D-LIML

estimator of Theorem 2.3 significantly improved the finite sample properties. In

the following, the finite sample properties of the efficient estimators such as the

D-LIML and T-LIML estimators are investigated. We confirm that the proposed

estimators in this work, which are not based on the sequential moment conditions,

further improve those of Akashi and Kunitomo (2012, 2015).

Design 2.1 : This setting uses the simplest model in the works of Blundell and

18The maximization is based on Ox’s BFGS algorithm by imposing the stationarity constraint
of γ1 = 2γ/(1 + γ2) (cf. Bhargava and Sargan (1983)).
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Bond (2000) and Akashi and Kunitomo (2012). The number of repetitions is

R = 3000 times.

y
(1)
it = β2y

(2)
it + γ1y

(1)
it−1 + αi + uit ,

y
(2)
it = γ2y

(2)
it−1 + ραi + vit ,

where the coefficients are as follows, (β2, γ1, γ2) = (0.5, 0.3, 0.3). The error term

follows the normal distribution with zero mean and (ω11, ω22, ω12) = (1, 1, 0.3).

The individual effect αi also follows N (0, 1), where ρ = 1. The stationary and

identification conditions are |γ1| < 1, |γ2| < 1, and γ2 �= 0. We start with

(y
(1)
it , y

(2)
it ) = (0, 0) and discard T− = 10 times before the initial value to ap-

proximate the stationarity.

In the following, R = 3000 and T− = 10 are the same, the error term and

individual effect are based on the same normal distribution, and the stationary

condition (A1) is satisfied. However, in Design 2.2, the initial value is accurate.

Figures 1-3 show the empirical distributions of the D-LIML (D-LIML’15 in the

figure), D-GMM (D-GMM’15), D-LIML (D-LIML), and T-LIML (T-LIML) esti-

mators, which correspond to Theorems 2.3-[ii], 2.3-[iii], 2.9, and 2.7, respectively.

Notably, in a just identified case such as this design, the D-GMM estimator of

Corollary 2.1 is numerically equal to the D-LIML estimator of Theorem 2.9.
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Fig. 1: Design 2.1 (β2, N = 100, T = 25)

First, Figure 1 shows that the D-LIML estimator is more efficient than the

D-LIML’15 estimator because the empirical distribution is shrunk. This result is
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Fig. 2: Design 2.1 (γ1, N = 100, T = 25)
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Fig. 3: Design 2.1 (β2, N = 100, T = 50)
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consistent with the fact that the second termΨ of the variance appears in Theorem

2.3, whereas the D-LIML estimator of Theorem 2.9 is the efficient estimator. The

noncentrality parameter of D-GMM’15 estimator is confirmed similar to the result

of Akashi and Kunitomo (2015). Hsiao and Chou (2015) also showed that the

T-LIML estimator is better than the D-LIML’15 estimator.

Second, although the D-LIML and T-LIML estimators are asymptotically equiv-

alent, the T-LIML seems to be more efficient because the empirical distribution

of the latter shrinks. The reason may be that there is no loss occurs because of

the forward and backward filters. Figure 2 shows the case of γ1, but the difference

is not as large as that in Figure 1, so the results for the case of β2 are mainly

shown in the following. Figure 3 shows the case of T = 50, and the convergence

in distribution can be confirmed. As V̂ is used for the standardization, the em-

pirical distribution of D-LIML is the closest to the standard normal distribution.

Therefore, if viewed as the t-test statistic, then the case of D-LIML has less size

distortion.

Design 2.2 : We confirm that the T-LIML estimator can estimate the AR(2)

model and the case when the initial values are incidental parameters. The panel

VAR(2) model in Section 3.4.2 can be expressed in state-space representations:

y
(1)
it = w

(1)
it + μ

(1)
i ,

y
(2)
it = w

(2)
it + μ

(2)
i , (3.50)

and

w
(1)
it = β2w

(2)
it + γ11w

(1)
it−1 + γ12w

(1)
it−2 + uit ,

w
(2)
it = γ2w

(2)
it−1 + vit ,

where (β2, γ11, γ12, γ2) = (0.5, 0.3, 0.3, 0.3), and the values of Ω are the same

as those in Design 2.1. The individual effect is μi = (I2 − Π
′
)−1πi as shown in

(3.12), where πi ∼ N (0, I2). The initial value vector (w
(1)
i0 , w

(1)
i(−1), w

(2)
i0 ) follows

N (0, I3).

When the AR(2) model is included, the likelihood function L2 is calculated using

the long difference and first-difference for the initial value as shown in (3.36). Fig-

ure 4 suggests that the T-LIML estimator is more efficient similar to the previous

design.

Next, we consider the case when the initial states are incidental parameters

using the VAR(1) model. Expressed in state-space representation to set the initial

value, the observation equation of (y
(1)
it , y

(2)
it ) is the same as that in (3.50):

w
(1)
it = β2w

(2)
it + γ11w

(1)
it−1 + uit ,

w
(2)
it = γ2w

(2)
it−1 + vit ,
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Fig. 4: Design 2.2 (β2, N = 100, T = 25)
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Fig. 5: Design 2.2 (β2, N = 100, T = 25)
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where (β2, γ11, γ2) and μi are the same as those in the VAR (2) model above.

However, the initial state (w
(1)
it , w

(2)
it ) is generated by

w
(1)
i0 ∼ N (−1, 3) ,

w
(2)
i0 ∼ N (3, 2) .

Notably, the same realization is used as the initial value for all repetitions R =

3000, and thus, it can be regarded as the incidental parameters. Even if we try

other fixed-effects such as w
(1)
i0 = −1 + log(i)/N , a similar result is obtained.

From Figure 5, even if the initial values are incidental parameters, the D-LIML

estimator is consistent. Moreover, as the empirical distribution of T-LIML is

centered at the origin, the noncentrality parameter does not appear although the

initial state is not random-effects. The finite sample properties of the T-LIML

estimator are also better than those of the D-LIML estimator.

Design 2.3 : We consider the more general model and the large-K model.

y
(1)
it = β2y

(2)
it + γ11y

(1)
it−1 + γ12xit + αi + uit ,

y
(2)
it = γ21y

(2)
it−1 + γ22y

(2)
it−2 + π

(2)
i + v

(2)
it ,

xit = γ31xit−1 + γ32xit−2 + π
(3)
i + v

(3)
it ,

where the structural parameters are as follows (β2, γ11, γ12, γ21, γ22) = (0.5, 0.3, 0.3,

0.3, 0.1) and (γ31, γ32) = (0.3, 0.1) for xit. The values of Ω are the same as those

in Design 2.1, but v
(3)
it with unit variance is independent of vit, so xit is exogenous

in period t. As for the individual effect, πi ∼ N (0, I3).

Although the finite sample properties of the T-LIML estimator are the best in

the previous designs, the calculation becomes quite complicated in the case of the

general model, so the results without the T-LIML estimator are given. Moreover,

the procedure for calculating the D-LIML estimator is easy even with the general

model. For instance, with the package software such as EViews, the D-LIML

estimator can be obtained by the procedure of the original LIML estimator for

cross-sectional data. We generate the filtered data using Df in Section 2.4 and Db

in Section 2.5. Then, we consider the data as the cross-sectional data consisting

of n = N(T − 1) samples, that is,(
y(1,f), X(f), Z(b)

)
n×(G+K1+K)

.

The D-LIML estimator is obtained by specifying (G + K1) variables in the first

structural equation and K variables as the instrumental variables.

From the reduced form of (y
(1)
it , y

(2)
it ), the use of (y

(1,b)
it−1, y

(2,b)
it−1 , y

(2,b)
it−2, x

(b)
it ) as

instrumental variables is sufficient, where K = 4 and K2 = 2. Figure 6 shows
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that the D-LIML estimator is a further improvement over D-LIML’15 compared

with Design 2.1. Moreover, the empirical distributions of D-LIML and D-GMM

are almost the same. The result corresponds to Theorem 2.9 and Corollary 2.1

because c2 = K/n = 4/2500 can be regarded as almost zero.

D-LIML’15 
D-LIML 

D-GMM 
N(0,1) 

-5 -4 -3 -2 -1 0 1 2 3 4 5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
D-LIML’15 
D-LIML 

D-GMM 
N(0,1) 

Fig. 6: Design 2.3 (β2, N = 100, T = 25)

Next, we consider the design of the large-K asymptotics. The setting is the same

as that in (3.45) to (3.46) in Section 3.7.2:

y
(1)
it = β2y

(2)
it + γ1y

(1)
it−1 + αi + uit ,

y
(2)
it = π22y

(2)
it−1 +

12∑
k=3

π2k,ny
(k)
it−1 + π

(2)
i + v

(2)
it ,

where (β2, γ1, π22) = (0.5, 0.5, 0.3). Regarding k = 3, · · · , 12, the common

values are used such that π2k,n = 0.1, π3k = 0.5, and ω3 = 1. The individual effect

is the same as in Design 2.1, but the setting of the error term is (ω11, ω22, ω12) =

(1, 1, −0.3). In other words, K = 2 + 10 = 12 and c2 = 12/2500. Although c2 is

also almost zero, d2 = 144/2500 may be better regarded as nonzero. As indicated

by Theorem 2.14, Figure. 7 shows that the D-LIML estimator is still centered at

the origin, whereas the D-GMM estimator has the noncentrality parameter b2·0
depending on d2.

We summarize the results of the estimation theory in Part II. We introduced

that the GMM estimator of Arellano and Bond (1991) may not perform well

in Part I, but in the structural estimation, this estimator becomes inconsistent
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Fig. 7: Design 2.3 (β2, N = 100, T = 25)

in long panel data, which is more remarkable. The T-LIML, D-LIML, and D-

GMM estimators are shown efficient so that the estimators based on the sequential

moment conditions mean inefficient. The finite sample property of the T-LIML

estimator is the best, and the D-LIML estimator is more robust than the D-

GMM estimator. Hence, we would like to recommend the T-LIML and D-LIML

estimators of Theorems 2.7 and 2.9. However, as the T-LIML estimator is the exact

maximum likelihood method, the calculation is complicated for a general model.

Therefore, the D-LIML estimator, which approximates the T-LIML estimator and

is easy to implement, is practical. In Part III, we examine the hypothesis testing

for the panel structural estimation using the proposed D-LIML estimator.

4 Part III: Tests of Structural Analysis

This part discusses the hypothesis testing and the specification of the dynamic

structural panel model from the viewpoint of empirical analyses. Unlike regression

analyses, structural models require some additional procedures. In particular, we

consider testing exogeneity, model selections by information criterion, and rank

tests for identification. We mainly use the variance ratio as the statistics, which

is the objective function of the practical D-LIML estimator. The test of the sig-

nificance for each coefficient is also important in empirical analyses, for instance,

H0 : β2 = 0 .
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The t-test statistic has already been given by (3.49), which is based on the D-LIML

estimator of Theorem 2.9.

For the hypothesis test of structural parameters, the variance ratio of the LIML

estimator has been called the AR test statistic since Anderson and Rubin (1949).

In the following, the test statistic is composed entirely of the variance ratio of the

D-LIML estimator. The advantage of the LIML method is that it can discuss the

estimation and testing in a unified manner, and we may refer to as the panel AR

test statistic in a broad sense.

4.1 Overidentification Tests

To estimate the structural parameters, the instrumental variables in period t

must satisfy the orthogonal condition,

H0 : E [zituit] = 0 . (4.1)

If the specification is correct, then uit = v
′
itβ, so that the condition is satisfied.

When the D-LIML estimatior is used, the orthogonality after removing the indi-

vidual effect implies the following:

H0 : E
[
z
(b)
it u

(f)
it

]
= 0 ,

where zit consists of the lagged endogenous variables before period t − 1, such as

y
(1)
t−1 and y

(1)
t−2 or the exogenous variables in period t. For instance, Arellano and

Bond (1991) considered the case when the error term follows a moving average

process, then, the orthogonal condition is not satisfied.

On the basis of D-LIML estimator, we check whether the candidates of instru-

mental variables are the predetermined variables, satisfing (4.1). Let

λ = min
θ1

VR2 , (4.2)

be the panel AR test statistic, which is the same as the minimum eigenvalue in

Section 3.5.1 by (4.2). Put n = N(T − 2), and the following holds under the null

hypothesis.

Theorem 3.1 : Suppose assumptions (A1), (A2), and K2 > G2 hold, then as

T → ∞, regardless of N is fixed or tends to infinity,

nλ
d−→ χ2

K2−G2
,

under null hypothesis (4.1) .
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If the conditions are not satisfied, then the estimation becomes inconsistent. There-

fore, this test is crucial for the structural models. The AR statistic follows a chi-

square distribution because the D-LIML estimation does not have a noncentricity

parameter even in long panel data. Similar to the overidentification tests in cross-

sectional analyses, the degree of freedom is equal to that of the overidentification

in period t, that is, K−(G2+K1) = K2−G2. Hence, this AR test can be called the

overidentification test of all instruments. In the empirical analysis, not rejecting

the null hypothesis at 5% or 1% significance levels is desirable.

4.1.1 Testing Exogeneity

In the structural panel model, we suspect y
(2)
it as the endogeous variables on

the right-hand side, or not all variables may be endogenous. Thus, whether it is

endogenous or not is interesting, which is known as the Wu-Hausman specification

test and is a special case of the overidentification test (cf. Wooldridge (2002)).

Example 3.1 : Let y
(1)
it and y

(21)
it be growth rates of GDP and government

expenditure, respectively,

y
(1)
it = αi + β

′
2y

(22)
it + (γ21y

(21)
it + γ

′
1z

(1)
it ) + uit . (4.3)

If an original budget is implemented as it is, then y
(21)
it should be an exogenous

variable in period t. Meanwhile, if a supplementary budget is passed in period

t, then y
(21)
it is determined simultaneously with the GDP growth rate; that is, it

becomes an endogenous variable. We are interested in whether it is statistically

endogenous.

Similar to (4.3) in this example, we check whether some y
(21)
it of y

(2)
it is endoge-

nous variable,

⎛
⎜⎝ y

(2)
it

z
(1)
it

z
(2)
it

⎞
⎟⎠ }G2

}K1

}K2

,

⎛
⎜⎜⎜⎝

y
(22)
it

y
(21)
it

z
(1)
it

z
(2)
it

⎞
⎟⎟⎟⎠

}G22

}G21

}K1

}K2

.

where G2 = G22+G21. Assuming that all instruments zit satisfy the orthogonality

condition and that y
(21)
it is an exogenous variable, we consider the null hypothesis:

H0 : E
[
y
(21)
it uit

]
= 0 . (4.4)
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Then, the G21 variables appear on the G22 reduced forms, that is, y
(21)
it is included

in the projection matrix of instrumental variables. Moreover, y
(21)
it appears in the

first structural equation, and it is treated in the same way as the K1 variables; that

is, the number of parameters θ1 to be estimated is still G2+K1 = G22+G21+K1,

whereas the number of instrumental variables usually increases from K to G21+K.

The case of the K2 variables decrease is illustrated in the section of numerical

experiments.

Z
(b)
1 = (Y(21,b),Z(b)) is the n × (G21 + K) instrumental variable matrix when

y
(21)
it is added, and

λ1 = min
θ1

VR2 (4.5)

is the AR test statistic generated using Z
(b)
1 .

Hayashi (2000) discussed the relation between the overidentification test and

the Wu-Hausman test statistic expressed in the form of the difference, nλ1 − nλ.

When considering the form of the difference, we suppose that the denominator σ̂2

of λ in (4.2) is replaced with σ̄2 of λ1 in (4.5) for convenience.

Under the null hypotheses, the following holds as an exogeneity test.

Theorem 3.2 : Supposing assumptions (A1), (A2), and K2 > G22 hold, then

as T → ∞, regardless of N is fixed or tends to infinity,

nλ1
d−→ χ2

K2−G22
, (4.6)

and

nλ1 − nλ
d−→ χ2

G21
, (4.7)

under null hypotheses (4.1) and (4.4) .

Assuming that the exogeneity of zit is guaranteed by the overidentification test in

the first step, then, the exogeneity tests in (4.6) or (4.7) should be performed as

the second step. If the chi-square statistic becomes large because of the additional

y
(21)
it , then null hypothesis (4.4) would be rejected, or y

(21)
it is regarded as the

endogenous variable.

4.1.2 Many Instruments for Just Identified Case

In the just identification case, the structural model cannot be generally tested,

because the degree of overidentification becomes K2 − G2 = 0. Hence, the chi-

square distribution degenerates on the origin. However, if we start with a simple

structural model in empirical analyses, then K2 −G2 = 1− 1 can occur.
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In another context, Hayakawa (2014) considered the overidentification test using

the diagonalized projection matrix. Then, we notice that the degree of overiden-

tification increases. Moreover, Lee and Okui (2012) and Anatolyev (2013) inves-

tigated the overidentification tests under many instruments. In their argument,

the chi-square test statistic based on the GMM estimator diverges. However, the

panel AR test statistic based on the D-LIML estimator in Theorem 2.3 is robust

even in many instruments;

λ̃ = min
θ1

VR1 .

This estimator is also made by the sequential moment conditions as described in

Section 3.5.1, that is, the projection matrix is diagonalized. In the case of overi-

dentification, the test of Theorem 3.1 based on the efficient D-LIML estimation

is desirable. However, in the case of just identification, the D-LIML estimator of

Theorem 2.3 can be applied. The statistic under many instruments becomes the

sum of many chi-square distributions, so that it converges to a normal distribution.

In the dynamic panel, the case when c1 = K/N converges to zero is also impor-

tant. However, if regarded as c1 = 0, then the expression of
√
nλ̃ degenerates.

Therefore, we use another expression of normalization in the following theorem.

Under null hypothesis (4.1), t-tests can be constructed by the panel AR test

statistic even in the case of K2 = G2.

Theorem 3.3 : Supposing assumptions (A1), (A2), and K2 ≥ G2 hold, then

as T → ∞,

[i] N is fixed or c1 > 0. If v∗
it follows a normal distribution, then

tc =

√
n(λ̃− c1)√

2c1∗
d−→ N (0, 1) ,

where c1 = K/N and c1∗ = c1/(1− c1).

[ii] N tends to infinity or c1 = 0. If N/T → 0 ≤ d <∞, then

t0 =
nλ̃− dT√

2dT

d−→ N (0, 1) ,

where dT = KT − (G2 +K1).

Similar to the chi-square test, the one-sided test should be conducted in the right

tail area. As shown in the numerical experiments, tc and t0 are numerically almost

the same value, so t0 is recommended. For the result of [ii], −(G2 + K1) is not

necessary for the asymptotics in KT → ∞. However, as shown in the numerical
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experiments, this finite sample correction, which is based on the degree of freedom

in the case of KT <∞, has a considerable effect.

4.2 Simulation

We check the finite sample properties from Theorems 3.1 to 3.3 with the follow-

ing settings.

Design 3.1 : In the case of Theorem 3.1,

y
(1)
it = β21y

(2)
it + β22y

(3)
it + γ11y

(1)
it−1 + αi + uit ,

y
(2)
it = π21y

(2)
it−1 + π22y

(2)
it−2 + π

(2)
i + v

(2)
it ,

y
(3)
it = π31y

(3)
it−1 + π32y

(3)
it−2 + π

(3)
i + v

(3)
it ,

where the numerical setting is the same as that in Design 2.3. However, xit = y
(3)
it

is considered an endogenous variable in period t, and then, G2 = 2. Examine the

weak exogeniety of theK = 5 instrumental variables (y
(1,b)
it−1, y

(2,b)
it−1, y

(2,b)
it−2 , y

(3,b)
it−1, y

(3,b)
it−2).

The degree of overidentification becomes K2 − G2 = 4 − 2. Figure 8 shows the

empirical cumulative distribution of nλ, which follows the chi-square distribution

with two degrees of freedom.

The second step is the exogeneity test for xit = y
(3)
it using the nλ1 of (4.6). xit

is an exogenous variable in period t,

y
(1)
it = β21y

(2)
it + γ11y

(1)
it−1 + γ12xit + αi + uit ,

From the reduced form of (y
(1)
it , y

(2)
it ), the degree of overidentification K2 −G22 =

2− 1 is obtained by the K = 4 instrumental variables (y
(1,b)
it−1, y

(2,b)
it−1 , y

(2,b)
it−2, x

(b)
it ).

If we know that (y
(3)
it−1, y

(3)
it−2) does not appear in reduced form, the K2 vari-

ables are reduced. From Figure 9, the statistic certainly follows the chi-square

distribution with one degree of freedom

Alternatively, by using the instrumental variables (y
(1,b)
it−1, y

(2,b)
it−1, y

(2,b)
it−2 , x

(b)
it , y

(3,b)
it−1, y

(3,b)
it−2)

in which xit is simply added, null hypothesis can be tested by (4.6) where K2 −
G22 = 4− 1.

Design 3.2 : Let us examine the finite sample properties of Theorem 3.3 using

the just identification model:

y
(1)
it = β2y

(2)
it + γ1y

(1)
it−1 + αi + uit ,

y
(2)
it = γ2y

(2)
it−1 + ραi + vit ,

where G2 − K2 = 1 − 1 = 0, and the numerical setting is the same as that in

Design 2.1.
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Fig. 8: Design 3.1 (N = 100, T = 25)

Exogeneity test chi(1) 
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Fig. 9: Design 3.1 (N = 100, T = 25)
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Notably, tc is numerically proportional to t0 without finite sample correction of

dT = K(T − 2),

tc = t0 ×
(

1

1−K/N

)− 1
2

.

Therefore, when N is large, the empirical distributions are almost the same and

overlap in Figure 10. When t0 is applied the finite sample correction (t 0 adjusted

in the figure),

dT = K(T − 2)− (G2 +K1)

= 2(T − 2)− 2 ,

it is quite effective, and the approximation to the standard normal distribution is

more accurate. When making this finite sample correction to tc, c1 = K/N should

be replaced with [K(T − 2)− (G2 +K1)]/n, but the result is omitted because the

empirical distribution almost overlaps with t 0 adjusted.

t_c 
t_0 ajusted 

t_0 
N(0,1) 
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0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
t_c 
t_0 ajusted 

t_0 
N(0,1) 

Fig. 10: Design 3.2 (N = 100, T = 25)

4.3 Panel Information Criterion for the Reduced Form

Under the limited information method, the structural equaiton is formulated a

priori from an economic theory,

y
(1)
it = β

′
2y

(2)
it + γ

′
1z

(1)
it + αi + uit ,
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but determining theK2 variables that do not appear in the first structural equation

is difficult. The problem can be reduced to the order selection for a panel VAR

model, which is the reduced form of yit = (y
(1)
it , y

(2)′
it )

′
. The implications of

the selection for the reduced form are the following. First, we are interested in

what are the true instrumental variables. Second, the number of instrumental

variables affects the efficiency of the estimation for the structural parameter θ1.

In general, if few instrumental variables exist, then the efficiency is reduced. From

the discussion of large-K asymptotics, adding redundant instrumental variables

may also cause a large varicance.

Andrews and Lu (2001) considered the selection criteria that simultaneously

conduct the overidentification test and model selection in a dynamic panel model.

Morimune and Sawa (1980) considered the selection rule for the structural equation

that specifies the correct model with a high probability using an F distribution. In

the following, we show the consistency of model selection based on the information

criterion developed by Akaike (1974). However, as the exact likelihood function in

fixed-effects estimation or the transformed maximum likelihood function is com-

plicated, we consider using the objective function of the D-LIML estimator.

To make the informaton critria, we first confirm multiple true espressions of a

reduced form.

Example 3.2 : Let xit = π3xit−1+v
(3)
it be the exogenous variable in period t. Then,

the reduced form has the following two expressions, which are observationally

equivalent,

y
(g)
it = π1gy

(1)
it−1 + π2gxit + π

(g)
i + v

(g)
it (4.8)

= π1gy
(1)
it−1 + π3gxit−1 + π

(g)
i + (v

(g)
it + v

(3)
it ) , (g = 1, 2) . (4.9)

As Var[v(g)it ] < Var[v(g)it + v
(3)
it ], (4.9) is inferior in the explanatory power, so we

should select (4.8). Thus, we can consider selecting the expression with the smallest

tr(Ω) among the true expressions, where Ω is the variance-covariance matrix of

the error terms.

For the reduced form consisting of G endogeous variables, let

zit = {z[1]it , z[2]it , · · · , z[K]
it } ,

be the list of the instrumental variables that construct the true reduced form. The

conditions for the true representation are given as follows:

K∑
k=1

|πgk| �= 0 , (g = 1, · · · , G) .

94



That is, an instrumental variable z
[k]
it should be included in at least one of the G

reduced forms, and then, its coefficient is not 0.

Now we consider the difference from the usual order selection of the VAR(p)

model. In the case of the VAR model, the common order p can be selected for

all the G-dimensional variables. However, the reduced form is not necessarily in

the form of VAR(p) as shown in Example 2.5. Selecting a different order for each

variable is more practical, and the models are then non-nested, that is, K �= G×p is
allowed. If a candidate of K{1} instrumental variables is represented as z

{1}
it ( �= zit),

then the cases can be divided into exclusion:

zit ⊂ z
{1}
it , zit �⊂ z

{1}
it .

Notably, even if variables that are included in zit and not included in z
{1}
it rxist,

that is, the omitted variables, K{1} ≥ K is possible.

Following Schwarz (1978), we set the penalty term as the order of log n. K is

the number of instrumental variables of a candidate, and then, a panel information

criteria (PIC) is given as follows:

PIC1 =
G∑
g=1

(
ω̂gg +K

log n

n

)

= tr(Ω̂) +GK
log n

n
.

To select the true model without being affected by individual effects, we estimate

Ω from the residuals of the IV estimator of Theorem 1.5. Each candidate can be

easily estimated as follows:

Ω̂ =
1

n
Y(f)′Q

′
QY(f) ,

Q = In − Z(f)(Z(b)′Z(f))−1Z(b)′ ,

where n = N(T − 2) and the IV estimator is Π̂IV = (Z(b)′Z(f))−1Z(b)′Y(f). Then,

Q remains idempotent but becomes an asymmetric matrix. For instance, Z(f) and

Z(b) become n×K matrices if generated by zit, and n×K{1} if generated by z
{1}
it .

In the case of regression analysis we have G = 1, and G ≥ 2 corresponds to a

reduced form of the structural analysis.

(A5) [i] All candidates of instrumental variables are a subset of z∗it generated
by (3.10). The rank of n×K∗ matrix W = (wit−1) is K

∗.
[ii] The rank of Π is G .

Assumption [i] means that we do not search for candidates in variables that are
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multicollinearity, where the constant term must not be included because of the

double filters. Assumption [ii] may be interpreted as not being the multicollinearity

among the endogenous variables.

From the following results, PIC1,0 based on the true instrumental variables zit
is asymptotically minimized. Therefore, we search for the list of instrumental

variables that minimize PIC1.

Theorem 3.4 : Supposing assumptions (A1), (A2), and (A5)-[i] hold, then as

T → ∞, regardless of N is fixed or tends to infinity, provided 0 ≤ d <∞,

Pr( PIC1,0 < PIC1 )
p−→ 1 ,

for any PIC1 based on z
{1}
it �= zit.

Moreover, we can consider the log-likelihood function of the T-LIML estimator

as an information criteria. From (6.37) of Lemma 2.2, the pseudo log-likelihood

function that approximates the transformation likelihood method has the following

relation:

L2·0 ∝ − log((1 + λ)|Ω̂|) . (4.10)

Minimizing the eigenvalue λ is used for the specification of the structural equation

in the next section. Hence, depending only on the term of generalized variance

|Ω| in the first step is appropriate for the reduced form. Thus, another PIC for

the reduced form is as follows:

PIC2 = log(|Ω̂|) +GK
log n

n
,

that is, it is almost the same as the Schwarz information criterion for the usual

VAR model.

For PIC2,0 based on the true instrumental variable zit, the same result as PIC1

holds.

Theorem 3.5 : Supposing assumptions (A1), (A2), and (A5) hold, then as

T → ∞, regardless of N is fixed or tends to infinity, provided 0 ≤ d <∞,

Pr( PIC2,0 < PIC2 )
p−→ 1 .

for any PIC2 on the basis of z
{1}
it �= zit.

From the rank condition rank(Π2·) = G2 < G in the next section, assumption

(A5)-[ii] implicitly requires K1 ≥ 1.
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The theorems implicitly assume that zit satisfies the orthogonality condition.

If a candidate mistakenly contains an endogenous variable, then the consistency

of model selection is generally not guaranteed. Thus, the overidentification test

in the previous section is important. However, the inverse problem that not all

instrumental variables are explanatory just because they satisfy the orthogonality

condition exists. Therefore, performing the overidentification test and the selection

of the reduced form would be better.

4.4 Simulation

We suppose the first structural equation of G = 2 under the limited information

method as follows:

y
(1)
it = β2y

(2)
it + γ11y

(1)
it−1 + γ12y

(2)
it−1 + αi + uit .

We assume that the following second reduced form and the form of the exogenous

variable are unknown to an econometrician,

y
(2)
it = π21y

(2)
it−1 + π22y

(2)
it−2 + π23xit + π

(2)
i + v

(2)
it ,

xit = π31xit−1 + π32xit−2 ++π
(3)
i + v

(3)
it ,

where β2 = γ11 = 0.5, γ12 = π21 = π23 = π31 = 0.3, π22 = 0.2, π32 = 0.1,

ωgg = 1 (g = 1, 2, 3), and ω12 = 0.3. The individual effect is πi ∼ N (0, I3). We

consider the case when the specified K1 variables (y
(1)
it−1, y

(2)
it−1) are included in all

candidates.

The next model-0 is the true reduced form and the number of instrumental

variables is K = 4, that is, two K2 variables exist, (y
(2)
it−2, xit). The reduced forms

(g = 1, 2) are as follows:

y
(g)
it = πg1y

(1)
it−1 + πg2y

(2)
it−1 + πg3y

(2)
it−2 + πg4xit + π

(g)
i + v

(g)
it .

The following five models are the incorrectly specified reduced form, and each of

them has a different candidate z
{1}
it .

Model-1 is a smaller model than model-0, and the omitted variable is y
(2)
it−2 (K{1} =

3):

y
(g)
it = πg1y

(1)
it−1 + πg2y

(2)
it−1 + πg3xit + π

(g)
i + v

(g)
it .

Model-2 is also a smaller model with the omitted variable y
(2)
it−2. However, the

irrelevant variable y
(1)
it−2 (K{1} = 4) exists:

y
(g)
it = πg1y

(1)
it−1 + πg2y

(1)
it−2 + πg3y

(2)
it−1 + πg4xit + π

(g)
i + v

(g)
it .
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Model-3 is another expression of the true reduced form:

y
(g)
it = πg1y

(1)
it−1 + πg2y

(2)
it−1 + πg3y

(2)
it−2 + πg4xit−1 + πg5xit−2 + π

(g)
i + v

(g)
it ,

where xit is substituted (K{1} = 5).

Model-4 is a larger model than model-0:

y
(g)
it = πg1y

(1)
it−1 + πg1y

(1)
it−2 + πg3y

(2)
it−1 + πg4y

(2)
it−2 + πg5xit + π

(g)
i + v

(g)
it ,

where y
(1)
it−2 is added (K{1} = 5).

Model-5 is also a larger model:

y
(g)
it = πg1y

(1)
it−1 + πg1y

(1)
it−2 + πg3y

(2)
it−1 + πg4y

(2)
it−2 + πg5y

(2)
it−3 + πg6xit + π

(g)
i + v

(g)
it ,

where y
(1)
it−2 and y

(2)
it−3 are added (K{1} = 6).

Table 1 summarizes the ratio that a model has the minimum value of information

criterion, where N = 50, and the number of repetitions R = 3000 times. PIC1

Table 1: Percentages of model selection

model-0 model-1 model-2 model-3 model-4 model-5

T = 15 PIC1 69.9 4.47 0.07 0.00 22.7 2.87

PIC2 66.8 11.3 0.27 0.03 17.8 3.80

T = 25 PIC1 87.4 0.00 0.00 0.00 12.2 0.40

PIC2 89.9 0.00 0.00 0.00 9.50 0.57

T = 50 PIC1 97.4 0.00 0.00 0.00 2.60 0.00

PIC2 98.9 0.00 0.00 0.00 1.01 0.07

and PIC2 show similar properties, and as T increases, the selection rate of model-0

increases. Thus, the consistency of model selection can be confirmed. The model-3

is another true expression of the reduced form, but as discussed in Example 3.2,

this model is the most difficult to be selected. There is a slight possibility that

a larger model would be selected. However, in the larger model, the coefficients

of irrelevant variables are consistently estimated to be zero, and the effect on

efficiency would be limited than selecting a smaller model. Therefore, choosing a

slightly larger model would not be too much of a problem.

4.5 Specification Test for a Structural Equation

In the last section, we discuss the specification of the structural model. The

identification problem for the structural parameter θ1 = (β
′
2, γ

′
1)

′
should be
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discussed first because it is the condition for consistent estimations and relating

hypotheses testing. However, this case is not often discussed in textbooks recently

and may be difficult to understand, so we consider it last. The panel structural

equations in the linear simultaneous equation model are given as follows:

B
G×G

yit = Γ
G×K

zit + αi
G×1

+ uit . (4.11)

When represented as a linear model in this way, an economic model has many ex-

pressions in by multiplying it by an arbitrary regular G×G matrix T on the left.

However, the coefficient of the reduced form Π
′
= B−1T−1TΓ is uniquely deter-

mined as the solution, which can be estimated by the moments of data. Therefore,

the question is whether one can select a meaningful structural expression from the

reduced form. A condition familiar with the economic theory would be the tra-

ditional zero constraints (exclusion condition) since the Cowles Commission (cf.

Hsiao and Zhou (2015)).

Example 3.3 : Reconsider the production function in Example. 2.1. In the case

of G = 3 ,

y
(1)
it = β21y

(2)
it + β22y

(3)
it + αi + uit ,

where the endogenous variables are the logarithmic values of production, labor,

and capital. Usually, only the endogenous variables appear in the production

function so that the zero constraints are satisfied.

The following example is regarding the demand and supply functions,

y
(1)
it = β21y

(2)
it + γ1z

(1)
it + α

(1)
i + u

(1)
it ,

y
(1)
it = β22y

(2)
it + γ2z

(2)
it + α

(2)
i + u

(2)
it ,

y
(1)
it and y

(2)
it are the quantity and price of a good in some region i, respectively.

Which equation is the demand function is determined by the zero constraints. If

z
(1)
it is the consumption tax rate and z

(2)
it is the corporate tax rate, then z

(2)
it does not

appear in the first equation. Therefore, the first equation can be regarded as the

demand function. Meanwhile, the equilibrium does not change even if multiplied

by a certain transformation T. However, a coefficient β∗ = β21+β22 of transformed

expression, which does not satisfy a zero constraint, has no economic meaning.

In this work, we call the dynamic structural panel model and do not refer to the

structural panel VAR model because the former uses zero constraints. Another

constraint is supposed in the structural VAR model, and there is also the position

that zero constraints are ad hoc (cf. Amisano and Giannini (1996)). Therefore,
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examining the zero constraint using the data is desirable; that is, a specification

for the structural model should be tested. In the linear model, the identification

condition is reduced to the simple rank condition.

First, we confirm the three concepts of normalization, zero constraints, and

identification. Notably, the normalization and zero constraints are neither neces-

sary nor sufficient conditions for identification. Generally, the formulation of the

limited information method can be expressed as follows:

β1y
(1)
it = β

′
2y

(2)
it + γ

′
1z

(1)
it + γ

′
2z

(2)
it + αi + uit , (4.12)

y
(2)
it = Π

′
12z

(1)
it +Π

′
22z

(2)
it + π

(2)
i + v

(2)
it .

This method has an advantage that only identifying the parameter of the first

structural equation needs to be considered. In the first structural equation (4.12),

y
(1)
it has a coefficient β1, and thus, the scale of each coefficient is not determined

so that some normalization for the coefficients is necessary.

Example 3.4 : Express (3.1) of the utility function in Example 2.3 as follows:

β∗
1y

(1)
it = β∗

2y
(2)
it + γ∗1z

(1)
t + γ∗2z

(2)
t + u

(1)∗
it .

If we divide both sides by β∗
1 , then

y
(1)
it = β2y

(2)
it + γ1z

(1)
t + γ2z

(2)
t + u

(1)
it , (4.13)

where β2 = β∗
2/β

∗
1 and u

(1)
it = u

(1)∗
it /β∗

1 . However, if β∗
1 = 0, then the expression

of (4.13) cannot exist. When the first good is not purchased, it is possible that

β∗
2 = 0.

As σ2 > 0, the natural normalization is known that (β/σ)
′
Ω(β/σ) = 1 (cf. Ander-

son and Rubin (1949)). Anderson and Kunitomo (1992, 1994) provided a general

discussion of the overidentification test and identification based on the natural

normalization in detail. However, in this work, we have derived the estimators

by the conventional normalization, which is often used in the applied analysis

(cf. Amemiya (1985)). Let us suppose the conventional normalization such that

β1 �= 0 in (4.12); that is, the following first element is 1,

β
′
= (1, −β′

2) . (4.14)

Second, we consider the zero constraints on the coefficients of the exogenous

variables in the first structural equation (4.12). Let us confirm that the zero

constraints are not unique and a candidate of the structural expressions.
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Example 3.5 : Give the following structural equation a zero constraint,

y
(1)
it = β2y

(2)
it + γ1z

(1)
it + γ2z

(2)
it + αi + uit ,

where the reduced form is as follows:

yit =

(
2 1

1 −2

)
zit + πi + vit .

From the discussion of Lemma 3.1 below, we have β2 = −0.5 and γ1 = 2.5 in

the case of the zero constraint γ2 = 0. If another zero constraint is γ1 = 0, then

β2 = 2 and γ2 = −3. When two structural equations exist as in Example 3.3, the

different zero constraints correspond to the change of sign of β2 with the demand

and supply functions.

Finally, we consider the identification of the parameters in the first structural

equation. The zero constraints are expressed in the vector as follows:

H0 : γ2 = 0 ,

and an econometrician specifies them by (4.12). That is, suppose that z
(2)
it of K2

variables that does not appear in the first structural equation exists. We check

the following notation for the rank condition,

yit = Π
′
zit + πi + vit ,

Π
′

=
(
Π

′
1· Π

′
2·
)
=

(
π

′
11 π

′
21

Π
′
12 Π

′
22

)
(1+G2)×(K1+K2)

.

Hsiao (1983) investigated the identification of the dynamic structural model based

on the likelihood function. In a panel model, the question is whether the indi-

vidual effect does not affect the identification of the structural parameters. Bhar-

gava (1991) examined the identification condition for the dynamic panel structural

model under N → ∞.

The next lemma is derived under the conventional normalization (4.14) and indi-

cates that the condition of identification is determined independently of individual

effects under the long panel data.

Lemma 3.1 : Suppose (A1) and (A2). If E [π∗
iv

∗′
it ] = O or T → ∞ in the case

of E [π∗
iv

∗′
it ] �= O, then
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[i] The following expressions are equivalent:

γ2 = 0 ⇔ Π2·β = 0 .

[ii] For some γ2 = 0, the necessary and sufficient condition that θ1 = (β
′
2, γ

′
1)

′

is uniquely determined from Π is as follows:

rank(Π2·) = rank(Π22) , rank(Π22) = G2 .

In other words, the usual rank condition for identification is obtained even in the

dynamic structural panel model. In the previous sections, we introduced the esti-

mators using many instruments, but those instrumental variables do not contribute

to the identification; that is, the K2 variables in each period t are important.

If β satisfies Π2·β = 0, then the zero constraint is correct. This condition

means rank(Π2·) = rank(Π22). Then, we could suggest that the reduced form is

reduced from the structural equations that satisfy the zero constraint. Moreover,

some zero constraints can have multiple solutions (β[1], β[2], · · · ). Although the

multiple expressions in the structural equation are allowed, the unique expression

is desirable. Then, the condition becomes rank(Π22) = G2, which are called the

rank conditions for the identification, and its necessary condition is called the order

condition:

K2 ≥ G2 .

In empirical analyses, the discussion of identification is often completed by checking

only the order condition. Notably, the rank conditions of Lemma 3.1 have been

implicitly assumed in Parts II and III. However, some hypotheses can be tested

from the panel data, so performing the rank test as discussed below would be

desirable.

One of the advantages of the LIML method is that the identification problem

is reduced to the eigenvalue problem using the objective function, where the rep-

resentation (4.2) of the D-LIML estimator is slightly changed. First, we use the

form that is concentrated to β2 instead of θ1 such as the original concentrated

log-likelihood function of Anderson and Rubin (1949) in Section 3.1.

VR2·1 =
β

′
G

(f,b)
n1 β

β
′
H

(f,b)
n1 β

,

where β = (1, −β′
2)

′
,

G
(f,b)
n1 = Y(f)′(P(b) −P

(b)
1 )Y(f) ,

H
(f,b)
n1 =

1

n
Y(f)′(In −P(b))Y(f) ,
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and Y(f) = (y
(f)
it ) is the n×G matrix consisting only of endogenous variables,

P
(b)
1 = Z

(b)
1

(
Z

(b)′
1 Z

(b)
1

)−1

Z
(b)′
1 ,

where Z
(b)
1 = (z

(1,b)
it ) is the N ×K1 matrix consisting of K1 variables.

Second, H
(f,b)
n1 is normalized by (1/n) in advance, and the representation of nλ·

is changed to λ· in the following theorem.19

λ·1 = min
β2

VR2·1

is equal to the minimum eigenvalue of the following eigenvalue equation,∣∣∣G(f,b)
n1 − �H

(f,b)
n1

∣∣∣ = 0 .

We express the eigenvalues of this equation in ascending order as follows:

0 ≤ λ·1 ≤ λ·2 ≤ · · · .

If the eigenvalue is evaluated at the true value, then the eigenvector β corre-

sponding to the eigenvalue 0 satisfiesΠ2·β = 0. However, if zeros of the eigenvalues

overlap, then multiple solutions (β[1], β[2], · · · ) exist. On the contrary, if the min-

imum eigenvalue is positive, then no β satisfies Π2·β = 0 or the zero constraints

are incorrectly specified. Therefore, the following theorem intuitively corresponds

to searching for the number of eigenvalues close to zero.

As the rank conditions are divided into two, we prepare another notation,∣∣∣J′
2G

(f,b)
n1 J2 − �J

′
2H

(f,b)
n1 J2

∣∣∣ = 0 ,

where J
′
2 = (0, IG2) and express these eigenvalues as 0 ≤ λ21 ≤ λ22 ≤ · · · in

ascending order.

The following result is a rank test of the dynamic structure panel model in long

panel data.

Theorem 3.6 : Supposing assumptions (A1), (A2), and K2 > G2 hold, then

as T → ∞, regardless of N is fixed or tends to infinity,

[i] Under H0 : rank(Π2·) = G∗ < G ,

G−G∗∑
g=1

λ·g
d−→ χ2

(G−G∗)(K2−G∗) .

19The reason is that |G− �(1/n)H| = |G− �∗H| = 0, where � = n�∗.
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Under H0 : rank(Π2·) ≤ G∗ = G2, there exists q such that
∑G−G∗

g=1 λ·g = λ·1 ≤
q a.s., and

q
d−→ χ2

(G−G∗)(K2−G∗) = χ2
K2−G2

.

[ii] Under H0 : rank(Π22) = G2∗ < G2 ,

G2−G2∗∑
g=1

λ2g
d−→ χ2

(G2−G2∗)(K2−G2∗) .

Under H0 : rank(Π22) ≤ G2∗ = G2 − 1, there exists q2 such that
∑G2−G2∗

g=1 λ2g =

λ21 ≤ q2 a.s., and

q2
d−→ χ2

(G2−G2∗)(K2−G2∗) = χ2
K2−G2+1 .

We notice that only the two panel AR test statistics λ·1 and λ21 are eventually

used, which are the minimum eigenvalues of two eigenvalue equations.

First, we consider the following procedure:

H0 : rank(Π22) ≤ G2 − 1 v.s. H1 : rank(Π22) = G2 .

This hypothesis test corresponds to the work of Koopmans and Hood (1953). If

the null hypothesis is true, then multiple solutions β exist. As q2 follows the chi-

square distribution with K2 +G2 − 1 degree of freedom, this rank test becomes a

conservative test with an actual size smaller than the nominal size α%. Using the

critical values of α% and λ21, rejecting the null hypothesis is desirable.

Second, if the above null hypothesis is rejected, then we consider that rank(Π2·)
is either G2 or G = G2 + 1. Therefore,

H0 : rank(Π2·) = G2 v.s. H1 : rank(Π2·) = G2 + 1 .

This hypothesis test corresponds to the study of Anderson and Rubin (1949). If

the alternative hypothesis is true, then β does not exist. Under the null hypothesis

the rank is reduced to G2. Hence, β is unique. Then, λ·1 follows the chi-square

distribution with K2 − G2 degrees of freedom, and accepting the null hypothesis

is desirable. The panel AR statistics λ·1 and nλ of Theorem 3.1 bring the same

result. Therefore, the null hypothesis of the overidentification test is also accepted

if this rank test is accepted.

In sum, the rank conditions are expressed as follows:

rank(Π2·) = G2 = rank(Π22) .

This condition is confirmed by the above procedure. Then, the specification is

justified in the sense that the zero constraints are correct as a structural expression,

and the unique parameter vector (β
′
2, γ

′
1, γ

′
2 = 0

′
) exists.
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4.6 Simulation

We confirm the finite sample properties of Theorem 3.6. The numbers of vari-

ables are G = 3, G2 = 2, and K1 = 0. That is, the right-hand side is only

endogenous variables with the zero constraints such as

y
(1)
it = β21y

(2)
it + β22y

(3)
it + αi + uit ,

where (β21, β22) = (0.7, 0.3). The reduced form has K = 4 exogenous variables,

for g = 2, 3,

y
(g)
it = πg1y

(2)
it−1 + πg2y

(2)
it−2 + πg3y

(3)
it−1 + πg4y

(3)
it−2 + π

(g)
i + v

(g)
it .

As for the error term ωgg = 1, ωgh = 0.3 (g �= h), the individual effect is

πi ∼ N (0, I3). Π = Π2· holds because K = K2 .

Design 3.3 : This design considers the case when the rank condition of Theorem

3.6 [i] is satisfied. The coefficients of reduced form for y
(1)
it are as follows:

π
′
21 = (0.27, 0.07, 0.23, 0.03) ,

as for g = 2, 3,

Π
′
22 =

(
0.3 0.1 0.2 0.0

0.2 0.0 0.3 0.1

)
,

and then, rank(Π22) = 2. Hence, π21 is a linear combination by Π22, and the

null hypothesis rank(Π2·) = G2 = 2 is satisfied; that is, (β21, β22) = (0.7, 0.3) is

identified.

Figure 11 shows the empirical distribution of λ·1 under the null hypothesis, which
follows the chi-square distribution with K2 −G2 = 4− 2 degree of freedom.

Design 3.4 : In this setting, we check the finite sample properties of Theorem

3.6 [ii], and the null hypothesis is that the rank of Π22 is reduced. In the case of

rank(Π22) = 1, we set the values as follows:

Π
′
22 =

(
0.3 0.1 0.2 0.0

0.15 0.05 0.1 0.0

)
.

Figure 12 shows the empirical distribution of λ21, which follows the chi-square

distribution with (G2 −G2∗)(K2 −G2∗) = 1× 3 degree of freedom. In the case of

rank(Π22) = 0, we have the following:

Π
′
22 = O .
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rank test chi(2) 
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Fig. 11: Design 3.3 (G∗ = 2, N = 100, T = 25)

Figure 13 shows the empirical distribution of the sum (λ21 + λ22), which follows

the chi-square distribution with (G2−G2∗)(K2−G2∗) = 2× 4 degrees of freedom.

Although Figures 12 and 13 show the cases when the null hypothesis is the

equality, in the empirical analysis, we should suppose the inequality rank(Π22) ≤ 1;

that is, rank(Π22) is 0 or 1. Then, the conservative test using only the minimum

eigenvalue λ21 is performed. Figure 14 shows the empirical distribution of λ21 in

the case of rank(Π22) = 0 again with q2. The empirical distribution is actually

on the left side of the chi-square distribution with (K2 − G2 + 1) = 3 degree of

freedom. Thus, the experiment suggests that λ21 ≤ q2 ∼ χ2
3 as shown in Theorem

3.6 [ii].

In Part III, we discussed the tests and specifications of the structural panel

model, which are conducted by the panel AR test statistics based on the D-LIML

estimator in Theorem 2.9. The overidentification and exogeneity tests, model se-

lection by the information criterion, and rank tests can be constructed without

being affected by individual effects or long panels. Thus, these procedures could

provide a profound structural analysis. In addition, the GMM method has difficul-

ties in performing the overidentification test in the case of the just identified case,

whereas the LIML method can conduct the test even under the many instruments

and the identification test using the eigenvalues.
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rank test chi(3) 
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Fig. 12: Design 3.4 (G2∗ = 1, N = 100, T = 25)

rank test chi(8) 
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rank test chi(8) 

Fig. 13: Design 3.4 (G2∗ = 0, N = 100, T = 25)
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rank test chi(3) 
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Fig. 14: Design 3.4 (G2∗ = 0, N = 100, T = 25)

5 Conclusions

As existing estimation methods may not work in long panel data, this study

aims to discuss the estimators that can be used in the dynamic structural panel

model. Although many simple models exist in the theoretical analyses, this work

considered the general models for empirical analyses. We have summarized the

results of previous studies and proposed the estimation and testing procedures,

focusing on the usefulness of the LIML methods such as the T-LIML and D-LIML

estimators.

We showed that T-LIML estimation is robust to the incidental parameters prob-

lem of the initial values indicated by Anderson and Hsiao (1981). Although the

T-LIML estimator is the best finite sample property, the calculation is compli-

cated in the general model. Therefore, we proposed the asymptotically equivalent

D-LIML estimator. This estimator is based on the doubly filters and the variance

ratio in the study of Anderson and Rubin (1949), which is originally the concen-

trated log-likelihood function. D-LIML estimation is practical in estimation and

hypothesis test and robust in the dynamic panel model under the large-K asymp-

totics, which is developed by Kunitomo (1980). We hope that the results of the

LIML methods would contribute to structural panel analysis.
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6 Appendix: Proofs

Proof of Theorem 2.6 : We first show the following:

lim
N, T→∞

E
[

1

NT

∂2L0

∂π∂ω

]
= 0 , lim

N, T→∞
E
[

1

NT

∂2L0

∂π∂ωξ

]
= 0 . (6.1)

We use the following relations,

y
(�)
i,−1 = wi −wi0 , v

(�)
i = ξi + vi , (6.2)

where wi = (wi0, ..., wiT−1)
′, wi0 = wi0ι, ξi = ξiι, and ι is the T × 1 vector whose

elements are unity.

(A+ bb′)−1 = A−1 − 1

1 + b′A−1b
A−1bb′A−1 , (6.3)

using this formula, it follows that

Ω−1
ξv = (ωξιι

′ + ωIT )
−1

=
1

ω
(IT − ψT ιι

′) ,

where ψT is defined by

ψT =
ωξ

Tωξ + ω
. (6.4)

The derivative for ω evaluated at the true value is given by

E
[

1

NT

∂2L0

∂π∂ω

]

= E
⎡
⎣ 1

T

∂
(
y
(�)′
i,−1Ω

−1
ξv v

(�)
i

)
∂ω

⎤
⎦

= − 1

Tω
E
[
y
(�)′
i,−1Ω

−1
ξv v

(�)
i

]
+

ωξ
Tω(Tωξ + ω)2

E [w′
iιι

′vi +w′
iιι

′ξi −w′
i0ιι

′vi −w′
i0ιι

′ξi] , (6.5)

where the second equality is from (6.2) and the following:

∂Ω−1
ξv

∂ω
= − 1

ω
Ω−1
ξv +

ωξ
ω(Tωξ + ω)2

ιι′ . (6.6)

The fact that for any T the first term of (6.5) becomes zero is shown by (6.7)

below. The second term of (6.5) is shown as O(T 2/T 3) and converges to zero. The
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derivative for ωξ is

E
[

1

NT

∂2L0

∂π∂ωξ

]
= E

⎡
⎣ 1

T

∂
(
y
(�)′
i,−1Ω

−1
ξv v

(�)
i

)
∂ωξ

⎤
⎦

= − 1

Tω

(Tωξ + ω)− ωξT

(Tωξ + ω)2
y
(�)′
t−1ιι

′vξ

= − 1

Tω

ω

(Tωξ + ω)2
y
(�)′
t−1ιι

′vξ .

This term also converges to zero because it is proportional to the second term of

(6.6). Therefore, (6.1) is obtained. As the Hessian of (A3)-[i] is the block diagonal

matrix, we have that

√
NT (π̂TM − π) = − 1

hπ

1√
NT

N∑
i=1

y
(�)′
i,−1Ω

−1
ξv v

(�)
i + op(1) ,

where

hππ = lim
N, T→∞

E
[

1

NT

∂L0

∂π∂π

]
.

We confirm the following:

E
[

1√
T
y
(�)′
t−1Ω

−1
ξv v

(�)
i

]

=
1√
T
E
[
−ψT
ω

w′
iιι

′vi +
1

ω
(w′

iξi − ψTw
′
iιι

′ξi)−
1

ω
(w′

0ξi − ψTw
′
0iιι

′ξi)
]

= 0 . (6.7)

The sum of the terms whose expectations are nonzero becomes zero. For the sum

of the second and third terms, using ξi = −(1− π)wi0,

E
[
1

ω
(w′

iξi − ψTw
′
iιι

′ξi)−
1

ω
(w′

i0ξi − ψTw
′
0ιι

′ξi)
]

= − 1− π

1− π2
(1− ψTT )

(
1− πT

1− π
− T

)

= − 1− π

1− π2

ω

ω + ωξT

(
1− πT

1− π
− T

)
.

The expectation of the first term of (6.7) is given by

E
[
−ψT
ω

w′
iιι

′vi

]
= − ψT

1 − π

(
(T − 1)− π

1− πT−1

1− π

)

= − 1− π

1 − π2

ω

ω + ωξT

(
(T − 1)− π

1− πT−1

1− π

)
,
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where the second equality is from the following by assumption (a2),

ωξ = Var[−(1− π)wi0]

=
(1− π)2

1− π2
ω .

Thus, from the following relation,(
1− πT

1− π
− T

)
= −

(
(T − 1)− π

1− πT−1

1− π

)
,

the sum of (6.7) becomes zero.

Regarding the generalized Lindeberg-Feller condition (cf. Phillips and Moon

(1999), Hahn and Kuersteiner (2002)), for any i and T the following sufficient

condition holds by assumption (a1 ),

E
[(

1√
T
y
(�)′
i,−1Ω

−1
ξv v

(�)
i

)4
]
<∞ .

Therefore, the asymptotic normality holds,
√
NT (π̂TM − π)

d−→ N ( 0,
gπ
h2ππ

) ,

where

gπ = lim
N, T→∞

1

NT

N∑
i=1

E
[(

y
(�)′
i,−1Ω

−1
ξv v

(�)
i

)2
]
.

hππ and gπ are as follows:

hππ = − lim
T→∞

E
[
1

T
y
(�)′
t−1Ω

−1
ξv y

(�)′
t−1

]

= − lim
T→∞

1

T
E [w′

iΩ
−1
ξv wi − 2w′

iΩ
−1
ξv wi0 +w′

i0Ω
−1
ξv w0

]
. (6.8)

For the first term,

1

T
E [w′

iΩ
−1
ξv wi

]
= E

⎡
⎣ 1

Tω
w′
iwi − ψT

ω

(
1√
T

T∑
t=1

wit−1

)2
⎤
⎦

→ 1

ω

ω

1− π2
.

As ψT = O(1/T ) and (
∑T

t=1 wit−1/
√
T )2 = Op(1), this second term converges in

probability to zero. As for the third term of (6.8),

1

T
E [w′

i0Ω
−1
ξv wi0

]
=

1

T
E [Tw2

i0 − ψT (Twi0)
2]

= (1− ψTT )E [w2
i0]

→ 0 ,
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where the second equality is from that

1− ψTT =
ω

Tωξ + ω
= O(

1

T
) .

Therefore, the second term of (6.8) also converges to zero by repeatedly using the

Cauchy-Schwarz inequality (hereinafter, abbreviated as CS),

E
[
1

T

∣∣∣(Ω− 1
2

ξv wi)
′
(Ω

− 1
2

ξv wi0)
∣∣∣] ≤ E

[(
1

T
w

′
iΩ

−1
ξv wi

) 1
2
(
1

T
w

′
0Ω

−1
ξv wi0

) 1
2

]

≤
(
E
[
1

T
w

′
iΩ

−1
ξv wi

]
E
[
1

T
w

′
i0Ω

−1
ξv wi0

]) 1
2

.

gπ is given by

gπ = lim
T→∞

E
[
1

T

(
y
(�)′
i,−1Ω

−1
ξv v

(�)
i

)2
]

= lim
T→∞

1

T
E
[
(w′

iΩ
−1
ξv v

(�)
i )2 − 2w′

i0Ω
−1
ξv v

(�)
i v

(�)′
i Ω−1

ξv wi + (w′
i0Ω

−1
ξv v

(�)
i )2

]
.

(6.9)

For the first term,

1

T
E
[
(w′

iΩ
−1
ξv v

(�)
i )2

]
=

1

T
E [(w′

iΩ
−1
ξv vi)

2 + 2w′
iΩ

−1
ξv viξ

′
iΩ

−1
ξv wi + (w′

iΩ
−1
ξv ξi)

2
]
.

(6.10)

This first term converges to the following:

1

T
E [(w′

iΩ
−1
ξv vi)

2
]

=
1

Tω2
E [(w′

ivi)
2 − 2φTw

′
iviw

′
iιι

′vi + φ2
T (w

′
iιι

′vi)2
]

→ 1

ω2
E [w2

it−1v
2
it] =

1

1− π2
,

because the third term (1/T )φ2
TE [(w′

iιι
′vi)2] = O(1/T 3)O(T 2) → 0 by φT =

O(1/T ), and the second term also converges to zero by the CS inequality. As for

the third term of (6.10),

1

T
E [(w′

iΩ
−1
ξv ξi)

2
]

=
1

Tω2
E
⎡
⎣
(
ξi

T∑
t=1

wit−1 − φT ξiT
T∑
t=1

wit−1

)2
⎤
⎦

=
1

ω2
(1− φTT )

2E
⎡
⎣ξ2i

(
1√
T

T∑
t=1

wit−1

)2
⎤
⎦

→ 0 ,
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where (1−φTT )
2 = O(1/T 2). From the above, the first term of (6.9) converges to

E [w2
it−1v

2
it].

Finally, we evaluate the third term of (6.9),

1

T
E
[
(w′

i0Ω
−1
ξv v

(�)
i )2

]
=

1

T
E [(w′

i0Ω
−1
ξv vi)

2 + 2w′
i0Ω

−1
ξv viξ

′
iΩ

−1
ξv wi0 + (w′

i0Ω
−1
ξv ξi)

2
]
.

This first term is O(1/T ) under similar arguments. Regarding the third term,

1

T
E [(w′

i0Ω
−1
ξv ξi)

2
]

=
1

Tω2
(T − φTT

2)2E [w2
i0ξ

2
i

]
= O(

1

T
) ,

the second term converges to zero by the CS inequality, and thus, the third term

of (6.9) converges to zero. Using similar arguments, the second term of (6.9) also

converges to zero. Therefore, (gπ/h
2
ππ) becomes 1− π2. �

Proof of Theorem 2.7 : We first consider the case when N < ∞. From the

result of Lemma 2.2-[ii],

√
NT (φ̂TL − φ) =

√
NT (φ̂PL − φ) + op(1) .

Therefore, the T-LIML estimator is asymptotically equivalent to the pseudo T-

LIML estimator and the result of d = 0 holds for Theorem 2.10.

Next, consider the case when N → ∞. As Ωξ is consistently estimated, the

Hessian can be evaluated at the true value. We show the following:

lim
N, T→∞

E
[

1

NT

∂2L2

∂φ∂ω′

]
= O

3×4
, lim

N, T→∞
E
[

1

NT

∂2L2

∂φ∂ω′
ξ

]
= O

3×4
, (6.11)

where φ = (β2, γ1, π22), ω = vec(Ω), and ωξ = vec(Ωξ). Following Hsiao and

Zhou (2015) we have the following expression:

Ω−1
ξv

2T×2T

= (Ωξ ⊗ ιι′ +Ω⊗ IT )
−1

= Ω−1 ⊗QT +Ψ−1
T ⊗ JT ,

where

ΨT
2×2

= Ω+ TΩξ , JT
T×T

=
1

T
ιι′ ,

and we express the elements of the inverse matrix as follows:

Ω−1 =

(
ω11 ω12

ω21 ω22

)
, Ψ−1

T =

(
ψ11
T ψ12

T

ψ21
T ψ22

T

)
.
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Regarding the score function of the reduced form,

s11,i = ω11y
(1,�)′
i,−1 QTv

(1)
i + ω12y

(1,�)′
i,−1 QTv

(2)
i + ψ11

T y
(1,�)′
i,−1 JTv

(1,�)
i + ψ12

T y
(1,�)′
i,−1 JTv

(2,�)
i ,

s12,i = ω11y
(2,�)′
i,−1 QTv

(1)
i + ω12y

(2,�)′
i,−1 QTv

(2)
i + ψ11

T y
(2,�)′
i,−1 JTv

(1,�)
i + ψ12

T y
(2,�)′
i,−1 JTv

(2,�)
i ,

s22,i = ω21y
(2,�)′
i,−1 QTv

(1)
i + ω22y

(2,�)′
i,−1 QTv

(2)
i + ψ21

T y
(2,�)′
i,−1 JTv

(1,�)
i + ψ22

T y
(2,�)′
i,−1 JTv

(2,�)
i ,

where y
(g,�)′
i,−1 = (0, y

(g,�)
i1 , ..., y

(g,�)
iT−1)

′ and v
(g,�)
i = ξ

(g)
i + v

(g)
i (g = 1, 2). Meanwhile,

for the structural equation,

∂L2

∂β2
=

N∑
i=1

π22s12,i ,
∂L2

∂γ1
=

N∑
i=1

s11,i ,
∂L2

∂π22
=

N∑
i=1

β2s12,i + s22,i .

We show the following as an example:

lim
N, T→∞

E
[

1

NT

∂2L2

∂β2∂ω11

]
= 0 .

It follows that

E
[

1

NT

∂2L2

∂β2∂ω11

]

=
π22
T

E
[(

y
(2,�)′
i,−1 , 0

′
) ∂Ω−1

ξv

∂ω11

(
v
(1,�)′
i , v

(2,�)′
i

)′
]

=
π22
T

E
[(

y
(2,�)′
i,−1 , 0

′
)(∂Ω−1

∂ω11
⊗QT +

∂Ψ−1
T

∂ω11
⊗ JT

)(
v
(1,�)′
i , v

(2,�)′
i

)′]
.

For the derivative with respect to Ω−1,

∂Ω−1

∂ω11
= −ω22

|Ω|Ω
−1 +

1

|Ω|

(
0 0

0 1

)

=

(
ω̇11 ω̇12

ω̇21 ω̇22

)
(say, ) .

As for the derivative with respect to Ψ−1
T , put the following:

Ψ−1
T =

1

T

(
1

T
Ω+Ωξ

)−1

=
1

T
(ΩT )

−1 . (6.12)

Then,

∂Ψ−1
T

∂ω11

=
1

T

[
− ωT,22
T |ΩT |Ω

−1
T +

1

|ΩT |

(
0 0

0 1
T

)]

=

(
ψ̇11
T ψ̇12

T

ψ̇21
T ψ̇22

T

)
(say, ) ,

114



where |ΩT | > 0 because ΩT is the sum of the positive definite matrices. In fact,

Ωξ = (I2 −Π
′
)E [wi0w

′
i0](I2 −Π) > O .

From the above,

E
[

1

NT

∂2L2

∂β2∂ω11

]

= π22

(
ω̇11

T
E
[
y
(2,�)′
i,−1 QTv

(1)
i

]
+
ω̇12

T
E
[
y
(2,�)′
i,−1 QTv

(2)
i

])

+π22

(
ψ̇11
T

T 2
E
[
y
(2,�)′
i,−1 ιι

′
v
(1,�)
i

]
+
ψ̇12
T

T 2
E
[
y
(2,�)′
i,−1 ιι

′
v
(2,�)
i

])

= O

(
1

T

)
+O

(
T 2

T 4

)
,

because ψ̇11
T and ψ̇12

T are O(1/T 2), and the following elements are O(1),

E
[(

y
(1,�)′
i,−1

y
(2,�)′
i,−1

)
QT

(
v
(1)
i , v

(2)
i

)]

= −
(
I2 −Π

′
)−2

[(
1− 1

T

)
I2 −Π

′
+

1

T
(Π

′
)T
]
Ω .

By using similar aruguments for the other elements, the former of (6.11) is verified.

For the latter of (6.11), we show that

lim
N, T→∞

E
[

1

NT

∂2L2

∂β2∂ωξ,11

]
= 0 .

It follows that

E
[

1

NT

∂2L2

∂β2∂ωξ,11

]
=

π22
T

E
[(

y
(2,�)′
i,−1 , 0

′
)(∂Ψ−1

T

∂ωξ,11
⊗ JT

)(
v
(1,�)′
i , v

(2,�)′
i

)′]

= O

(
T 2

T 3

)
.

For the derivative,

∂Ψ−1
T

∂ωξ,11
=

1

T

[
−ωT,22|ΩT |Ω

−1
T +

1

|ΩT |

(
0 0

0 1

)]
,

because each element is O(1/T ). Other elements of the latter in (6.11) are also

O(1/T ) under similar aruguments. Thus, when N and T go to infinity,

√
NT (φ̂TL − φ) = −H−1

φφ

1√
NT

N∑
i=1

s
(�)
i + op(1) ,
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where s
(�)
i = (π22s12,i, s11,i, β2s12,i + s22,i)

′
and

Hφφ = lim
N, T→∞

E
[

1

NT

∂2L2

∂φ∂φ′

]

= − lim
N, T→∞

E

⎡
⎢⎣ 1

T

⎛
⎜⎝ π2y

(2,�)′
i,−1 0′

y
(1,�)′
i,−1 0′

βy
(2,�)′
i,−1 y

(2,�)′
i,−1

⎞
⎟⎠Ω−1

ξv

(
π2y

(2,�)
i,−1 y

(1,�)
i,−1 βy

(2,�)
i,−1

0 0 y
(2,�)
i,−1

)⎤⎥⎦ .

The expectation of the score function vanishes:

E
[
s
(�)
i

]
= 0 ,

because Hsiao and Zhou (2015) show that for any T ,

E [s11,i] = E [s12,i] = E [s22,i] = 0 .

As for the score function such as Ωξ, the proof is the same as that of Theorem

2.13.

Consider the (1,1) element of Hφφ as an example,

[
y
(2,�)′
i,−1 , 0

′
]
Ω−1
ξv

[
y
(2,�)
i,−1

0

]
=

[
(w

(2)
i −w

(2)
i0 )′, 0′

]
Ω−1
ξv

[
w

(2)
i −w

(2)
i0

0

]

= (w
(2)
i −w

(2)
i0 )′

(
ω11QT + ψ11

T JT
)
(w

(2)
i −w

(2)
i0 )

= w
(2)′
i Ω11

ξvw
(2)
i − 2w

(2)′
i Ω11

ξvw
(2)
i0 +w

(2)′
i0 Ω11

ξvw
(2)
i0 ,

(6.13)

where

Ω11
ξv = ω11QT + ψ11

T JT .

First, we show that the third term of (6.13) converges in probability to zero.

1

T
E
[
w

(2)′
i0 Ω11

ξvw
(2)
i0

]
=

1

T
E
[
w

(2)′
i0 (ω11IT − (ω11 − ψ11

T )JT )w
(2)
i0

]
= w11E [w(2)2

i0 ]− (ω11 − ψ11
T )E [w(2)2

i0 ]

= ψ11
T E [w(2)2

i0 ] ,

where ψ11
T = O(1/T ) is negligible due to (6.4). Regarding the first term of (6.13),

1

T
E
[
w

(2)′
i Ω11

ξvw
(2)
i

]
= E

⎡
⎣ω11

T
w

(2)′
i w

(2)
i − ω11 − ψ11

T

T

(
1√
T

T∑
t=1

w
(2)
it−1

)2
⎤
⎦

→ ω11E [w(2)2
it−1] .
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Therefore, the (1,1) element converges to ω11π2
22E [w(2)2

it−1]. Then, we obtain that

Hφφ = −E

⎡
⎢⎣
⎛
⎜⎝ π22w

(2)
it−1 0

w
(1)
it−1 0

β2w
(2)
it−1 w

(2)
it−1

⎞
⎟⎠Ω−1

(
π22w

(2)
it−1 w

(1)
it−1 β2w

(2)
it−1

0 0 w
(2)
it−1

)⎤⎥⎦ . (6.14)

Second, we clarify the limit of the sum of squares Gφ,

Gφ = lim
N, T→∞

1

NT

N∑
i=1

E
[
s
(�)
i s

(�)′
i

]
. (6.15)

For instance, the (1,1) element is given by

1

T
E [(π22s12,i)2] = 1

T
E
[
π2
22

(
y
(2,�)′
i,−1 Ω

11
ξvv

(�,1)
i + y

(2,�)′
i,−1 Ω

12
ξvv

(�,2)
i

)2
]
,

where another expression of Ω11
ξv is as follows:

Ω11
ξv = ω11

(
IT − ϕ11

T ιι
′
)
,

ϕ11
T =

ω11 − φ11
T

Tω11
.

Then, ϕ11
T = O(1/T ) and

1− ϕ11
T T =

φ11
T

ω11
= O

(
1

T

)
,

that is, the order is the same as that in (6.4). Then, under the similar arguments

of Theorem 2.6,

1

T
E [(π22s12,i)2] → π2

22E
[(
w

(2)
it−1, 0

)
Ω−1(vitv

′
it)Ω

−1

(
w

(2)
it−1

0

)]

= ω11π2
22E [w(2)2

it ] .

Using similar arguments for other elements, we have

Gφ = −Hφφ .

　Moreover, from the results of (6.14) and (6.15), the terms related to the long-

difference can be asymptotically ignored as the remainder terms,

√
NT (φ̂TL − φ) = −H−1

φφ

1√
NT

N∑
i=1

T∑
t=1

sit + op(1) ,
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where

sit
3×1

=

⎡
⎢⎣ (π22w

(2)
it−1, 0)

(w
(1)
it−1, 0)

(β2w
(2)
it−1, w

(2)
it−1)

⎤
⎥⎦Ω−1vit .

If the fourth moment of the error term exists, then the generalized Lindeberg-Feller

condition holds. Therefore,

√
NT

(
φ̂TL − φ

)
d−→ N ( 0, H−1

φφGφH
−1
φφ ) .

The variance-covariance matrix for the structural parameter θ1 = (β2, γ1)
′
is

obtained as the 2× 2 submatrix of the upper left of the 3× 3 matrix −H−1
φφ . After

some calculation,

(
1

σ2
Φ

)
2×2

−1

=

(
ω11ω22 − ω12ω21

β2
2ω

11 + 2β2ω12 + ω22
Φ

)−1

, (6.16)

Φ =

(
0 π22
1 0

)
E
[(

w
(1)2
it−1 w

(1)
it−1w

(2)
it−1

w
(2)
it−1w

(1)
it−1 w

(2)2
it−1

)](
0 1

π22 0

)
,

where the first equality holds because σ2 = β
′
Ωβ and

Ω =
1

|Ω−1|

(
ω22 −ω12

−ω21 ω11

)
.

Thus, we obtain the desired result. �

Proof of Theorem 2.8 : For the companion reduced form of (3.30), we put

zit+1 = y
(3)
it ,

Π∗
3×3

= (π1, π2, π3) ,

and

Ω∗
3×3

=

(
Ω ω13

ω
′
13 ω33

)
, E [vitv(3)it ] = ω13 , E [(v(3)it )2] = ω33 .

Then, the log-likelihood function is given by

L2 = −N
2
log |Ω∗ξv| − 1

2

N∑
i=1

v
(�)′
i Ω−1

∗ξvv
(�)
i ,

118



where

v
(�)
i

3T×1

=

⎡
⎢⎣ y

(1,�)
i −Y

(�)
i,−1 ( γ11 + β2π21, β2π22, γ12 + β2π23)

′

y
(2,�)
i −Y

(�)
i,−1π2

y
(3,�)
i −Y

(�)
i,−1π3

⎤
⎥⎦ .

As the two-dimensional panel VAR of Theorem 2.7 is just replaced by the three-

dimensional panel VAR, the following holds as T → ∞ from the discussion of

Theorem 2.7 and Theorem 2.12,

√
NT

(
φ̂TL − φ

)
d−→ N ( 0, −H−1

φφ ) ,

where

φ
9×1

=
(
θ

′
1, π

′
2, π

′
3

)′

,

θ1 = (β2, γ11, γ12)
′
,

and

−Hφφ
9×9

= E
[(

W12 0

O wit−1

)
Ω−1

∗

(
W

′
12 O

′

0
′

w
′
it−1

)]
,

W12
6×2

=

⎛
⎜⎜⎜⎝

π21w
(1)
it−1 + π22w

(2)
it−1 + π23w

(2)
it−1 0

w
(1)
it−1 0

w
(3)
it−1 0

β2wit−1 wit−1

⎞
⎟⎟⎟⎠ ,

wit−1
3×1

=
(
w

(1)
it−1, w

(2)
it−1, w

(3)
it−1

)′

.

For the asymptotic normality:

√
NT

(
θ̂TL − θ1

)
d−→ N ( 0, σ2Φ−1 ) ,

we show that the asymptotic variance-covariance matrix of the structural param-

eters becomes

(I3,O) (−Hφφ)
−1 (I3,O)

′
= σ2Φ−1 ,

and that this expression satisfies the following using the notations of (3.16) and

(3.17),

Γ0
3×3

= E
[
wit−1w

′
it−1

]
, w

(3)
it−1 = zit − μ

(3)
i ,

Π′
I

(1+2)×3

=

(
(π21, π23) π22

I2 0

)
.

119



That is, σ2 = β
′
Ωβ is invariant, if only the exogenous variable w

(3)
it−1 is added

compared with Theorem 2.7. Consider the variance-covariance matrix −H−1
12 when

the recued form of y
(3)
it is not estimated,

−H12
6×6

= E
[
W12Ω

−1W
′
12

]
.

From the proof of Theorem 2.12, it follows that

(I3,O) (−H12)
−1 (I3,O)

′
= σ2Φ−1 .

Therefore, if the following holds, then the theorem is verified,

(I6,O)H−1
φφ (I6,O)

′
= H−1

12 . (6.17)

We show this euqlity in the following. Put

Ω−1
∗ =

(
Ω11 ω13

ω13′ ω33

)
.

The formula of the inverse matrix for a symmetric partitioned matrix is(
A B

B
′

C

)−1

=

(
(A−BC−1B

′
)−1 −(A−BC−1B

′
)−1BC−1

　　　 (C−B
′
A−1B)−1

)
. (6.18)

For the left-hand side of (6.17), we have the following expression:

(I6,O)H−1
φφ (I6,O)

′

= (I6,O)

(
E [W12Ω

11W
′
12

] E [W12ω
13w

′
it−1

]
E [wit−1ω

13′W
′
12

] E [wit−1ω
33w

′
it−1

]
)−1

(I6,O)
′

=

(
E [W12Ω

11W
′
12]− E [W12ω

13w
′
it−1]

(
E [wit−1ω

33w
′
it−1]

)−1

E [wit−1ω
13′W

′
12]

)−1

.

As for the right-hand side of (6.17), Ω is represented by the element of Ω−1
∗ using

(6.18),

H−1
12 =

(
E
[
W12

(
Ω11 − 1

ω33
ω13ω13′

)
W

′
12

])−1

.

Hence, it is sufficient to show that

E
[
W12ω

13w
′
it−1

] (
E [wit−1w

′
it−1]

)−1

E
[
wit−1ω

13′W
′
12

]
= E

[
W12ω

13ω13′W
′
12

]
.

(6.19)
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Note the following relations:

W12ω
13

6×1
= Θωwit−1 ,

Θω
6×3

=

⎛
⎜⎜⎜⎝

ω13
1 π21 ω13

1 π22 ω13
1 π23

ω13
1 0 0

0 0 ω13
1

(ω13
1 β2 + ω13

2 )I3

⎞
⎟⎟⎟⎠ ,

where ω13 = (ω13
1 , ω

13
2 )

′
. Therefore, the equality of (6.19) holds. �

Proof of Theorem 2.9 : We first show that

1

NT
G(f,b)
n

p−→ G0 = Θ
′
I
ΦΘI , Φ > O , (6.20)

and

1

NT
H(f,b)
n

p−→ H0 =

(
Ω O

O O

)
, (6.21)

where

ΘI

(G2+K1)×(G+K1)
= (θ, IG2+K1) ,

(y(1,f),Y(2,f),Z(1,f)) = (y(1,f),X(f)) and X(f) is the N(T − 1)× (G2 +K1) matrix.

For k = 1, · · · , K and g = 1, · · · , (1 +G2 +K1), we have that

1

NT
e′g(y

(1,f)′ ,X(f)′)Z(b)ek

=
1

NT

N∑
i=1

T−1∑
t=1

(y
(1,f)
it ,x

(f)′
it )egz

(b)′
it−1ek

=
1

NT

N∑
i=1

T−1∑
t=1

w
[g]
it w

[k]
it−1 − (1− ft)w

[g]
it w

[k]
it−1 − ftw̄

[k]
it−1,0w

[g]
it − w

[k]
it−1w̃

[g]
it,T + w̄

[k]
it−1,0w̃

[g]
it,T ,

(6.22)

where ek = (0, · · · , 1, · · · , 0)′ whose k-th element is only unity,

w̄
[k]
it−1,0 =

1

t
(w

[k]
it−2 + · · ·+ w

[k]
i−1) ,

w̃
[g]
it,T =

ft
T − t

(w
[g]
it+1 + · · ·+ w

[g]
iT ) , (6.23)

and for g = 1, · · · , (1 +G2),

w
[g]
it = e′g(Π

′J
′
wit−1 + vit) ,
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but for g = 1, · · · , K1, we set w
[g]
it = w

[g]
it−1 .

Regarding the last term of (6.22),

E
[

1

NT

N∑
i=1

|
T−1∑
t=1

w̄
[k]
it−1,0w̃

[g]
it,T |

]
= E

[
1

T
|
T−1∑
t=1

w̄
[k]
it−1,0w̃

[g]
it,T |

]

≤ 1

T

T−1∑
t=1

√
E [w̄[k]2

it−1,0]

√
E [w̄[g]2

it,T ]

=
1

T

T−1∑
t=1

O

(√
1

t

)
O

(√
1

(T − t)

)

≤ O

(
log T

T

)
,

where the second and fourth inequalities are based on the CS inequality. That is,

this term converges in the 1th mean to zero as T → ∞. From similar arguments,

the third and fourth terms of (6.22) are O(
√
T/T ). The second term is also

evaluated as O(
√
T/T ) using the relation that (1−ct)2 ≤ 1/(T − t+1). Therefore,

we obtain

1

NT
(y(1,f)′ ,X(f)′)Z(b) p−→ Θ

′
IΠ

′
IJ

′E [wit−1w
′
it−1] ,

where

Π
′
I

(G2+K1)×K
=

(
Π′

2

IK1 O

)
=

(
Π′

12 Π′
22

IK1 O

)
,

because E [vitw′
it−1] = O. Note that for the rank of ΠI,

rank(Π
′
I) = G2 +K1 .

If there is a (G2 +K1)× 1 non-zero vector (a
′
2, a

′
1)

′
such that

Π2a2 +

(
IK1

O

)
a1 = 0 ,

then Π22a2 = 0. Considering the rank condition of identification, a2 must be 0,

and thus, IK1a1 = 0. But it contradicts (a
′
2, a

′
1)

′ �= 0. Therefore,

Φ = Π
′
I
J

′E [wit−1w
′
it−1

]
JΠI > O .

Moreover, using the similar arguments of (6.22),

1

NT
Z(b)′Z(b) p−→ J

′E [wit−1w
′
it−1]J .
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From the above results, the convergence of (6.20) is shown.

Next, we show the convergence of H
(f,b)
n . For g, h = 1, · · · , (1 +G2 +K1),

1

NT
e′g(y

(1,f)′ ,X(f)′)(y(1,f),X(f))eh =
1

NT

N∑
i=1

w
[g]′
i QTw

[h]
i

=
1

NT

N∑
i=1

T∑
t=1

w
[g]
it w

[h]
it − 1

N

N∑
i=1

w̄
[g]
i w̄

[h]
i

p−→ e′gΘ
′
I
ΦΘIeh + e′g

(
Ω O

O O

)
eh ,

where w
[g]
i = (w

[g]
i1 , ..., w

[g]
iT )

′ and w̄[g]
i = (1/T )

∑
t w

[g]
it . Therefore, (6.21) is obtained

by using the result of convergence for G
(f,b)
n .

Solving the first-order condition of the minimization for (4.2), the sampling error

of the D-LIML estimator is given by

√
NT (θ̂ − θ1) =

(
1

NT
X(f)′P(b)X(f) − λ

NT
X(f)′(I−P(b))X(f)′

)−1

×
(

1√
NT

X(f)′P(b)u(f) −
√
NTλ

NT
X(f)′(I−P(b))u(f)

)
,

where

λ = min
θ1

VR1 ,

u(f)

n×1
= (u

(f)′
1 , · · · , ,u(f)′

N )
′
.

Consider the convergence of λ. From the continuity of the minimum eigenvalue λ,

we have the following determinant:∣∣∣∣∣Θ′
I
ΦΘI − plim

T→∞
λ

(
Ω O

O O

)∣∣∣∣∣ = 0 , (6.24)

where zero is a solution due to nonsingularity of Θ
′
I
ΦΘI. If there is a solution such

that plim
T→∞

λ < 0, then

∣∣∣∣∣Θ′
IΦΘI − plim

T→∞
λ

(
Ω O

O O

)∣∣∣∣∣ > 0 .

This is because that for any (1 + G2 + K1) non-zero vector (a
′
2, a

′
1)

′
we have
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a
′
2Ωa2 > 0. In the case when a2 = 0 and a1 �= 0, we also have

(0
′
, a

′
1)Θ

′
IΦΘI

(
0

a1

)
= (0

′
, a

′
1)Φ

(
0

a1

)

= a
′
1(IK1,O)J

′E [wit−1w
′
it−1]J

(
IK1

O

)
a1

> 0 .

This violates (6.24), and thus, plim
T→∞

λ = 0. Furthermore, from the definition of λ,

0 ≤
√
NTλ ≤

√
NT
NT

θ
′
G

(f,b)
n θ

1
NT
θ

′
H

(f,b)
n θ

.

For the numerator,

√
NT

NT
θ

′
G(f,b)
n θ =

(
u(f)′Z(b)

√
NT

)(
Z(b)′Z(b)

NT

)−1(
Z(b)′u(f)

NT

)
= Op(1)× op(1) ,

that is,
√
nλ converges in probability to zero. From the above, the sampling

error of the D-LIML estimator is asymptotically equivalent to that of the D-GMM

estimator of Corollary 2.1,

√
NT (θ̂ − θ1) =

(
1

NT
X(f)′P(b)X(f)

)−1
1√
NT

X(f)′P(b)u(f) + op(1)

= Φ−1

(
1√
NT

X(f)′P(b)u(f)

)
+ op(1) .

As the dimension K is finite, each term converges as follows:

1√
NT

X(f)′P(b)u(f) =
1

NT
X(f)′Z(b)

(
1

NT
Z(b)′Z(b)

)−1
1√
NT

Z(b)′u(f)

=
1√
NT

Π
′
IZ

(b)′u(f) + op(1) .

We consider the effects of the forward filter and the convergence in distribution as

follows:

1√
NT

e′kZ
(b)′u(f) =

1√
NT

N∑
i=1

T−1∑
t=1

z
(b)′
it−1eku

(f)′
it

=
1√
NT

N∑
i=1

T−1∑
t=1

(w
[k]
it−1uit − (1− ft)w

[k]
it−1uit − w

[k]
it−1ũit,T − w̄

[k]
it−1,0u

(f)
it ) ,

(6.25)
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where

ũit,T =
ft

T − t
(uit+1 + · · ·+ uiT ) .

First, it holds that E [Z(b)′u(f)] = 0. For the second term of (6.25),

Var
[

1√
NT

N∑
i=1

T−1∑
t=1

(1− ft)w
[k]
it−1uit

]
= Var

[
1√
T

T−1∑
t=1

(1− ft)w
[k]
it−1uit

]

=
1

T

T−1∑
t=1

(1− ft)
2Var[w[k]

it−1uit]

= O

(
log T

T

)
.

As for the third term,

Var
[

1√
T

T−1∑
t=1

w
[k]
it−1ũit,T

]
=

1

T

T−1∑
s=1

T−1∑
t=1

E [w[k]
is−1Et−1[ũis,T ũit,T ]w

[k]
it−1]

=
1

T

T−1∑
s=1

T−1∑
t=1

σ2fsft
T − s

E [w[k]
is−1w

[k]
it−1]

= O

(
log T

T

)
.

Finally, regarding the fourth term,

Var
[

1√
T

T−1∑
t=1

w̄
[k]
it−1,0u

(f)
it

]
=

σ2

T

T−1∑
t=1

E [w̄[k]2
it−1,0]

= O

(
log T

T

)
.

Therefore, we obtain the following:

1√
NT

Π
′
I
Z(b)′u(f) =

1√
NT

Π
′
I
J

′
N∑
i=1

T−1∑
t=1

wit−1uit + op(1)

d→ N (0, σ2Φ) ,

where the asymptotic normality is based on the standard central limit theorem for

autoregressive processes (cf. Anderson (1978)). �

Proof of Lemma 2.2 : [i] We first show that the pseudo log-likelihood function
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L2·0 can be also expressed by using the forward filter. Put Δv∗i = (Δv
(1)′
∗i , · · · , Δv

(G)′
∗i )

′
,

where

Δv
(g)
∗i

(T−1)×1

=
(
Δv

(g)
i2 , , · · · , Δv(g)iT

)′

.

Let 	JT−1 be the matrix such that 	J
′
T−1Δv∗i = Δvi; that is, 	J

′
T−1 sorts Δv∗i. Then,

L2·0 = −N
2
log |E [v∗iv

′
∗i]| −

1

2

N∑
i=1

v
′
∗i
(
E [v∗iv

′
∗i]
)−1

Δv∗i ,

because 	J
′
T−1 has the following properties:

(	J
′
T−1)

−1 = 	JT−1 , |	JT−1| = 1 .

From Df of (2.8),

(DTD
′
T )

− 1
2Δv

(g)
∗i = v

(g,f)
i .

Hence, using the following transformation:

T
G(T−1)×G(T−1)

= IG ⊗ (DTD
′
T )

− 1
2 ,

we obtain

L2·0 = −N
2
log |E [Δv∗iΔv∗i] | − 1

2

N∑
i=1

(TΔv∗i)
′ (

TE
[
Δv∗iΔv

′
∗i
]
T

′
)−1

TΔv∗i

= N log |T| − N

2
log |E

[
v
(f)
∗i v

(f)′
∗i
]
| − 1

2

N∑
i=1

v
(f)′
∗i

(
E
[
v
(f)
∗i v

(f)′
∗i
])−1

v
(f)
∗i .

If we use 	J
′
T−1 again, then

L2·0 = N log |T|+ Lf ,
where

Lf = −N
2
log |IT−1 ⊗Ω| − 1

2

N∑
i=1

v
(f)′
i (IT−1 ⊗Ω)−1 v

(f)
i

= −n
2
log |Ω| − 1

2
tr
(
(Y(f) − Z(f)Π)′(Y(f) − Z(f)Π)Ω−1

)
,

and

v
(f)
i

G(T−1)×1

＝
(
v
(f)′
i1 , · · · , v(f)′

i(T−1)

)′

,

Y(f)

N(T−1)×G
=

(
y(1,f),Y(2,f)

)
,

Z(f)

N(T−1)×(K1+K2)
=

(
Z(1,f), Z(2,f)

)
.
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Therefore, considering Lf is sufficient for maximizing L2·0. We show that the

concentrated likelihood function of L2·0 becomes VR2·0 based on the following:

G(f,f)
n =

(
y(1,f)′

X(f)′

)
P(f)

(
y(1,f),X(f)

)
,

H(f,f)
n =

(
y(1,f)′

X(f)′

)
[In −P(f)]

(
y(1,f),X(f)

)
. (6.26)

We maximize Lf with respect to {β2,Π22,Π1·,Ω} and consider the concentrated

log-likelihood function for β2, where

Π
(K1+K2)×(1+G2)

=

(
π11 Π12

π21 Π22

)
=

(
π11 Π12

Π22β2 Π22

)
=

(
Π1·
Π2·

)
.

From the exclusion restrictions, the structural coefficient γ1 becomes

γ1 = π11 −Π12β2 , (6.27)

but this is not a constraint in maximization.

The following proof is almost the same as that of Morimune (1984, Appen.)

up to the derivation of (6.37). Although z
(f)
it is not a valid instrumental variable,

it does not affect the derivation of the concentrated log-likelihood function. By

solving the first-order condition for Ω, we have

Ω =
1

n
(Y(f) − Z(f)Π)′(Y(f) − Z(f)Π) . (6.28)

If we substitute the above equation into the log-likelihood function, then maxi-

mizing the log-likelihood is equivalent to minimizing the following with respect to

(β2,Π22,Π1·),

|Ω| =
∣∣∣ 1
n
(Y(f) − Z(f)Π)′(Y(f) − Z(f)Π)

∣∣∣ . (6.29)

The derivative of determinant for a nonsingular matrix A is as follows (cf.

Abadir and Mangus, 2005),

∂|A|
∂x

= |A|tr
(
A

′−1∂A

∂x

)
.

Then, from the derivative |Ω| of (6.29) with respect toΠ1·, the first-order condition
becomes

Π1· = (Z(1,f)′Z(1,f))−1Z(1,f)′(Y(f) − Z(2,f)Π2·) . (6.30)
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Similarly, for Π22 we obtain the first-order condition,

Z(2,f)′(Y(f) − Z(f)Π)Ω−1

(
β′

2

IG2

)
= 0 .

Z(f)Π included in the above equation can be decomposed into Z(1,f)Π1·+Z(2,f)Π22(β2, IG2).

By substituting (6.30),

Π22 = (Z
(2,f)′
0 Z

(2,f)
0 )−1Z

(2,f)′
0 Y(f)Ω−1

(
β′

2

IG2

)
(Σ22)−1 , (6.31)

where P
(f)
1 = Z(1,f)(Z(1,f)′Z(1,f))−1Z(1,f)′ , Z

(2,f)
0 = (In − P

(f)
1 )Z

(f)
2 , and Σ22 =

(β2, IG2)Ω
−1(β2, IG2)

′ is the submatrix of the following:

Σ−1 =

(
σ11 σ12′

σ21 Σ22

)

=

(
1 0′

β2 IG2

)
Ω−1

(
1 β′

2

0 IG2

)
.

Conversely, from the inverse matrix on the right-hand side, Σ can be also expressed

as follows:

Σ =

(
σ2 σ′

12

σ21 Σ22

)

=

(
1 −β′

2

0 IG2

)(
ω11 ω′

12

ω21 Ω22

)(
1 0′

−β2 IG2

)
,

where σ2 = E [u2it] corresponds to the error term of the first structural equation. We

rewrite the residual by (6.30) and (6.31). For P
(f)
0 = Z

(2,f)
0 (Z

(2,f)′
0 Z

(2,f)
0 )−1Z

(2,f)′
0 ,

Y(f) − Z(f)Π = Y(f) − Z(f,1)Π1· − Z(f,2)Π22(β2, IG2)

= (In −P
(f)
1 )Y(f) −P

(f)
0 Y(f)Ω−1(Σ22)−1(β2, IG2)

= (In −P(f))Y(f) +P
(f)
0 Y(f)

[
IG −Ω−1

(
β′

2

IG2

)
(Σ22)−1(β2, IG2)

]
,

the third equality is based on the following orthogonal decomposition,

P(f) = Z(f)(Z(f)′Z(f))−1Z(f)′

= Z(f)C(f)[(Z(f)C(f))′Z(f)C(f)]−1(Z(f)C(f))′

= P
(f)
1 +P

(f)
0 ,
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where C(f) = (Z(f)′Z(f))−1Z(f)′(Z(1,f),Z
(2,f)
0 ). To simplify the second term, we use

the relation that[
IG −Ω−1

(
β′

2

IG2

)
(Σ22)−1(β2, IG2)

]

=

(
1 0′

−β2 IG2

)(
1 0′

β2 IG2

)[
IG −Ω−1

(
β′

2

IG2

)
(Σ22)−1(β2, IG2)

]

=

(
1 0′

−β2 IG2

)(
(1, 0′)− σ12′(Σ22)−1(β2, IG2)

O

)

=

(
1

−β2

)(
(1, 0′)− σ12′(Σ22)−1(β2, IG2)

)

= β

(
(1, 0′) +

1

σ2
σ′

12(β2, IG2)

)

= β
1

σ2
(σ2 + ω′

12β2 − β′
2Ω22β2, 0

′ + ω′
12 − β2Ω22)

=
1

σ2
β(ω11 − ω′

12β2,ω
′
12 − β2Ω22)

=
ββ′Ω
β′Ωβ

,

where β = (1,−β′
2)

′ and the fourth equality is from −σ12′(Σ22)−1 = (1/σ2)σ12.

This is because that

σ12 = − 1

σ11 − σ12′(Σ22)−1σ12
σ12′(Σ22)−1 = −σ2σ12′(Σ22)−1 .

Then, the residual is simplified as follows:

Y(f) − Z(f)Π = (In −P(f))Y(f) +
1

σ2
(P(f) −P

(f)
1 )Y(f)ββ′Ω .

Using this result, the LIML estimator of Ω satisfies the following:

Ω = Ω̃ +
β′Y(f)′(P(f) −P

(f)
1 )Y(f)β

nσ4
Ωββ′Ω , (6.32)

where

Ω̃ =
1

n
Y(f)′(In −P(f))Y(f) . (6.33)

This is a fixed-effects estimator for Ω. In addition, from the relation of (6.32) the

following should be satisfied,

σ2 = β′Ωβ

= β′Ω̃β +
β′Y(f)′(P(f) −P

(f)
1 )Y(f)β

n
.
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Since (6.29) is minimized for β2, consider the determinant of (6.32).

|A+ abb′| = |A|(1 + ab′A−1b) ,

From this formula, we obtain

|Ω| = |Ω̃|
(
1 +

β′Y(f)′(P(f) −P
(f)
1 )Y(f)β

nσ4
β′ΩΩ̃

−1
Ωβ

)
. (6.34)

Ω is still included in the right-hand side. To remove this term we multiply β on

the right of (6.32),

Ωβ = Ω̃β +
β′Y(f)′(P(f) −P

(f)
1 )Y(f)β

nσ2
Ωβ ,

then,

Ωβ = (1 + λ)Ω̃β , (6.35)

i.e., Ωβ is solved. From the relation of (6.33),

λ =
β′Y(f)′(P(f) −P

(f)
1 )Y(f)β

β′Y(f)′(In −P(f))Y(f)β
. (6.36)

Substituting (6.35) into (6.34), we obtain the following by using β′Ω̃β = σ2/(1+λ),

|Ω| = (1 + λ)|Ω̃| . (6.37)

Since the unknown parameter included in (6.37) is β2 this is the concentrated log-

likelihood function, and the minimization of (6.29) can be achieved by minimizing

λ. Therefore, β̂2 minimizing (6.36) is the maximum likelihood estimator.

Finally, we consider the maximum likelihood estimator of the structural coeffi-

cient γ1. From (6.27), the estimator must satisfy the following:

γ1β = Π1·β

= (Z(1,f)′Z(1,f))−1Z(1,f)′(y(1,f) −Y(2,f)β2) , (6.38)

where the second equality is from that Π2·β = Π22β2 −Π22β2 = 0.

130



Using G
(f,f)
n , H

(f,f)
n , and γ1β of (6.27), we rewrite λ of (6.36) as follows:

λ(β2) =
β′Y(f)′(P(f) −P

(f)
1 )Y(f)β

(
β′,−γ ′

1β

)
H

(f,f)
n

(
β

−γ1β

)

=
β′Y(f)′P(f)Y(f)β − β′Y(f)′Z(1,f)γ1β(

β′,−γ ′
1β

)
H

(f,f)
n

(
β

−γ1β

)

=
β′Y(f)′P(f)Y(f)β − 2β′Y(f)′Z(1,f)γ1β + γ

′
1βZ

(1,f)′Z(1,f)γ1β(
β′,−γ ′

1β

)
H

(f,f)
n

(
β

−γ1β

)

=

(
β′,−γ ′

1β

)
G

(f,f)
n

(
β

−γ1β

)

(
β′,−γ ′

1β

)
H

(f,f)
n

(
β

−γ1β

) ,

where the first equality is from that (In − P(f))Z(1,f) = O. The second and third

equalities are due to Z(1,f)γ1β = P
(f)
1 Y(f)β and P

(f)
1 Z(1,f) = Z(1,f), respectively.

Consider the minimization problem with respect to β2 and γ1,

λ(β2, γ1) =

( β′,−γ ′
1 )G

(f,f)
n

(
β

−γ1

)

( β′,−γ ′
1 )H

(f,f)
n

(
β

−γ1

) . (6.39)

The first-order condition of γ1 is given by

−Z(1,f)′Y(f)β2 + (Z(1,f)′Z(1,f))γ1 = 0 .

This is the same as (6.38), and thus, the maximum likelihood estimator (β̂2,γ1β̂)

can be obtained by this minimization problem. Therefore, (6.39) is the concen-

trated log-likelihood function for (β2, γ1).

[ii] We first confirm that Lemma 2.1 holds even for a multivariate model. For

g = 1, · · · , G, put

Δv
(g)
∗i

T×1

=
(
Δy

(g)
i1 , Δv

(g)
i2 , , · · · , Δv(g)iT

)′

,
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then, for L of (3.21) we have

LΔv
(g)
∗i = ξ

(g)
i ι + v

(g)
i .

Therefore, if the transformation is given byT = IG⊗L for Δv∗i = (Δv
(1)′
∗i , · · · , Δv

(G)′
∗i )

′
,

then

L2 = −N
2
log |TE

[
Δv∗iΔv

′
∗i
]
T

′| − 1

2

N∑
i=1

(TΔv∗i)
′ (

TE
[
Δv∗iΔv

′
∗i
]
T

′
)−1

TΔv∗i

= −N log |T| − N

2
log |E

[
Δv∗iΔv

′
∗i
]
| − 1

2

N∑
i=1

Δv
′
∗i
(
E
[
Δv∗iΔv

′
∗i
])−1

Δv∗i .

For 	J
′
Tv∗i = v∗

i ,

L2Δ = −N
2
log |E

[
Δv∗iΔv

′
∗i
]
| − 1

2

N∑
i=1

Δv
′
∗i
(
E
[
Δv∗iΔv

′
∗i
])−1

Δv∗i

=
N

2
log |Ω2Δ| − 1

2

N∑
i=1

Δv∗′
i Ω

−1
2ΔΔv∗

i .

where

Ω2Δ =

⎛
⎜⎜⎜⎜⎜⎜⎝

Ω1 −Ω O · · · O

−Ω 2Ω −Ω · · · O

O −Ω 2Ω · · · O
...

...
...

. . .
...

O · · · · · · −Ω 2Ω

⎞
⎟⎟⎟⎟⎟⎟⎠

,

Ω1 = E [Δyi1Δy
′
i1]

= (I2 −Π
′
θ)Γ0 + Γ0(I2 −Πθ) ,

and

Δv∗
i

GT×1

=

[
Δyi1
Δvit

]

=

[
Δyi1

Δyit −Π
′
θΔyit−1

]
,

Π
′
θ =

(
γ

′
1 + β

′
2Π

′
12 β

′
2Π

′
22

Π
′
12 Π

′
22

)

= Π
′
(say, ) .

Moreover, for L2,

Ωξ = (I2 −Π
′
θ)Γ0(I2 −Πθ) .
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Therefore, the parameters of L2 have a one-to-one correspondence with those of

L2Δ:

{θ1, Π′
θ, Ω, Ωξ} � {θ1, Π′

θ, Ω, Ω1} .

Then, it is sufficient to consider the maximum likelihood estimator θ̂TL in L2Δ.

Next, we decompose L2Δ into the pseudo log-likelihood L2·0 and R0, which is

the remaining term related to initial values:

L2Δ = L2·0 +R0 .

For Ω−1
2Δ, we use another expression of (6.18) (cf. Rao (1965)),

(C−B
′
A−1B)−1 = C−1 +C−1B

′
(A−BC−1B

′
)−1BC−1 ,

then,

Ω−1
2Δ =

(
Ω11

2Δ Ω21′
2Δ

Ω21
2Δ Ω−1

Δ +Ω21
2Δ(Ω

11
2Δ)

−1Ω21′
2Δ

)

=

(
O O

′

O Ω−1
Δ

)
+Ω0 (say, ) .

Therefore, we obtain

R0 =
N

2
log |Ω11

2Δ| −
1

2

N∑
i=1

Δv∗′
i Ω0Δv∗

i .

Consider the order of R0/n, where n = NT . The following submatrix consists of

the 1st to G-th rows of Ω0, (
Ω11

2Δ Ω21′
2Δ

)
G×T

,

and let Ω0t be the (1, t) block matrix of the above submatrix. Then, Binder et

al. (2005) show that

Ω0t
G×G

= (T + 1− t) [ TΩ1 − (T − 1)Ω ]−1

=
T + 1− t

T
Ω0T (say, ) ,
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i.e., Ω0t = O((T − t)/T ). For the leading term of R0/n, put

1

NT

N∑
i=1

T∑
s,t=2

Δv
′
isΩ

21
2Δ(Ω

11
2Δ)

−1Ω21′
2ΔΔvit

=
1

NT

N∑
i=1

T∑
s,t=2

Δv
′
isΩ

′
0s(Ω01)

−1Ω0tΔvit

=
1

NT

N∑
i=1

T∑
s,t=2

Δy
′
isΦ1stΔyit +Δy

′
is−1Φ2stΔyit +Δy

′
is−1Φ3stΔyit−1 ,

(6.40)

where

Φ1st =
(T + 1− s)(T + 1− t)

T 2
Ω

′
0T (Ω01)

−1Ω0T ,

Φ2st = −2ΠθΦ1st ,

Φ3st = ΠθΦ1stΠ
′
θ . (6.41)

Regarding the first term of (6.40), when N is fixed, it follows that

1

NT

N∑
i=1

T∑
s,t=2

E
[
|Δy

′
isΦ1stΔyit|

]
= O

(
(log T )2

T

)
. (6.42)

Therefore, this term converges in 1th mean to zero. Since the third term of (6.40)

is the same order, we have that

1

n
R0

p−→ 0 .

Therefore,

1

n
L2Δ

p−→ 1

n
L2·0 .

Thus, the maximization point θ̂TL of L2Δ converges in probability to that of L2·0.
From the results of Theorems 2.9 and 2.10, the limit of the maximization point is

θ1.

Finally, we show that the asymptotic distributions are the same. The log-

likelihood function has the following parameters:

L2Δ(φ) = L2·0(φ2) +R0(φ) ,

where

φ2 =
(
θ

′
1, vec(Π12), vec(Π22), vec(Ω)

′
)′

, φ =
(
φ

′
2, vec(Ω1)

′
)′

.
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Note that L2·0 depends only on φ2. The maximum likelihood estimator φ̂ satisfies

the following:

0 = s2(φ̂2) + s0(φ̂) ,

where

s2 =
∂L2·0
∂φ2

, s0 =
∂R0

∂φ
.

From the Taylor series for only s2,

√
n(φ̂2 − φ2) = −H−1

φ2

1√
n
s2(φ2) +H−1

φ2

1√
n
s0(φ̂) + op(1) ,

Hφ2 = plim
T→∞

1

n

∂s2

∂φ
′
2

.

Then, the leading term of the second term (1/
√
n)s0(φ̂) is given by

1√
NT

N∑
i=1

T∑
s,t=2

Δy
′
is

∂Φ̂1st

∂φk
Δyit +Δy

′
is−1

∂Φ̂2st

∂φk
Δyit +Δy

′
is−1

∂Φ̂3st

∂φk
Δyit−1

= Op

(
(log T )2√

T

)
,

where ∂Φ̂1st/∂φk stands for the derivative of (6.41) for each element of φ evaluated

at φ̂. Then,

√
n(φ̂2 − φ2) = −H−1

φ2

1√
n
s2(φ2) + op(1)

=
√
n(φ̆2 − φ2) .

Therefore, they have the same asymptotic distribution.

When N is fixed, the distribution of
√
n(θ̆PL − θ1) and

√
n(θ̂DL − θ1) are also

asymptotically equivalent from Theorems 2.9 and 2.10. �

Proof of Theorem 2.10 : [i] The sampling error is given by

√
NT (θ̆PL − θ) =

(
1

NT
X(f)′P(f)X(f) − λ̆

NT
X(f)′(I−P(f))X(f)′

)−1

×
(

1√
NT

X(f)′P(f)u(f) −
˘√
NTλ

NT
X(f)′(I−P(f))u(f)

)
,

(6.43)
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where λ̆ = min VR2·0. From the smilar arguments of Theorem 2.9,
√
NTλ̆ con-

verges in probability to zero. Therefore,

√
NT (θ̆PL − θ) =

(
1

NT
X(f)′P(f)X(f)

)−1
1√
NT

X(f)′P(f)u(f) + op(1) . (6.44)

Similar to the proof of Theorem 2.9, the first term follows that

Φ̆ =
1

NT
X(f)′P(f)X(f)

p→ Π
′
I

(
J

′
Γ0J

)(
J

′
Γ0J

)−1 (
J

′
Γ0J

)
ΠI

= Φ .

The second term of (6.44) becomes

1√
NT

X(f)′P(f)u(f) =
1

NT
X(f)′Z(f)

(
1

NT
Z(f)′Z(f)

)−1
1√
NT

Z(f)′u(f) .

For this last term,

1√
NT

e′kZ
(f)′u(f) =

1√
NT

N∑
i=1

w
[k]′
i(−1)QTui

=
1√
NT

N∑
i=1

T∑
t=1

w
[k]
it−1uit −

√
T

N

N∑
i=1

w̄
[k]
i(−1)ūi , (6.45)

where w
[k]
i(−1) = (w

[k]
i0 , ..., w

[k]
iT−1)

′, ui = (ui1, ..., uiT )
′, and

w̄
[k]
i(−1) =

1

T

T∑
t=1

w
[k]
it−1 , ūi =

1

T

T∑
t=1

uit .

The first term of (6.45) converges in distribution to N (0, σ2Φ) when T → ∞, so

that the first term of (6.44) converges to N (0, σ2Φ−1). The expectation of the

second term of (6.45) is given by

E
[√

T

N

N∑
i=1

w̄
[k]
i(−1)ūi

]
=

√
N

T 3
e

′
kE
[
J

′
W

′
i(−1)ιι

′
ui

]
, (6.46)

where W
′
i(−1) = (wi0, · · · ,wiT−1) is the K

∗×T matrix. From the result of Akashi

and Kunitomo (2015), we have that

E
[
W

′
i(−1)ιι

′
ui

]
=

T−1∑
h=1

T−1−h∑
j=0

(Π∗′)jE [v∗
ituit]

= T
(
IK∗ −Π∗′

)−1

E [v∗
ituit] + O(1) .
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For its variance,

Var
[√

T

N

N∑
i=1

w̄
[k]
i(−1)ūi

]
=

1

T
Var

[(√
T w̄

[k]
i(−1)

)(√
T ūi

)]

= O

(
1

T

)
.

Therefore, this term converges in 2th mean to the expectation of (6.46) when

T → ∞.

−
(

1

NT
X(f)′P(f)X(f)

)−1

X(f)′Z(f)
(
Z(f)′Z(f)

)−1
√
T

N

N∑
i=1

w̄
[k]
i(−1)ūi ,

From the above results, this second term of (6.45) converges in probability to the

following:

bd = −
√
dρ∗

= −
√
dΦ−1Π

′
I
J

′
(
IK∗ −Π∗′

)−1

Ω∗J1β , (6.47)

under N/T → 0 ≤ d < ∞, where regarding the representation of (6.47) it holds

that

Π̆I =
(
Z(f)′Z(f)

)−1

X(f)′Z(f) p−→ ΠI .

In addtion, we notice that

E [v∗
ituit] = E

[
v∗
itv

′
it

]
β

= Ω∗
(

IG
O

)
β ,

since vit is defined to be included as the first G elements of v∗
it. Therefore, from

Slutsky’s theorem, (6.43) converges in distribution to

N (0, σ2Φ−1) + bd .

�

[ii] For the sampling error of the corrected estimator, we have

√
NT (

˘̆
θPL − θ) =

√
NT (θ̆PL − θ) +

√
N

T
ρ̆∗ + op(1) .

Then, it is sufficient to show that

ρ̆∗ = Φ̆
−1
Π̆

′

I
J

′
(
IK∗ − Π̆

∗′)−1

Ω̆
∗
J1β̆

p→ ρ∗ ,
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where β̆ = (1,−β̆
′

2PL
)
′
is the consistent estimator for β. Regarding Π̆

∗
and Ω̆

∗
, it

is necessary to estimate the companion reduced form separately:

Π̆
∗

K∗×K∗ =
(
Z

∗(f)′
−1 Z

∗(f)
−1

)−1

Z
∗(f)′
−1 Z∗(f) p−→ Π∗ ,

Ω̆
∗

K∗×K∗ = Z∗(f)′ (IK∗ −P∗(f))Z∗(f) p−→ Ω∗ .

where

Z
∗(f)′
−1

K∗×N(T−1)

=
(
z
∗(f)
10 , · · · , z∗(f)1T−2, · · · , z∗(f)N0 , · · · , z∗(f)NT−2

)
,

Z∗(f)′
K∗×N(T−1)

=
(
z
∗(f)
11 , · · · , z∗(f)1T−1, · · · , z∗(f)N1 , · · · , z∗(f)NT−1

)
,

P∗(f) = Z
∗(f)′
−1

(
Z

∗(f)′
−1 Z

∗(f)
−1

)−1

Z
∗(f)′
−1 .

Thus, we obtain the desired result. From the relation of (3.11), for k = 1, · · · , K∗,
the estimation equation of the companion reduced form becomes

e
′
kz

∗(f)
it = e

′
kΠ

∗′z∗(f)it−1 + e
′
kv

∗(f)
it .

However, when the identiy e
′
kΠ

∗′ = e
′
� (� = 1, · · · , K∗) or Z∗(f)ek = Z

∗(f)
−1 e�

holds, there exists no error in estimation:

Π̆
∗
ek =

(
Z

∗(f)′
−1 Z

∗(f)
−1

)−1 (
Z

∗(f)′
−1 Z

∗(f)
−1

)
e�

= e� .

�

Proof of Theorem 2.11 : Following Hahn (2002), we consider the second formu-

lation of (3.24) and use the relations that αi + uit = β
′(πi + vit) and

Π =

(
π11 Π12

Π22β2 Π22

)
= (π1, Π2)

K×(1+G2)

.

Then, the log-likelihood function is proportional to the following under the limited

information method,

L(φ) = NT

2
log |Ψ| − 1

2

N∑
i=1

T∑
t=1

v′
itΨvit ,

where Ψ = Ω−1,

φ′ = (vec(Ψ)′, θ′1, vec(Π
′
2)

′, π(1)
1 ,π

(2)′
1 , · · · , π(1)

N ,π
(2)′
N ) ,
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and the error term of the reduced form is as follows:

v′
it = (y

(1)
it − β′

2Π
′
2zit−1 − γ1z

(1)
it−1 − π

(1)
i ,y

(2)′
it − z′it−1Π2 − π(2)′

i ) .

From the discussions of the technical lemmas of Hahn and Kuersteiner (2000), the

likelihood ratio process of the VAR model is asymptotically shift normal even if

it includes the incidental parameters. Under assumption (A4), for the localized

parameter φ+ δ/
√
NT around the true value φ, we have

L(φ+
δ√
NT

)−L(φ) = Δ
′
nδ −

1

2
E
[
(Δ

′
nδ)

2
]
+ op(1) ,

where

Δ
′
nδ

d−→ N (0, lim
N, T→∞

E [(Δ′δ)2]) ,

and the elements are as follows,

Δ
′
n = (Δ′

Ψ,Δ
′
β,Δ

′
γ,Δ

′
Π,Δ

′
π1
, · · · ,Δ′

πN
) .

If the error term follows a normal distribution, then

Δ′
Ψ =

√
NT

2
vec(Ω)′ − 1

2
√
NT

N∑
i=1

T∑
t=1

(vit ⊗ vit)
′ ,

Δ′
β =

1√
NT

N∑
i=1

T∑
t=1

v′
itΨ

([
(Π′

2wit−1)
′

0

]
+

[
(Π′

2J
′
μi)

′

0

])

= Δ′
wβ +Δ′

μβ (say, ) ,

Δ′
γ =

1√
NT

N∑
i=1

T∑
t=1

v′
itΨ

([
w

(1)′
it−1

0

]
+

[
(J

′
K1
μi)

′

0

])

= Δ′
wγ +Δ′

μγ (say, ) ,

Δ′
Π2

=
1√
NT

N∑
i=1

T∑
t=1

v′
itΨ

⎛
⎜⎝
⎡
⎢⎣ β2w

′
it−1

w
′
it−1

0

⎤
⎥⎦ , · · · ,

⎡
⎢⎣ βG2w

′
it−1

0

w
′
it−1

⎤
⎥⎦
⎞
⎟⎠

+
1√
NT

N∑
i=1

T∑
t=1

v′
itΨ

⎛
⎜⎝
⎡
⎢⎣ β2(J

′
μi)

′

(J
′
μi)

′

0

⎤
⎥⎦ , · · · ,

⎡
⎢⎣ βG2(J

′
μi)

′

0

(J
′
μi)

′

⎤
⎥⎦
⎞
⎟⎠

= Δ′
wΠ +Δ′

μΠ (say, ) ,

Δ′
πi

=
1√
NT

T∑
t=1

v′
itΨIG , (i = 1, · · · , N) ,

where J
′
K1

is a matrix such that w
(1)
it−1 = J

′
K1
wit−1. From (3.12), the term includ-

ing the individual effect μi is expressed separately. To derive the lower bound
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for the structural parameter θ1 = (β′
2,γ

′
1)

′ of the first structural equation, it is

easier to derive the lower bound for θ1 and Π2 first. The lower bound of the

regular estimators is obtained by the following minimization problem. For each

j = 1, · · · , (G2 +K1 +G2K),

min E
[
(e′jΔ̃1)

2
]
= E

[
(e′jΔ1 −Δ′

Ψδ
[j]
Ψ −Δ′

πδ
[j]
πi
)2
]
.

Minimizing with respect to δ
[j]
Ψ and δ[j]πi , the lower bound can be evaluated by the

inverse matrix of E [Δ̃1Δ̃
′
1], where

Δ′
1 = (Δ′

β ,Δ
′
γ,Δ

′
Π2
) , Δ′

π = (Δ′
π1
, · · · ,Δ′

πN
) .

Therefore, the optimal solution as the linear projection is as follows:(
δ
[j]
Ψ

δ[j]πi

)
=

(
E
[

ΔΨΔ
′
Ψ ΔΨΔ

′
π

ΔπΔ
′
Ψ ΔπΔ

′
π

])−1

E
[(

ΔΨ

Δπ

)
Δ

′
1ej

]

=

(
E
[

ΔΨΔ
′
Ψ O

O ΔπΔ
′
π

])−1

E
[(

0

ΔπΔ
′
1ej

)]
,

where the second equality is from that a third-order moment of normal distribution

is zero. Therefore, for each j the optimum solution becomes δ
[j]
Ψ = 0. For δ[j]πi ,

δ[j]πi = (E [ΔπΔ
′
π])

−1 E [ΔπΔ
′
1ej ]

is the optimal solution. Therefore, the variance-covariance matrix of the residuals

is given by

E [Δ̃1Δ̃
′
1] = E [Δ1Δ

′
1]− E [Δ1Δ

′
π](E [ΔπΔ

′
π])

−1E [Δ′
πΔ1]

= E [Δ1·wΔ′
1·w +ΔμΔ

′
μ]− E [Δ1Δ

′
π](E [ΔπΔ

′
π])

−1E [Δ′
πΔ1] ,

(6.48)

where

Δ′
1·w = (Δ′

wβ,Δ
′
wγ,Δ

′
wΠ) , Δ′

μ = (Δ′
μβ,Δ

′
μγ,Δ

′
μΠ) .

In the first term of the second equality of (6.48), we use the following:

E [Δ1·wΔ′
μ] = O , (6.49)

this is because that

Δ̃1 = Δ1·w +Δμ , E [Ψvitv
′
itΨ(wit−1, 0)

′] = O .
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For the second term of the second equality of (6.48), usingΔμ = (1/
√
NT )

∑
i

∑
tΔμi ,

we have that

E [Δ1Δ
′
π](E [ΔπΔ

′
π])

−1E [Δ′
πΔ1]

= E [ΔμΔ
′
π](E [ΔπΔ

′
π])

−1E [Δ′
πΔμ]

=
1

NT
(TΔμ1Ψ, · · · , TΔμNΨ)

⎛
⎜⎜⎜⎝

NΩ O · · · O

O NΩ O · · ·
...

...
. . . O

O · · · O NΩ

⎞
⎟⎟⎟⎠
⎛
⎜⎝

T
NT

ΨΔ
′
μ1

...
T
NT

ΨΔ
′
μN

⎞
⎟⎠

=
1

N

N∑
i=1

ΔμiΨΔ
′
μi

= E [ΔμΔ
′
μ] .

Therefore, we obtain the lower bound of asymptotic efficiency for θ1 and Π2 as

follows:

VθΠ2 = lim
N, T→∞

(
E [Δ̃1Δ̃

′
1]
)−1

= lim
N, T→∞

(E [Δ1·wΔ
′
1·w])

−1
.

Thus, this does not depend on the individual effects.

The lower bound for the structural parameter θ1 is the upper left (G2 +K1)×
(G2 +K1) matrix of VθΠ2. It is difficult to directly evaluate this submatrix when

G2 ≥ 2, so that we consider the concentrated log-likelihood function of θ1. If wit

could be observed without individual effects, the log-likelihood function would be

given by

L∗ =
NT

2
log |Ψ−1| − 1

2

N∑
i=1

T∑
t=1

ε′itΨεit ,

where

ε′it = (w
(1)
it − β′

2Π
′
22w

(2)
it−1 − β′

2Π
′
12w

(1)
it−1 − γ ′

1w
(1)
it−1,w

(2)′
it −w′

it−1Π2)　(6.50)

= (w
(1)
it − β′

2Π
′
22w

(2)
it−1 − π′

11w
(1)
it−1,w

(2)′
it −w′

it−1Π2) . (6.51)

The formulation of (6.50) is the parametarization of Hahn (2002), and under the

log-likelihood function L∗, the lower bound is also the same as VθΠ2. Although

(6.51) is the parametarization of Lemma 2.2, the LIML estimators of the struc-

tural parameter θ1 obtained by (6.50) and (6.50) are numerically equal under the

constraint γ1 = π11 −Π12β2. Therefore, the concentrated log-likelihood function

is also the same. From Lemma 2.2, the function is given by

λ∗(θ1) =
θ

′
G∗θ

θ
′
H∗θ

,

141



where

G∗ =

(
Y∗′

Z(1,∗)′

)
P∗ (Y∗,Z(1,∗)) (6.52)

is the (1+G2+K1)×(1+G2+K1) matrix and P∗ = Z∗(Z∗′Z∗)−1Z∗′ . The matrices

that construct (6.52) are Y∗′ = (Y∗′
i ), Z

∗′
1 = (Z

(1)∗′
i ), and Z∗′ = (Z∗′

i ), which are

(1 +G2)×NT , K1 ×NT , and K ×NT matrices, respectively:

Y∗′
i =

(
J

′
1wi1, · · · ,J′

1wiT

)
,

Z
(1,∗)′
i =

(
J

′
K1
wi0, · · · ,J′

K1
wiT−1

)
,

Z∗′
i =

(
J

′
wi0, · · · ,J′

wiT−1

)
.

H∗ is also defined in the same way as (6.52).

From the concentrated log-likelihood function λ∗(θ1), the asymptotic variance

matrix of
√
NT (θ̂−θ1) is derived as σ2Φ−1 under the condtion that (1/n)tr(P∗) =

K/n→ 0. Therefore, we obtain the relation that

J′
G2+K1

VθΠ2JG2+K1 = σ2Φ−1 ,

where J′
G2+K1

= (IG2+K1, O).　　 �

Proof of Theorem 2.12 : Following Anderson et al.(2010), we denote a consistent

estimator as follows:

β̂g = φg

(
1

n
G(b,f)
n

)
, g = 2, · · · , 1 +G2 .

For any β2 and Φ, the following identities holds in the probability limit because

of its consistency,

βg = φg (Θ)

= φg

([
β

′
2

IG2

]
Φ [ β2, IG2 ]

)
, g = 2, · · · , 1 +G2 , (6.53)

where Φ = (ρg,�) (g, � = 2, · · · , 1 +G2) is the G2 ×G2 matrix, which is defined by

the VAR process in dynamic panel models. Since Ω∗ = Ω in the case of VAR(1)

model, it holds that

Φ = Π
′
2

( ∞∑
s=0

(Π
′
)sΩΠs

)
Π2 .

Although we would like to partially differentiate the identity of (6.53) with respect

to βg and ρg,�, Γ0 =
∑∞

s=0(Π
′
)sΩΠs is the function of Π, and Π = Π(β2) is also
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the function of the structural parameter; i.e., Γ0 depends on β2. Then, the partial

differentiation can be defined by the following lemma.

Lemma 2.4 : [i] For g, put βg + h and take

vec(Ωh) = (IG2 −Π
′
h ⊗Π

′
h)vec (Γ0 +D1h) ,

D1h = Π2h(Π
′
2hΠ2h)

−1(Π
′
2Γ0Π2 −Π

′
2hΓ0Π2h)(Π

′
2hΠ2h)

−1Π
′
2h .(6.54)

Then, there exists an expression equivalent to the following as h→ 0,

∂φg
∂β�

= δ
(g)
� ,

where δ
(g)
g = 1 and δ

(g)
� = 0 (g �= �).

[ii] Take Ωh as follows:

vec(Ωh) = (IG2 −Π
′ ⊗Π

′
)vec

(
Γ0 +Π2(Π

′
2Π2)

−1D2h(Π
′
2Π2)

−1Π
′
2

)
,

where the (�,m) and (m, �) elements of D2h are h, and the other elements are zero.

Then, for �,m = 2, · · · , 1 + G2, there exists an expression equivalent to the

following as h→ 0,

∂φg
∂ρ�m

= 0 .

Proof : Π
′
2h and Π

′
h in (6.54) denote the coefficients of the reduced form corre-

sponding to βg + h. rank(Π
′
2h) = G2 because of consistency, so that (Π

′
2hΠ2h) is

nonsingular. For βg + h, Γh and Φh are expressed as follows:

Φh = Π
′
2hΓhΠ2h ,

vec(Γh) = (IG2 −Π
′
h ⊗Π

′
h)

−1vec(Ω) ,

where Γh stands for the variance-covariance matrix of the VAR process and the

second equality is from that

vec(ADC) = (C
′ ⊗A)vec(D) .

Since Ω = B−1Σ(B−1)
′
, Ω is the free parameter for β2, where B is the coefficient

matrix of (4.11) and Σ = E [uitu′
it].

Therefore, we can take vec(Ω) = vec(Ωh). Then,

vec(Γhh) = (IG2 −Π
′
h ⊗Π

′
h)

−1vec(Ωh)

= vec (Γ0 +D1h) .
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Γhh is the symmetric matrix, and it follows that limh→0 |Γ0 + D1h| = |Γ0| > 0,

where Γ0 is positive definite because Ω > O. Therefore, considering all leading

principal minors, we can take a positive definite matrix in a neighbourhood of Γ0.

Similarly,

Ωh = Γhh −Π
′
hΓhhΠh

is also the symmetric matrix such that limh→0 |Ωh| = |Ω| > 0 and belongs to a

parameter space of variace-covariance matrices. Then, the corresponding Φhh is

given by

Φhh = Π
′
2hΓhhΠ2h

= Π
′
2h (Γ0 +D1h)Π2h

= Π
′
2Γ0Π2

= Φ .

Thus, Φhh becomes invariant. Consider the difference in the following identities:

φg(β2 + egh,Φhh)− φg(β2,Φ) = (βg + h)− βg

⇒ φg(β2 + egh,Φ)− φg(β2,Φ) = h . (6.55)

Therefore, the limit of (6.55) divided by h is the same as the partial derivative

with respect to βg. For � �= g, it also holds that ∂φg/∂β� = 0.

Next, we consider the case of [ii]. Take vec(Ω) = vec(Ωh), then,

vec(Γh) = vec
(
Γ0 +Π2(Π

′
2Π2)

−1Π
′
2D2hΠ2(Π

′
2Π2)

−1Π
′
2

)
.

Therefore,

Φh = Π
′
2

(
Γ0 +Π2(Π

′
2Π2)

−1D2h(Π
′
2Π2)

−1Π
′
2

)
Π2

= Φ+D2h .

For fixed β2, the difference in the identities becomes

φg(β2,Φh)− φg(β2,Φ) = βg − βg

⇒ φg(β2,Φ+D2h)− φg(β2,Φ) = 0 . (6.56)

The limit of (6.56) divided by h is the same as the partial derivative with respect

to ρg,� = ρ�,g. �

We prepare the lemma for the order of (1/n)G
(b,f)
n .
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Lemma 2.5 : Suppose (A1), (A2), and (A4′). For T → ∞ and any N ,

G
(b)
1 =

√
n

(
1

n
Z(b)′Y(f) −G

(b)
10

)
= Op(1) ,

where

G
(b)
10 = E

[
1

n
Z(b)′Y(f)

]
=

1

T − 1

T−1∑
t=1

E [z(b)it y(f)′
it ] .

Proof : We show that the variance of each (k, g) element is O(1).

Var
[
e

′
kG

(b)
1 eg

]

= Var
[

1√
T

T−1∑
t=1

e
′
gy

(f)
it z

(b)′
it ek

]

= Var
[

1√
T

T−1∑
t=1

w
[g]
it w

[k]
it−1 − (1− ct)w

[g]
it w

[k]
it−1 − ctw̄

[k]
it−1,0w

[g]
it − w

[k]
it−1w̃

[g]
it,T + w̄

[k]
it−1,0w̃

[g]
it,T

]
,

(6.57)

where the first equality is from the assumption of i.i.d. for i = 1, · · · , N , and the

second equality is due to (6.23). It is sufficient to show that the variances of the

first to fifth terms are bounded.

First, the variance of the first term is O(1) from the result of Akashi and Ku-

nitomo (2012). For the fifth term,

E
[
(w̄

[k]
it−1,0w̃

[g]
it,T )

2
]

= E
⎡
⎣1
t

1

T − t

(
1√
t

t∑
h=1

w
[k]
ih−1

)2(
1√
T − t

T∑
h=t

w
[k]
ih+1

)2
⎤
⎦

= O

(
1

t

1

T − t

)
,

then,

Var
[

1√
T

T−1∑
t=1

w̄
[k]
it−1,0w̃

[g]
it,T

]
≤ 1

T

T−1∑
t=1

O(
1√

t
√

(T − t)
)

T−1∑
s=1

O(
1√

s
√

(T − s)
)

≤ O((
√
T )2)

T
= O(1) ,

where the first and second inequalities are due to the CS inequality. For the fourth
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term of (6.57), we obtain that

Var
[
w

[k]
it−1w̃

[g]
it,T

]
= E

[
(w

[k]
it−1w̃

[g]
it,T )

2
]
− E [w[k]2

it−1]E [w̃[g]2
it,T ] + E [w[k]2

it−1]E [w̃[g]2
it,T ]−

(
E [w[k]

it−1w̃
[g]
it,T ]

)2

≤
√
Var[w[k]2

it−1]

√
Var[w̃[g]2

it,T ] + E [w[k]2
it−1]E [w̃[g]2

it,T ]

= O

(
1

t

)
+O

(
1

t

)
.

Therefore,

Var
[

1√
T

T−1∑
t=1

w
[k]
it−1w̃

[g]
it,T

]
≤ 1

T

T−1∑
t=1

O(
1√
t
)

T−1∑
s=1

O(
1√
s
)

=
O((

√
T )2)

T
.

Similarly, the variances of the second and third terms of (6.57) are evaluated as

O(1). Since E [G(b)
1 ] = O by definition, we obtain the desired result. �

Return to the proof of theorem. We represent the partial derivatives by the fol-

lowing (1 +G2)× (1 +G2) partitioned matrix. For Θ = (θhj),

T(g) =

(
∂φg
∂θhj

)
(g = 2, · · · , G ; h, j = 1, · · · , G)

=

(
τ
(g)
11 τ

(g)′
2

τ
(g)
2 T

(g)
22

)
.

The partial derivatives with respect to βg and ρ�m become

tr

(
T(g) ∂Θ

∂βj

)
= δ

(g)
j ,

tr

(
T(g) ∂Θ

∂ρhj

)
= 0 ,

then, the following conditions are obtained by the result of Anderson et al.(2010),

2τ
(g)
11 Φβ + 2Φτ

(g)
2 = eg ,

τ
(g)
11 β2β

′
2 + τ

(g)
2 β

′
2 + β2τ

(g)′
2 +T

(g)
22 = O . (6.58)
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Consider a linear approximation to φg in the following. Put

S(b) =
√
n

(
1

n
G(b,f)
n −G

(b)′
10 (G

(b)
20 )

−1G
(b)
10

)

=

(
s
(g)
11 s

(b)′
2

s
(b)
2 S

(b)
22

)
,

G
(b)
2 =

√
n

(
1

n
Z(b)′Z(b) −G

(b)
20

)
,

where

G
(b)
20 = E

[
1

n
Z(b)′Z(b)

]
=

1

T − 1

T−1∑
t=1

E [z(b)it z(b)
′

it ] .

Smilar to Lemma 2.5, we have that G
(b)
2 = Op(1). Then, using the Taylor series

for S(b) around (G
(b)
10 ,G

(b)
20 ),

S(b) = Op(1) . (6.59)

From the mean-value theorem, we have that

√
n

(
φg

(
1

n
G(b,f)
n

)
− φg

(
G

(b)′
10 (G

(b)
20 )

−1G
(b)
10

))

=
√
n

(
φg

(
1

n
G(b,f)
n

)
− βg

)

= τ
(g)
11∗s

(b)
11 + 2τ

(g)′
2∗ s

(b)
2 + tr

(
T

(g)
22∗S

(b)
22

)
= τ

(g)
11 s

(b)
11 + 2τ

(g)′
2 s

(b)
2 + tr

(
T

(g)
22 S

(b)
22

)
+ r(g)n ,

where the first equality is from [iii] of assumption (A4), and in the secon equality,

(τ
(g)
11∗, τ

(g)′
2∗ , vec(T

(g)
22∗)

′
) denote the derivatives evaluated at some mean-values. For

the remaining term, when T → ∞,

r(g)n = (τ
(g)
11∗ − τ

(g)
11 )s

(b)
11 + 2(τ

(g)
2∗ − τ (g)

2 )
′
s
(b)
2 + tr

(
(T

(g)
22∗ −T

(g)
22 )S

(b)
22

)
= op(1)× Op(1) ,

this is based on [i], [ii] of (A4), and (6.59). Using (6.58), we obtain the following

expression:

√
n
(
β̂2 − β2

)
=
[
τ 11β

′
+ (0, Φ−1)

]
S(b)β + op(1) ,

where

τ 11 =

⎛
⎜⎝

τ
(2)
11
...

τ
(1+G2)
11

⎞
⎟⎠ ,
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The asymptotic distribution is as follows:

√
n
(
β̂2 − β2

)
= (β

′
S(b)β)τ 11 + (0, Φ−1)S(b)β + op(1)

= Φ−1(0, IG2)Π
′ 1√
n
Z(b)′u(f) + op(1)

d→ N (0, σ2Φ−1) ,

where the second equality is from that G
(b)
10β = (1/(T − 1))

∑
t E [z(b)it−1u

(f)
it ] = 0

and that under rank(P(b)) = K <∞,

β
′
S(b)β =

(
1√
n
u(f)′Z(b)

)(
1

n
Z(b)′Z(b)

)−1(
1

n
Z(b)′u(f)

)
p→ 0 .

The asymptotic normality is due to Theorem 2.9. �

Proof of Theorem 2.13 : Suppose that |Ωξ| > 0. For t ≥ 1,(
y
(1,�)
it

y
(2,�)
it

)
= Π

′
(
y
(1,�)
it−1

y
(2,�)
it−1

)
+ ξi + vit

= (I2 −Π
′
)−1(I2 −Π

′t)ξi +

t−1∑
h=0

Π
′hvit−h ,

since y
(g,�)
i0 = 0 (g = 1, 2). Then, for t ≥ 1,

E
[(

y
(1,�)
it−1

y
(2,�)
it−1

)
ξ

′
i

]
= (I2 −Π

′
)−1(I2 −Π

′t−1)ξiξ
′
i ,

this is because that ξi is also a constant by the following:

ξi = −(I2 −Π
′
)wi0 .

For t ≥ 2,

E
[(

y
(1,�)
it−1

y
(2,�)
it−1

)
v

′
it−h

]
= Π

′h−1Ω , (1 ≤ h ≤ t− 1) ,

otherewise, it is O.

E
[(

y
(1,�)′
i,−1

y
(2,�)′
i,−1

)
JTξ

′
i

]

= (I2 −Π
′
)−1

(
(T − 1)I2 −Π(I2 −Π

′
)−1(I2 −Π

′T−2)−Π
′T−1

)
ξiξ

′
i

= (I2 −Π
′
)−2

(
(T − 1)I2 − TΠ

′
+Π

′T
)
ξiξ

′
i .

148



After some calculation, we have that

E
[(

y
(1,�)′
i,−1

y
(2,�)′
i,−1

)
JT (v

(1)
i , v

(2)
i )

]

=
1

T
(I2 −Π

′
)−1

(
(T − 1)I2 −Π(I2 −Π

′
)−1(I2 −Π

′T−2)−Π
′T−1

)
Ω .

The following relation exists by the definition of QT :

E
[(

y
(1,�)′
i,−1

y
(2,�)′
i,−1

)
QT (v

(1)
i , v

(2)
i )

]
= −E

[(
y
(1,�)′
i,−1

y
(2,�)′
i,−1

)
JT (v

(1)
i , v

(2)
i )

]
,

Put

1

T
(I2 −Π

′
)−2

(
(T − 1)I2 − TΠ

′
+Π

′T
)
=

(
π
(11)
T π

(12)
T

π
(21)
T π

(22)
T

)
,

then, each element is O(1).

Using the result of Hsiao and Zhou (2015), the score function s11,i is evaluated

as follows:

1

N

N∑
i=1

E
[
ω11y

(1,�)′
i,−1 QTv

(1)
i + ω12y

(1,�)′
i,−1 QTv

(2)
i

]
= −N

N
π
(11)
T .

We evaluate Ωξ at Ω̄N , then,

ΨT = Ω+ T Ω̄N .

Therefore,

1

N

N∑
i=1

E
[
ψ11
T y

(1,�)′
i,−1 JTv

(1,�)
i + ψ12

T y
(1,�)′
i,−1 JTv

(2,�)
i

]

=
1

N

N∑
i=1

π
(11)
T

[
ψ11
T (ω11 + Tξ

(1)2
i ) + ψ12

T (ω12 + Tξ
(1)
i ξ

(2)
i )

]

+ π
(12)
T

[
ψ11
T (ω12 + Tξ

(1)
i ξ

(2)
i ) + ψ12

T (ω22 + Tξ
(2)2
i )

]

= π
(11)
T

[
ψ11
T

(
ω11 + T

1

N

N∑
i=1

ξ
(1)2
i

)
+ ψ12

T

(
ω21 + T

1

N

N∑
i=1

ξ
(2)
i ξ

(1)
i

)]

+ π
(12)
T

[
ψ11
T

(
ω12 + T

1

N

N∑
i=1

ξ
(1)
i ξ

(2)
i

)
+ ψ12

T

(
ω22 + T

1

N

N∑
i=1

ξ
(2)2
i

)]

= π
(11)
T ,
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since

　ψ(11)
T ψT,11 + ψ

(12)
T ψT,21 = 1 , ψ

(11)
T ψT,12 + ψ

(12)
T ψT,22 = 0 ,

because ΨTΨ
−1
T = I2. Therefore, for any N and T , we obtain

1

N

N∑
i=1

E [s11,i] = 0 ,

and thus, this is also 0 under N, T → ∞. The same is true for (s12,i, s22,i). For

the score function of Ωξ, we use the following:

−N
2
log |Ωξv| = −N(T − 1)

2
log |Ω| − N

2
log |ΨT | ,

∂Ψ−1
T

∂ωξ,11
= −TψT,22|ΨT | Ψ−1

T +
1

|ΨT |

(
0 0

0 T

)

=

(
ψ̈11
T ψ̈12

T

ψ̈21
T ψ̈22

T

)
(say, ) . (6.60)

We evaluate Ωξ at Ω̄N ,

1

N
E
[
∂L2

∂ωξ,11

]

= −1

2

TψT,22
|ΨT | − 1

2N

N∑
i=1

E
[
ψ̈11
T v

(1,�)′
i JTv

(1,�)
i + ψ̈12

T v
(1,�)′
i JTv

(2,�)
i

]

− 1

2N

N∑
i=1

E
[
ψ̈21
T v

(2,�)′
i JTv

(1,�)
i + ψ̈22

T v
(2,�)′
i JTv

(2,�)
i

]

= −1

2

TψT,22
|ΨT | − 1

2

(
ψ̈11
T ψT,11 + ψ̈12

T ψT,12 + ψ̈21
T ψT,21 ++ψ̈22

T ψT,22

)

= −1

2

TψT,22
|ΨT | − 1

2

[(
−TψT,22|ΨT |

)(
ψ11
T ψT,11 + ψ12

T ψT,12 + ψ21
T ψT,21 + ψ22

T ψT,22
)− 1

]
= 0 ,

since (
ψ11
T ψT,11 + ψ12

T ψT,12
)
+
(
ψ21
T ψT,21 + ψ22

T ψT,22
)
= 2 ,

which is due to ΨTΨ
−1
T = I2. Similarly, the expectations of score functions for

other elements of Ωξ and Ω are zero. Therefore, the estimators are consistent from

the assumptions. Then,

Ω̂ξ −
(
Ω̄ξ + o(1)

)
= op(1) ,
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since Ω̂ξ − Ω̄N = op(1). That is, Ω̄ξ is the limit of Ω̂ξ.

We consider consistency under |Ωξ| = 0.

|ΨT | = |Ω|+ T [(ωξ,22ω11 + ωξ,11ω22)− (ωξ,21ω12 + ωξ,12ω21)] ,

where T 2|Ωξ| = 0 does not appear. For some ιξ it holds that Ωξ = ιξι
′
ξ by the

assumption |Ωξ| ≥ 0, and thus,

|ΨT | = |Ω|
(
1 + T ι

′
ξΩ

−1ιξ

)
> 0 .

Therefore,

∂Ψ−1
T

∂ωξ,11
= −Tω22

|ΨT |Ψ
−1
T +

1

|ΨT |

(
0 0

0 T

)
,

where each element becomes O(1). This is the same as (6.60), and thus, the

consistency is obtained.

In the following, |Ωξ| > 0 is assumed again. Then, for the Hessian, we have

the same result as that of Theorem 2.7. Under the assumption ||ξi|| < ∞, (6.11)

holds. In addition, for wit = (w
(1)
it , w

(2)
it )

′, we have the following state-space

representation:

E [wit] = Π
′twi0 ,

E
[
witw

′
it

]
=

t−1∑
h=0

Π
′hΩΠh +Π

′t
(
wi0w

′
i0

)
Πt .

Using these relations, Hφφ becomes the same under T → ∞. Therefore,

√
NT (φ̂TL − φ) = −H−1

φφ

1√
NT

N∑
i=1

s
(�)
i + op(1) .

Consider the asymptotic normality. Although for each i, E [s(�)i ] is not zero, the

sum becomes 0:

1√
NT

N∑
i=1

s
(�)
i =

1√
NT

N∑
i=1

s
(�)
i − 1√

NT

N∑
i=1

E
[
s
(�)
i

]

=
1√
NT

N∑
i=1

(
s
(�)
i − E

[
s
(�)
i

])
.

For the variance-covariance matrix,

1

NT

N∑
i=1

(
E
[
s
(�)
i s

(�)′
i

]
− μ(�)

i μ
(�)′
i

)
p−→ −Hφφ , (6.61)
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where μ
(�)
i = E [s(�)i ]. This is because that the first term converges to Gφ from the

proof of Theorem 2.7. Regarding the second term of (6.61), using the fact that

μ
(�)
i is O(1) by Ψ−1

T = O(1/T ) of (6.12), we have

1

T

1

N

N∑
i=1

μ
(�)
i μ

(�)′
i = O

(
1

T

)
.

For non-zero vector a, there exists the fourth moment of

1√
T
a

′
(
E
[
s
(�)
i s

(�)′
i

]
− μ(�)

i μ
(�)′
i

)
. (6.62)

Thus, the generalized Lindeberg-Feller condition holds. Therefore, the asymptotic

variance-covariance matrix of
√
NT (φ̂TL − φ) is −H−1

φφ , so we obtain the desired

result. �

Proof of Theorem 2.14 : G
(f,b)
n is decomposed as follows:

G(f,b)
n
3×3

= G
(f,b)
n1 +G

(f,b)
n2 +G

(f,b)′
n2 +G

(f,b)
n3 , (6.63)

where

G
(f,b)
n1 = Θ

′
I
Π

′
InZ

(f)′P(b)Z(f)ΠInΘI ,

G
(f,b)
n2 = Θ

′
I
Π

′
InZ

(f)′P(b)
(
V(f), 0

)
,

G
(f,b)
n3 =

(
V(f), 0

)′
P(b)

(
V(f), 0

)
,

Π
′
In

2×(2+K2n)

=

(
0 π22 π

′
2n

1 0 0
′

)

=

(
Π

′
1I

2×2

, Π
′
1n

)
(say, ) ,

π
′
2n

1×K2n

=

(
π2√
K2n

, · · · , π2√
K2n

)
.

We prepare the notations as follows:

Z(f)′

Kn×n
=

(
Z

(f)′
1 , · · · , Z(f)′

T−1

)
,

Z(b)′

Kn×n
=

(
Z

(b)′
1 , · · · , Z(b)′

T−1

)
,

where Kn = 2 +K2n. From the definition of the forward filter,

Z
(f)′
t

Kn×N
= W̃

′
t − Ṽ

′
tT

=
(
W̃

′
1,t − W̃

′
2,t

)
− Ṽ

′
tT (say, ) ,

152



where

W̃
′
1,t

Kn×N
= ftW

′
t−1 , W

′
t−1 = (wit−1) ,

W̃
′
2,t =

ft
T − t

T−t∑
h=1

(
Π∗′
n

)h
W

′
t−1 ,

Π∗′
n

Kn×Kn

=

(
Π1 Π

′
2n

O π33IK2n

)
,

Π1 =

(
π11 β2π22
0 π22

)
,

Π
′
2n =

(
β2π

′
2n

π
′
2n

)
,

Ṽ
′
tT

Kn×N
=

ft
T − t

T−t∑
h=1

ΦhV
∗′
T−h , V∗′

t = (v∗
it) ,

Φh =
h−1∑
s=0

(Π∗′
n )

s .

For large Kn, we present the following lemma.

Lemma 2.6 : Suppose the assumption (A1′) and (A2). For N, T, K2n → ∞,

[i]
1

n
Π

′
InW̃

′
1W̃1ΠIn

p−→ Φ∗
2×2

,

[ii]
1

n
Π

′
InW̃

′
2W̃2ΠIn

p−→ O
2×2

,

[iii]
1

n
Π

′
InW̃

′
0W̃0ΠIn

p−→ O ,

[iv]
1

n
Π

′
InṼ

′
T ṼTΠIn

p−→ O ,

[v]
1

n
V(f)′P(b)V(f) p−→ O

2×2
.

Proof : [i] W̃
′
1 = (W̃

′
1,t) is the Kn × n matrix and the sum of periods is given by

1

n
Π

′
InW̃

′
1W̃1ΠIn =

1

n

T−1∑
t=1

f 2
t Π

′
InW

′
t−1Wt−1ΠIn

=
1

n

T−1∑
t=1

N∑
i=1

f 2
t Π

′
Inwit−1w

′
it−1ΠIn .
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We first show that the following is covariance stationary (t = 1, · · · , T − 1) even

when K2n → ∞,

wit,n
2×1

= Π
′
In

2×Kn

wit−1
Kn×1

.

For all t, it holds that E [wit,n] = 0.

E
[
wi(t+h),nw

′
t,n

]
= Π

′
InE

[
wi(t+h−1)w

′
it−1

]
ΠIn

= Π
′
In(Π

∗′
n )

hΓ0nΠIn , (6.64)

where

Γ0n = E
[
wit−1w

′
it−1

]

=

(
Γ1 Γ

′
1n

Γ1n σ2
3IK2n

)
,

σ2
3 =

ω3

1− π2
33

,

(Π∗′
n )

h =

(
Πh

1 Φ1hΠ
′
2n

O πh33IK2n

)
,

Φ1h =
h−1∑
s=0

πs33Π
h−1−s
1 .

Therefore,

E
[
wi(t+h),nw

′
it,n

]
= Π

′
1I

(
Πh

1Γ1 +Φ1hΠ
′
2nΓ1n

)
Π1I + πh33Π

′
1nΓ1nΠ1I

+Π
′
1I

(
Πh

1Γ
′
1nΠ1n + σ2

3Φ1hΠ
′
2nΠ1n

)
+ σ2

3π
h
33Π

′
1nΠ1n .　

We show that Π
′
1nΠ1n, Π

′
2nΠ1n, Π

′
1nΓ1n, Π

′
2nΓ1n, and Γ1 converge to a constant

under K2n → ∞. Since

π
′
2nπ2n =

1

K2n

K2n∑
k=1

π2
2 = π2

2 ,

the following do not depend on K2n,

Π
′
1nΠ1n =

(
π2
2 0

0 0

)
, Π

′
2nΠ1n =

(
β2π

2
2 0

π2
2 0

)
.　
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We derive the 2×K2n matrix Γ
′
1n. For k = 3, · · · , 2 +K2n,

E
[
w

(2)
it w

(k)
it−1

]
=

π2√
K2n

∞∑
s=0

πs22E
[
w

(k)
it w

(k)
it−s

]

=
1√
K2n

π2σ
2
3

1− π22π33

=
γ12√
K2n

(say, ) ,

where the first equality is from that E [w(2)
it−1w

(k)
it−1] = 0 and E [w(k)

it−1v
(2)
t ] = 0. Simi-

larly, E [w(1)
it w

(k)
it−1] is derived. Then,

Γ
′
1n =

(
1√
K2n

β2γ12
1−π11π33 · · · 1√

K2n

β2γ12
1−π11π33

γ12√
K2n

· · · γ12√
K2n

)
.

Thus, Π
′
1nΓ1n andΠ

′
2nΓ1n do not depend on K2n. From the independence between

the K2n variables,

Var
[
w

(2)
it

]
= Var

[ ∞∑
s=0

πs22
π2√
K2n

2+K2n∑
k=3

w
(k)
i(t−1−s)

]
+ Var

[ ∞∑
s=0

πs22v
(2)
t−s

]

= π2
2Var

[ ∞∑
s=0

πs22w
(3)
i(t−1−s)

]
+

ω22

1− π2
22

.

Similarly,

Γ1 = E
[(

w
(1)
it

w
(2)
it

)(
w

(1)
it , w

(2)
it

)]

does not depend on K2n. From the above, the elements of autocovariance matrix

(6.64) are finite and depend only on the difference h. Let

r(h)g = e
′
gE
[
wi(t+h),nw

′
it,n

]
eg

be the autocovariance, where e′g = (0, · · · , 1, · · · , 0) whose g-th element is only

unity (g = 1, 2). Under h→ ∞, Πh
1 , Φ1h, and πh3 converge to zero, so that

∞∑
h=0

[r(h)g]
2 <∞ .

When wit,n follows a normal distribution, the Lindgren et al. (2014, Ch. 2) show

that

1

T

T−1∑
t=1

wit,nw
′
it,n

p−→
T→∞

E
[
wit,nw

′
it,n

]
= Φ∗ ,
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where

Φ∗ = Π
′
1IΓ1Π1I +Π

′
1nΓ1nΠ1I +Π

′
1IΓ

′
1nΠ1n + σ2

3Π
′
1nΠ1n .

From the i.i.d. assumption,

1

n
Π

′
InW̃

′
1W̃1ΠIn

p−→ Φ∗ − 1

n

T−1∑
t=1

N∑
i=1

(1− f 2
t )wit,nw

′
it,n .

For the second term,

E
[
1

n

T−1∑
t=1

N∑
i=1

|(1− f 2
t )e

′
gwit,nw

′
it,neg|

]
= O

(
log T

T

)
,

since (1− f 2
t ) = O(1/T − t). Therefore, this term converges in probability to zero.

[ii] W̃
′
2 = (W̃

′
2,t) is the Kn × n matrix and it follows that

E
[
1

n
Π

′
InW̃

′
2W̃2ΠIn

]
=

1

T

T−1∑
t=1

f 2
t

(T − t)2

T−t∑
h,s=1

Π
′
In

(
Π∗′
n

)h
Γ0n (Π

∗
n)
sΠIn .

Similar to the result of [i], for any (h, s), Π
′
In

(
Π∗′
n

)h
Γ0n (Π

∗
n)
sΠIn does not

depend on K2n. In addtion, |π11|, |π22|, and |π33| are less than 1, so that for any

t,

e
′
g

T−t∑
h,s=1

Π
′
In

(
Π∗′
n

)h
Γ0n (Π

∗
n)
sΠIneg = O(1) .

Then,

E
[
1

n
e

′
gΠ

′
InW̃

′
2W̃2ΠIneg

]
= O

(
1

T

)
,

since
∑

tO(t
−2) = O(1).

[iii] W̃
′
0 = (w̃it−1,0) is the Kn × n matrix whose elements consist of (6.69).

E
[
1

n
e

′
gΠ

′
InW̃

′
0W̃0ΠIneg

]
=

1

T

T−1∑
t=1

f 2
t

t
E
[
(
√
te

′
gw̄it,n)

2
]

= O

(
log T

T

)
,
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where f 2
t < 1. Define

w̄it,n
2×1

=
1

t

t−1∑
h=0

wih,n ,

it follows that
√
te

′
gw̄it,n = Op(1). Therefore, we obtain the desired result.

[iv] Ṽ
′
T = (Ṽ

′
tT ) is the Kn × n matrix. Using the fact that E [v∗

itv
∗′
is] = O (s �= t),

E
[
1

n
e

′
gΠ

′
InṼ

′
T ṼTΠIneg

]
=

1

T

T−1∑
t=1

f 2
t

(T − t)2

T−t∑
h=1

e
′
gΠ

′
InΦhΩ

∗
nΦ

′
hΠIneg .

From the following relation,

Ω
∗ 1
2
n =

(
Ω

1
2 O

′

O ω
1
2
3 IK2n

)
,

we obtain the expressions that

Π
′
InΦhΩ

∗ 1
2
n

2×Kn

=

(
h−1∑
s=0

Π
′
1IΠ

s
1Ω

1
2 ,

h−1∑
s=0

Π
′
1IΦ1sΠ

′
2n + πs33ω

1
2
3 Π

′
1n

)
.

Π
′
2nΠ2n does not depend on K2n, so that for all h, e

′
gΠ

′
InΦhΩ

∗
nΦ

′
hΠIneg = O(1).

That is,

T−t∑
h=1

e
′
gΠ

′
InΦhΩ

∗
nΦ

′
hΠIneg = O(T − t) .

Therefore,

E
[
1

n
e

′
gΠ

′
InṼ

′
T ṼTΠIneg

]
= O

(
log T

T

)
.

[v] V(f)′ = (v
(f)
it ) is the 2 × n matrix. Let P

(b)
2 = Z

(b)
2

(
Z

(b)′
2 Z

(b)
2

)−1

Z
(b)′
2 be

the projection matrix consisting of the K2n strongly exogenous variables, where

Z
(b)′
1 = (z

(1,b)
it−1, z

(2,b)
it−1) is the G∗ × n instrumental variable matrix consisting of the

G∗ = 2 lagged endogenous variables. We use the decomposition for the projection

matrix (cf. Amemiya, 1985),

P(b) = P
(b)
2 + P̄

(b)
1 . (6.65)

Then,

1

n
e

′
gV

(f)′P(b)V(f)eg =
1

n
e

′
gV

(f)′P
(b)
2 V(f)eg +

1

n
e

′
gV

(f)′P̄
(b)
1 V(f)eg , (6.66)
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where

P̄
(b)
1 = Q

(b)
2 Z

(b)
1

(
Z

(b)′
1 Q

(b)
2 Z

(b)
1

)−1

Z
(b)′
1 Q

(b)
2 ,

Q
(b)
2 = In −P

(b)
2 .

For the first term of (6.66), using the fact that E [v(f)
is v

(f)′
it ] = Ω (s = t) orO (s �= t),

E
[
1

n
e

′
gV

(f)′P
(b)
2 V(f)eg

]
= E

[
1

n
tr
(
P

(b)
2 e

′
gΩegIn

)]

=
K2n

n
e

′
gΩeg

→ 0 .

The first equality is from that the K2n variables are strongly exogenous:

E
[
V(f)ege

′
gV

(f)′ |Z(b)
2

]
= E

[
V(f)ege

′
gV

(f)′
]
.

For the second term of (6.66), we consider the usual normalization because G∗ <
∞:

1

n
e

′
gV

(f)′P̄
(b)
1 V(f)eg =

1

n
e

′
gV

(f)′Q
(b)
2 Z

(b)
1

1×2

(
1

n
Z

(b)′
1 Q

(b)
2 Z

(b)
1

)−1

2×2

1

n
Z

(b)′
1 Q

(b)
2 V(f)eg .

For the third term,

1

n
Z

(b)′
1 Q

(b)
2 V(f)eg =

1

n
Z

(b)′
1 V(f)eg +

1

n
Z

(b)′
1 P

(b)
2 V(f)eg (6.67)

p→ 　 0 ,

since the first term of (6.67) converges to zero by (6.77), and the second term

becomes the following by the CS inequality,

∣∣ 1
n
e

′
hZ

(b)′
1 P

(b)
2 V(f)eg

∣∣ ≤ (
1

n
e

′
hZ

(b)′
1 Z

(b)
1 eh

) 1
2
(
1

n
e

′
gV

(f)′P
(b)
2 V(f)eg

) 1
2

.

Since K2n/n→ 0, the lemma is verified. �

We return to the proof of theorem. Z(f)′ is the Kn × n matrix as follows:

Z(f)′ = W̃
′ − Ṽ

′
T

=
(
W̃

′
0, · · · , W̃

′
T−1

)
−
(
Ṽ

′
1T , · · · , Ṽ

′
(T−1)T

)
.
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Then, the first term of (6.63) is decomposed as follows:

1

n
Π

′
InZ

(f)P(b)Z(f)′ΠIn =
1

n
Π

′
InW̃

′
P(b)W̃ΠIn − 1

n
Π

′
InW̃

′
P(b)ṼTΠIn

−1

n
Π

′
InṼ

′
TP

(b)W̃ΠIn +
1

n
Π

′
InṼ

′
TP

(b)ṼTΠIn .

(6.68)

Moreover, this first term is decomposed as follows:

1

n
Π

′
InW̃

′
P(b)W̃ΠIn =

1

n
Π

′
InW̃

′
1P

(b)W̃1ΠIn − 1

n
Π

′
InW̃

′
1P

(b)W̃2ΠIn

−1

n
Π

′
InW̃

′
2P

(b)W̃1ΠIn +
1

n
Π

′
InW̃

′
2P

(b)W̃2ΠIn

= Gn11 −Gn12 −Gn12 +Gn13 (say, ) .

For the backward filter,

ftwit−1 = z
(b)
it−1 +

ft
t
(wit−2 + · · ·+wi,−1) ,

= z
(b)
it−1 + w̃it−1,0 (say, ). (6.69)

Using this expression, the Kn × n matrix is given by

W̃
′
1 = Z(b)′ + W̃

′
0 , (6.70)

then,

Gn11 =
1

n
Π

′
InZ

(b)′Z(b)ΠIn +
1

n
Π

′
InZ

(b)′W̃0ΠIn

+
1

n
Π

′
InW̃

′
0Z

(b)ΠIn +
1

n
Π

′
InW̃

′
0P

(b)W̃0ΠIn . (6.71)

Since the maximum eigenvalue of P(b) is unity, so that this fourth term is evaluated

as follows by [iv] of Lemma 2.7,

1

n
e

′
gΠ

′
InW̃

′
0P

(b)W̃0ΠIneg ≤ 1

n
e

′
gΠ

′
InW̃

′
0W̃0ΠIneg

p→ 0 .

Similarly, the first term of (6.71) becomes

1

n
Π

′
InZ

(b)′Z(b)ΠIn =
1

n
Π

′
InW̃

′
1W̃1ΠIn − 1

n
Π

′
InW̃

′
1W̃0ΠIn

−1

n
Π

′
InW̃

′
0W̃1ΠIn +

1

n
Π

′
InW̃

′
0W̃0ΠIn

p→ Φ∗ , (6.72)
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because of (6.70), [i], and [ii] of Lemma 2.7. Therefore, we obtain

1

n
Gn11

p−→ Φ∗ .

Since (1/n)Gn13 converges to O by [iv] of Lemma 2.7, and P(b) is idempotent, we

have (
e

′
g

1

n
Gn12eh

)2

≤
(
e

′
g

1

n
Gn11eg

)(
e

′
h

1

n
Gn13eh

)
.

Thus, the first term of (6.63) also converges in probability to Φ∗. Since the fourth
term of (6.68) can be ignored by [iv] of Lemma 2.7, it holds that

1

n
G

(f,b)
n1

p−→ Φ∗ .

For the fourth term of (6.63), it follows that

1

n
G

(f,b)
n3

p−→ O ,

by [v] of Lemma 2.7. Therefore, we obtain

1

n
G(f,b)
n

p−→ G0
3×3

= Θ
′
I
Φ∗ΘI .

Regarding (1/n)H
(f,b)
n ,

1

n
H(f,b)
n =

1

n

(
y(1,f)′

X(f)′

)(
y(1,f), X(f)

)− 1

n
G(f,b)
n . (6.73)

Thus, evaluating the following is sufficient:(
y(1,f)′

X(f)′

)(
y(1,f), X(f)

)
= H

(f)
n1 +H

(f)
n2 +H

(f)′
n2 +H

(f)
n3 ,

where

H
(f)
n1 = Θ

′
IΠ

′
InZ

(f)′Z(f)ΠInΘI ,

H
(f)
n2 = Θ

′
I
Π

′
InZ

(f)′ (V(f), 0
)
,

H
(f)
n3 =

(
V(f), 0

)′ (
V(f), 0

)
.

(1/n)H
(f)
n1 converges in probability to G0 by using the arugumens of (1/n)G

(f)
n1 .

(1/n)H
(f)
n2 converge to O. For (1/n)H

(f)
n3 ,

1

n
H

(f,b)
n3

p−→ H0
3×3

=

(
Ω 0

′

0 0

)
.
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Therefore,

1

n
H(f,b)
n

p−→ H0 .

Following Akashi and Kunitomo (2015), we derive b1 =
√
n(θ̂− θ) under many

instruments variavles, where θ̂ = (1, −θ̂DL). Define

λ1n =
√
nλ ,

G1n =
√
n

(
1

n
G(f,b)
n −G0

)
,

H1n =
√
n

(
1

n
H(f,b)
n −H0

)
.

For G1n, it holds that (1/
√
n)G

(f,b)
n2 = Op(1) by the argument of (6.77) and

(1/
√
n)G

(f,b)
n3 = Op(1) by (6.80). For G

(f,b)
n1 , the cross terms that appear from

(6.68) to (6.72) are Op(log T/T ). For instance, the cross term of (6.72) becomes

E
[
1

n
Π

′
InW̃

′
1W̃0ΠIn

]
=

1

T

T−1∑
t=1

f 2
t

t
E
[
wit,n

t−1∑
h=0

w
′
ih,n

]

=
1

T

T−1∑
t=1

O

(
1

t

)

= O

(
log T

T

)
.

Using the result of Lemma 2.6,

G1n = Op(1) +Op(
√
NT

log T

T
)

= Op(1) ,

because
√
NT/T = O(T−1/4) by the assumption. Then, we have that H1n =

Op(1). Since λ and θ̂DL are the continuous functions of G
(f,b)
n and H

(f,b)
n , λ1n =

Op(1) and b1 = Op(1). Substituting these into (3.48) and using G0θ = 0 under

Kn/n→ 0,

1√
n
[G1n − λ1nH0]θ +

1√
n
G0b1 (6.74)

=
λ1n√
n

1√
n
H1nθ +

λ1n√
n

(
H0 +

1√
n
H1n

)
1√
n
b1

= op

(
1√
n

)
.
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By multiplying θ
′
on the left of (6.74),

λ1n =
θ

′
G1nθ

θ
′
H0θ

+ op(1) .

In addtion, multiply by (0, IG2+K1) on the left of (6.74) and substitute λ1n, then,

Φ∗√n(θ̂DL − θ1) = (0, I2)

(
I3 − 1

β
′
Ωβ

[
Ωβ

0

]
θ

′
)
G1nθ + op(1) . (6.75)

From the relation that ΘIθ = 0,

G1nθ =
1√
n
Θ

′
I
Π

′
InZ

(f)′P(b)u(f) +
1√
n

(
V(f), 0

)′
P(b)u(f) .

Therefore, we obtain

Φ∗√n(θ̂DL − θ1) = 1√
n
Π

′
InZ

(f)′P(b)u(f) +
1√
n

(
u(⊥,f), 0

)′
P(b)u(f) + op(1) ,

(6.76)

where

u(f)

n×1
= (u

(f)
it ) ,

u(⊥,f)′
1×n

= (0, 1)

(
I2 − Ωββ

′

β
′
Ωβ

)
V(f)′ .

In the following, we evaluate the effects of the forward filter. From the relations

that

u
(f)
it =

1

ft
(uit − ūit,T ) ,

and bt = ft, we use the following expression:

z
(f)
it

Kn×1

= z
(b)
it + (w̃it−1,0 − w̃it−1,T ) .

Then, the first term of (6.76) becomes the followings by P(b)Z(b) = Z(b),

1√
n
e

′
gΠ

′
InZ

(f)′P(b)u(f) =
1√
n
e

′
gΠ

′
InZ

(b)′u(f) +
1√
n
e

′
gΠ

′
In

(
W̃0 − W̃T

)′

P(b)u(f)

=
1√
n
e

′
gΠ

′
InW

′
u− r11g − r12g + r13g − r14g , (6.77)
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where

r11g =
1√
n
e

′
gΠ

′
InW̄

′
0u ,

r12g =
1√
n
e

′
gΠ

′
InW

′
ūT − 1√

n
e

′
gΠ

′
InW̄

′
0ūT ,

r13g =
1√
n
e

′
gΠ

′
In

(
W̃0 − W̃T

)′

P(b)u∼ ,

r14g =
1√
n
e

′
gΠ

′
In

(
W̃0 − W̃T

)′

P(b)ūT∼ ,

and the notations are as follows:

u
n×1

= (uit) ,

u∼ = (uit∼) , uit∼ =
uit
ft

,

ūT = (ūit,T ) , ūit,T =
1

T − t+ 1
(uit + · · ·+ uiT ) ,

ūT∼ =

(
ūit,T
ft

)
,

W̄0
Kn×n

= (w̄it−1,0) , w̄it−1,0 =
1

t
(wit−2 + · · ·+wi,−1) ,

W̃0 = (w̃it−1,0) ,

W̃T = (w̃it−1,T ) , w̃it−1,T =
ft

T − t
(wit + · · ·+wiT−1) .

(***)We show that the terms from r11g to r14g are asymptotically negligible. For

r11g, using E [r11g] = 0 and the i.i.d. assumption,

Var[r11g] =
1

T

T−1∑
t=1

Var
[
e

′
gw̄it,nuit

]

= O

(
log T

T

)
,

where the first equality is from that w̄is,nuis and w̄it,nuit are uncorrelated (s �= t).

Regarding the first term of r12g, similar to the result of Akashi and Kunitomo

(2015),

E
[
1

n
e

′
gΠ

′
InW

′
ūT ū

′
TWΠIneg

]
=

1

T

T−1∑
t=1

T−1∑
s=1

E
[
e

′
gwit,nūit,T ūis,Tw

′
is,neg

]

= O

(
log T

T

)
.
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The second term of r12g is the following by the CS inequality,

E
[
| 1√
n
e

′
gΠ

′
InW̄

′
0ūT |

]
≤

√
N

T

T−1∑
t=1

(
1

t
E
[
(
√
te

′
gw̄it,n)

2
]) 1

2
(
1

t
E
[
(
√
tūit,T )

2
]) 1

2

=

√
N

T
O (log T )

= O

(
log T

T
1
4

)
, (6.78)

where the last equation is due to assumption (A1
′
).

For the first term of r13g, using the CS inequality,

| 1√
n
e

′
gΠ

′
InW̃

′
0P

(b)u∼| ≤
(

1√
n
e

′
gΠ

′
InW̃

′
0W̃0ΠIneg

) 1
2
(

1√
n
u

′
∼P

(b)u∼

) 1
2

≤
(
f−2
T−1√
n
e

′
gΠ

′
InW̄

′
0W̄0ΠIneg

) 1
2
(

1√
n
u

′
∼P

(b)u∼

) 1
2

,

(6.79)

where the second inequality is from that 1/2 = f 2
T−1 ≤ f 2

t . Regarding this first

term, similar to (6.78),

E
[

1√
n
e

′
gΠ

′
InW̄

′
0W̄0ΠIneg

]
= O

(
log T

T
1
4

)
.

For the second term of (6.79), it is sufficient to show that

1√
n
u

′
∼P

(b)u∼ =
1√
n
u

′
∼P

(b)
2 u∼ +

1√
n
u

′
∼P̄

(b)
1 u∼

= Op(1) + op(1) . (6.80)

Let phj be the element of P
(b)
2 . For h, j, �, m = 1, · · · , n = N(T − 1), we have

the following expression:

E
[
1

n

(
u

′
∼P

(b)
2 u∼

)2

|Z(b)
2

]
=

1

n

n∑
h, j, �, m

phjp�mE [uh∼uj∼u�∼um∼] ,

where uh∼ are mutually independent given Z
(b)
2 . In the case of {h = j = � = m},

it is evaluated as O(K2n/n) since phh ≤ 1. In the case of {h = � �= j = m} or

{h = m �= j = �}, it is also evaluated as O(K2n/n) by the fact that P
(b)
2 = P

(b)2
2 =

P
(b)′
2 . Thus, the leading term becomes the case when {h = j �= � = m}:

1

n

n∑
h

n∑
�

phhp��E
[
u2h∼

] E [u2�∼] ≤ f−4
T−1σ

4

n

n∑
h

phh

n∑
�

p��

= O

(
(tr(P

(b)
2 ))2

n

)
, (6.81)
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where the inequality is from that phh, p�� ≥ 0. Since K2
2n/n = O(1) by the

assumption, the order of the first term in (6.80) is verified. For the second term

of (6.80),

1√
n
u

′
∼P̄

(b)
1 u∼ =

1

n
u

′
∼Q

(b)
2 Z

(b)
1

(
1

n
Z

(b)′
1 Q

(b)
2 Z

(b)
1

)−1
1√
n
Z

(b)′
1 Q

(b)
2 u∼

= op(1) , (6.82)

since

1√
n
Z

(b)′
1 Q

(b)
2 u∼ =

1√
n
Z

(b)′
1 u∼ − 1√

n
Z

(b)′
1 P

(b)
2 u∼

= Op(1) ,

this reason is that 1/2 ≤ f 2
t < 1 and Lemma 2.7 below. Therefore, the first term

of (6.82) is Op(1/
√
n).

Lemma 2.7 : Suppose the assumptions (A1
′
) and (A2). For N, T, Kn → ∞,

1√
n
W

′
1P

(b)
2 u = Op(1) .

where W
′
1 = (w

(1)
−1, w

(2)
−1)

′
is the 2× n matrix consisting of the lagged endogenous

variables.

Proof : We first consider the second element w
(2)
it−1 in the following reduced form:[

w
(1)
it−1

w
(2)
it−1

]
= Π1

[
w

(1)
it−2

w
(2)
it−2

]
+Π

′
2nw

(n)
it−1 + vit , (6.83)

where (w
(1)
−1, w

(2)
−1)

′
= (w

(1)
it−1, w

(2)
it−1 )

′
do not include individual effects and

w
(n)′
i(t−1) = (w

(3)
it−1, · · · , w(Kn)

it−1 ). Using the moving average representation, we have

w
(2)
it−1 =

t−2∑
s=0

πs22v
(2)
i(t−s−1) +

t−2∑
s=0

πs22π
′
2nw

(n)
i(t−s−1) + πt−1

22 w
(2)
i0

= v̄
(2)
it−1 + w̄

(2)
it−1,n + w

(2)
it−1,0 (say, ) .

In the n× 1 vector representation,

w
(2)
−1 = v̄(2) + w̄(2)

n +w
(2)
0 , (6.84)

where v̄(2) = (v̄
(2)
it−1) , w̄

(2)
n = (w̄

(2)
it−1,n), and w

(2)
0 = (w̄

(2)
it−1,0).
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For the first term of (6.84), we decompose v̄(2) into the sum of the vectors

(t = 2, · · · , T − 1) as follows:

v̄(2)

n×1
=

T−1∑
s=2

πT−1−s
22 v

(2)
[s] ,

where v
(2)
[s] = (v

(2)′
1[s] , · · · , v(2)′

N [s])
′
and the construction of the (T −1)×1 vector v

(2)
i[s]

is as follows:

v
(2)
i[2] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0
...

0

0

v
(2)
i1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, v

(2)
i[3] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0
...

0

v
(2)
i1

v
(2)
i2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, · · · , v(2)

i[T−2] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

v
(2)
i1
...　
v
(2)
iT−4

v
(2)
iT−3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, v

(2)
i[T−1] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

v
(2)
i1

v
(2)
i2
...　
v
(2)
iT−3

v
(2)
iT−2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Note that the elements in each low are mutually independent. Therefore, the

elemnet of v
(2)
[s] are also mutually independent. Meanwhile, ui is given by

ui
(T−1)×1

=

⎡
⎢⎢⎢⎢⎢⎢⎣

ui1
ui2
...

uiT−2

uiT−1

⎤
⎥⎥⎥⎥⎥⎥⎦
,

where E [v(2)it uit] �= 0. From the decomposition,

1√
n
|v̄(2)′P

(b)
2 u| ≤ 1√

n

T−1∑
t=2

|π22|T−1−t
(
v
(2)′
[t] P

(b)
2 v

(2)
[t]

) 1
2
(
u

′
P

(b)
2 u

) 1
2

=

(
1√
n
u

′
P

(b)
2 u

) 1
2
T−1∑
t=2

|π22|T−1−t
(

1√
n
v
(2)′
[t] P

(b)
2 v

(2)
[t]

) 1
2

= Op(1) ,

because that the first term is Op(1) by (6.80), and for the second term it is shown

that

E
[(

1√
n
v
(2)′
[t] P

(b)
2 v

(2)
[t]

)2
]
= O

(
K2

2n

n

)
.

Then, we obtain the result since |π22| < 1.
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The second term of (6.84) is also Op(1) since

E
[
E
[(

1√
n
w̄(2)′
n P

(b)
2 u

)2

|Z(b)
2

]]
=

1

n
E
[
w̄(2)′
n P

(b)
2

(
σ2In

)
P

(b)
2 w̄(2)

n

]

≤ σ2

n
E
[
w̄(2)′
n w̄(2)

n

]
= O(1) .

Similarly, the third term of (6.84) is as follows given the initial value:

E
[
E
[(

1√
n
w

(2)′
0 P

(b)
2 u

)2

|Z(b)
2 , w

(2)
0

]]
= O(1) .

The orders for the three terms in (6.84) are Op(1). Therefore,

1√
n
w

(2)′
−1 P

(b)
2 u = Op(1) . (6.85)

Similarly, the order of the first element w
(1)
it−1 of (6.83) becomes Op(1) by using the

moving average representation. Thus, we obtain the desired result.

�

We return to the proof of theorem. The second term of r13g is also op(1) under

the similar arguments. Regarding r14g, using the similar arguments as used for the

second term of r12g, we obtain

r14g = Op

(
log T

T
1
4

)
,

The first column of the second term in (6.76) is asymptotically negligible. From

the decomposition of (6.65),

1√
n
u(⊥,f)′P(b)u(f) =

1√
n
u(⊥,f)′P(b)

2 u(f) +
1√
n
u(⊥,f)′P̄(b)

1 u(f) .

Then, the second term becomes as follows:

1√
n
u(⊥,f)′P̄(b)

1 u(f) =
1

n
u(⊥,f)′Q(b)

2 Z
(b)
1

(
1

n
Z

(b)′
1 Q

(b)
2 Z

(b)
1

)−1
1√
n
Z

(b)′
1 Q

(b)
2 u(f)

= op(1) .

We evaluate the effects of the forward filter in the second term of (6.76).

1√
n
u(⊥,f)′P(b)

2 u(f) =
1√
n
ũ⊥′

P
(b)
2 u∼ − r21 − r22 + r23 , (6.86)
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where

r21 =
1√
n
ũ⊥′

P
(b)
2 ūT∼ ,

r22 =
1√
n
ũ⊥′
T P

(b)
2 u∼ ,

r23 =
1√
n
ũ⊥′
T P

(b)
2 ūT∼ ,

and the notations are as follows:

ũ⊥
n×1

=
(
ftu

⊥
it

)
, u⊥it = (0, 1)

(
I2 − Ωββ

′

β
′
Ωβ

)
vit ,

ũ⊥
T∼ =

(
ũ⊥it,T

)
, ũ⊥it,T =

ft
T − t

(u⊥it+1 + · · ·+ u⊥iT ) .

Similar to r13 and r14, the terms from r21 to r23 are O(log T/T
1
4 ). Furthermore,

the first term of (6.86) disappears under K2n/n → 0. This is because that the

leading term of (6.81) becomes zero due to

E [uitu⊥it] = 0 .

Then,

E
[(

1√
n
ũ⊥′

P
(b)
2 u∼

)2
]
= O

(
K2n

n

)
.

Therefore, we obtain that

Φ∗√n(θ̂DL − θ1) =
1√
n
Π

′
InW

′
u+ op(1)

=
1√
T

T−1∑
t=1

(
1√
N

N∑
i=1

wit,nuit

)
+ op(1) .

The 2×1 vector (1/
√
N)

∑
iwit,nuit (t = 1, · · · , T−1) is the martingale difference

sequence for any N, K2n. Therefore, from the martingale central limit theorem

and [i] of Lemma 2.6, it holds that

Φ∗√n(θ̂DL − θ1) d−→ N (0, σ2Φ∗) . (6.87)

Thus, [ii] of Theorem 2.14 is verified.

Finally, we consider the sampling error of the GMM estimator:

Φ∗√n(θ̂DG − θ1) =
1√
n
Π

′
InW

′
u+

1√
n

(
ṽ(2), 0

)′
P

(b)
2 u∼ + op(1) ,

(6.88)
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where

ṽ(2)

n×1
=

(
ṽ
(2)
it

)
, ṽ

(2)
it = ftv

(2)
it .

For the first low of the second term in (6.88),

E
[

1√
n
ṽ(2)′P

(b)
2 u∼

]
=

1√
n

n∑
h=1

phhE
[
ṽ
(2)
h uh∼

]

=

(
K2

2n

n

) 1
2

E
[
v
(2)
it uit

]
,

where the second equality is form that ft/ft = 1 for all h = h (h = 1, · · · , N(T −
1)). For its second moment,

E
[(

1√
n
ṽ(2)′P

(b)
2 u∼

)2
]
=
K2

2n

n

(
E
[
v
(2)
it uit

])2

+O

(
K2n

n

)
.

From the variance formula,

Var
[

1√
n
ṽ(2)′P

(b)
2 u∼

]
= O

(
K2n

n

)
.

this term converges in probability to its expectation under K2
2n/n→ d2. Thus, [i]

of Theorem 2.14 is verified. �

Proof of Theorem 3.1 : The denominator of λ becomes the following by the

proof of Theorem 2.9:

σ̂2 =
1

n
θ̂

′
H(f,b)
n θ̂

p→
(
β

′
,−γ ′

1

)( Ω O

O O

)(
β

−γ1

)

= σ2 ,

where θ̂ = (1, −θ̂
′

DL
)
′
. Following Hayashi (2000, Ch. 3), we prepare the notations

as follows:

my =
1

n
Z(b)′y(1,f) ,

Mx =
1

n
Z(b)′X(f) ,

Mz =
σ̂2

n
Z(b)′Z(b) .

169



The orthogonal condition on a sample is given by

　my −Mxθ̂DG = Hxz (my −Mxθ1)

=
1

n
HxzZ

(b)′u(f) ,

where

Hxz = IK −Mx(M
′
xM

−1
z Mx)

−1M
′
xM

−1
z ,

θ̂DG = (M
′
xM

−1
z Mx)

−1M
′
xM

−1
z my .

Then,

nλ = n
1
n
θ̂

′
G

(f,b)
n θ̂

σ̂2

= n
(
my −Mxθ̂DL

)′

M−1
z

(
my −Mxθ̂DL

)

=

(
Mx

√
n(θ1 − θ̂DL) +

1√
n
Z(b)′u(f)

)′

M−1
z

(
Mx

√
n(θ1 − θ̂DL) +

1√
n
Z(b)′u(f)

)

= n
(
my −Mxθ̂DG

)′

M−1
z

(
my −Mxθ̂DG

)
+ op(1)

=

(
1√
n
Z(b)′u(f)

)′

H
′
xzM

−1
z Hxz

(
1√
n
Z(b)′u(f)

)
+ op(1) ,

where the fourth equality is from that
√
n(θ̂DL − θ1) =

√
n(θ̂DG − θ1) + op(1) due

to Corollary 2.1. Since M−1
z is positive definite, expressed as M−1

z = L
′
zLz,

H
′
xzM

−1
z Hxz = H

′
xzL

′
z

[
Lz − LzMx((LzMx)

′
LzMx)

−1(LzMx)
′
Lz

]
= H

′
xzL

′
z

[
IK − LzMx((LzMx)

′
LzMx)

−1(LzMx)
′
]
Lz

= H
′
xzL

′
zQxzLz (say, )

= L
′
zQxzLz .

Therefore,

nλ =

(
1√
n
LzZ

(b)′u(f)

)′

Qxz

(
1√
n
LzZ

(b)′u(f)

)
+ op(1) .

Under null hypothesis, using the result of Theorem 2.9 and that (L
′
zLz)

−1 p→
σ2J

′E [wit−1w
′
it−1]J,

1√
n
LzZ

(b)′u(f) d−→ N (0, IK) , (6.89)
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where Qxz is idempotent because rank(Qxz) = tr(Qxz) = K−(G2+K1). Applying

Cochran’s theorem, we obtain

nλ(f,b)
d−→ χ2

K2−G2
.

�

Proof of Theorem 3.2 : Similar to the proof of Theorem 3.1, we prepare the

notations as follows:

M1x =
1

n
Z

(b)′
1 X(f) ,

M1z =
σ̄2

n
Z

(b)′
1 Z

(b)
1 ,

H1xz = IK+G21 −M1x(M
′
1xM

−1
1z M1x)

−1M
′
1xM

−1
1z ,

where Z
(b)
1 = (Y(21,b),Z(b)) and Y(21,b)′ = (y

(21)
it ) are the n×G21 matrices. Assum-

ing that y
(21)
it is also exogenous and applying Theorem 3.1,

σ̄2 p−→ σ2 = β
′
Ωβ ,

where Ω becomes the (1 +G22)× (1 + G22) matrix. Moreover,

nλ1 =

(
1√
n
L1zZ

(b)′
1 u(f)

)′

Q1xz

(
1√
n
L1zZ

(b)′
1 u(f)

)
+ op(1)

d→ χ2
K2−G22

,

where L
′
1zL1z = M−1

1z and

Q1xz = IK+G21 − L1zM1x((L1zM1x)
′
L1zM1x)

−1(L1zM1x)
′
.

We define the K × (G21 +K) matrix J
′
21 such that

Z(b)′ = J
′
21Z

(b)′
1 .

Assuming that y
(21)
it is endogenous and applying Theorem 3.1,

nλ =

(
1√
n
LzJ

′
21Z

(b)′
1 u(f)

)′

Qxz

(
1√
n
LzJ

′
21Z

(b)′
1 u(f)

)
+ op(1)

=

(
1√
n
L1zZ

(b)′
1 u(f)

)′

Pxz

(
1√
n
L1zZ

(b)′
1 u(f)

)
+ op(1) ,

where

Pxz = (LzJ
′
21L

−1
1z )

′
QxzLzJ

′
21L

−1
1z .
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Therefore,

nλ1 − nλ =

(
1√
n
L1zZ

(b)′
1 u(f)

)′

(Qxz −Pxz)

(
1√
n
L1zZ

(b)′
1 u(f)

)
+ op(1) .

Finally, we show that (Qxz −Pxz) is an idempotent matrix.

P2
xz = (LzJ

′
21L

−1
1z )

′
QxzLzJ

′
21L

−1
1z (L

−1
1z )

′
J21L

′
zQxzLzJ

′
21L

−1
1z

= (LzJ
′
21L

−1
1z )

′
QxzLz(J

′
21M1zJ21)L

′
zQxzLzJ

′
21L

−1
1z

= (LzJ
′
21L

−1
1z )

′
Q2
xzLzJ

′
21L

−1
1z

= Pxz ,

where the third equality is from that (L
′
zLz)

−1 = Mz = J
′
21M1zJ21, and σ̄2 is

supposed to be the denominator of λ. In addition,

(L1zM1x)
′
Pxz = (L1zM1x)

′
(LzJ

′
21L

−1
1z )

′
QxzLzJ

′
21L

−1
1z

= M
′
1xL

′
1z(L

′
1z)

−1J21L
′
zQxzLzJ

′
21L

−1
1z

= (LzMx)
′
QxzLzJ

′
21L

−1
1z

= O .

Thus, QxzPxz = Pxz. From the above,

(Qxz −Pxz)
2 = Qxz −Pxz

it is the idempotent matrix. The degree of freedom becomes

tr(Qxz −Pxz) = [(K +G21)− (G2 +K1)]− [K − (G2 +K1)]

= G21 .

Therefore, we obtain the desired result. �

Proof of Theorem 3.3 : [i] We first consider the case when N < ∞ (c1 > 0).

From the derivation of Akashi and Kunitomo (2015),

√
n(λ̃− c1) =

θ
′
[G1 −√

c1c1∗H1]θ

θ
′
H0θ

+ op(1) ,
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and

[G1 −√
c1c1∗H1]

[
1

−θ1

]
(6.90)

=
1√
n
Θ

′
I
Π

′
I

T−1∑
t=1

Z
(f)′
t−1P

(b)
t u

(f)
t +

1√
n

[
T−1∑
t=1

(
V

(f)′
t

O

)
P

(b)
t u

(f)
t − rn

(
Ωβ

0

)]

−
√
c1c1∗√
qn

Θ
′
I
Π′

I

T−1∑
t=1

Z
(f)′
t−1[IN −P

(b)
t ]u

(f)
t

−
√
c1c1∗√
qn

[
T−1∑
t=1

(
V

(f)′
t

O

)
[IN −P

(b)
t ]u

(f)
t − qn

(
Ωβ

0

)]
,

where qn = n− rn, rn = K(T − 1) and

G1 =
√
n

(
1

n
G(f,b) −G0

)
,

H1 =
√
n

(
1

n
H(f,b) −H0

)
.

Multiplying θ on the left of (6.90), we have that θ′Θ
′
I
= 0 and

√
c1c1∗/

√
qn =

c1∗/
√
n. Then,

√
n(λ̃− c1) =

1√
nσ2

T−1∑
t=1

u
(f)′
t [P

(b)
t − c1∗(IN −P

(b)
t )]u

(f)
t + op(1)

=
1√
nσ2

T−1∑
t=1

u
(f)′
t

1

1− c1
(P

(b)
t − c1IN)u

(f)
t + op(1)

=
1√
nσ2

T−1∑
t=1

u
(f)′
t N

(b)
t u

(f)
t + op(1)

=
1√
Tσ2

T−1∑
t=1

1√
N
u

′
tN

(b)
t ut + op(1) ,

where the third equality is from that

N
(b)
t =

1

1− c1
(P

(b)
t − c1IN) , (6.91)

and at the fourth equality the effect of the forward filter is asymptotically negligible

even in N <∞ by the result of Akashi and Kunitomo (2015). (1/
√
N)utN

(b)
t ut is

the martingale difference sequence, since c1 = K/N , so that

Et−1[
1√
N
u

′
tN

(b)
t ut] =

σ2

√
N
tr(N

(b)
t )

=
σ2

√
N

1

1− c1
(K − K

N
N)

= 0 .
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The conditional variance of each t is given by

Et−1[(u
′
tN

(b)
t ut)

2] =
∑
i

∑
j

∑
k

∑
�

n
(t)
ij n

(t)
k� Et[uitujtuktu�t]

= E [u4it]n′
tnt +

∑
i

∑
k 	=i

n
(t)
ii n

(t)
kk(E [u2it])2

+
∑
i

∑
j 	=i

n
(t)
ij n

(t)
ij E [u2it]E [u2it] +

∑
i

∑
j 	=i

n
(t)
ij n

(t)
ji (E [u2it])2

= (E [u4it]− 3σ4)n′
tnt + σ4[tr(N

(b)
t )]2 + 2σ4tr([N

(b)
t ]2)

= (E [u4it]− 3σ4)n′
tnt + 2σ4tr([N

(b)
t ]2) ,

where nt denotes the N × 1 vector, which consists of the diagonal elements n
(t)
ii of

N
(b)
t . Applying the martingale central limit theorem, for T → ∞,

√
n(λ̃− c1)

d−→ N (0, σ2
λ) ,

where

σ2
λ = lim

T→∞
1

nσ4

T−1∑
t=1

2σ4tr([N
(b)
t ]2) + (E [u4it]− 3σ4)E [n′

tnt]

= 2c1∗ +
E [u4it]− 3σ4

σ4(1− c1)2

(
lim
T→∞

1

n

T−1∑
t=1

E [p′
tpt]− c21

)
, (6.92)

and pt is the N × 1 vector consisting of the elements p
(t)
ii of P

(b)
t . This is because

that [N
(b)
t ]2 = P

(b)
t + c21∗(IN −P

(b)
t ) and

1

n

T−1∑
t=1

tr([N
(b)
t ]2) =

rn
n

+
qn
n
c21∗ −→ c1∗ .

From n
(t)
ii = (p

(t)
ii − c1)/(1− c1),

1

n

T−1∑
t=1

E [n′
tnt] −→ 1

(1− c1)2

(
lim
T→∞

1

T

T−1∑
t=1

E [p′
tpt]− 2c21 + c21

)
.

However, the second term of (6.92) disappears since E [u4it] = 3σ4 due to the as-

sumption of normality. �

[ii] We consider the case when N → ∞ (c1 = 0). From the result of Akashi and

Kunitomo (2015), we have the following regardless of c1,

θ̃ − θ = Op(
1√
n
) ,
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where (1,−θ̃
′

LI
)
′
= θ̃ and the first element of (θ̃ − θ) is zero by definition. Then,

nλ̃ =
1

σ̄2

(
θ

′
G(f,b)θ − 2θ

′
G(f,b)(θ̃ − θ) + (θ̃ − θ)′G(f,b)(θ̃ − θ)

)
, (6.93)

where θ̃
′
(1/qn)H

(f)θ̃ = σ̃2. For the third term, normalized by
√
T ,

1√
T

×√
n(θ̃ − θ)′

(
1

n
G(f,b)

)√
n(θ̃ − θ) = Op(

1√
T
) .

Similarly, for the second term of (6.93),

1√
T

× 2θ
′ (√

nG0 +G1

)√
n(θ̃ − θ)

= Op(
1√
T
) +Op(

√
N

T

log T√
T

) ,

since θ
′
G0 = 0 under c1 = 0, and G1 = Op(1) + Op(

√
N/T log T ). Therefore, in

the following quantity, the second and third terms of (6.93) can be asymptotically

ignored,

nλ̃−KT√
2KT

=
1

σ̄2

θ
′
G(f,b)θ√
2KT

− KT√
2KT

+ op(1)

=
1

σ̃2

θ
′
G(f,b)θ −KTσ2 +KTσ2

√
2KT

− KT√
2KT

+ op(1)

=
σ2

σ̃2

θ
′
G(f,b)θ −KTσ2

√
2KTσ4

+
1

σ̃2
(σ2 − σ̃2)

KT√
2KT

+ op(1)

=
θ

′
G(f,b)θ −KTσ2

√
2KTσ4

+Op(
1√
N
) +Op(

log T√
T

) + op(1) , (6.94)

where the last equality is from that (σ̃2 − σ2) = Op(1/
√
n) + Op(log T/T ). Re-

garding the first term of (6.94),

θ
′
G(f,b)θ −KTσ2

√
2KTσ4

=
1√
T

T−1∑
t=1

u
(f)′
t P

(b)
t u

(f)
t −Kσ2

√
2Kσ4

+ op(1)

=
1√
T

T−1∑
t=1

u
′
tP

(b)
t ut −Kσ2

√
2Kσ4

+ op(1) .

This is the martingale difference sequence since Et−1[u
′
tP

(b)
t ut − Kσ2] = 0. The

conditional variance of each t is given by

Et−1[(u
′
tP

(b)
t ut −Kσ2)2]

= (E [u4it]− 3σ4)p′
tpt + σ4[tr(P

(b)
t )]2 + 2σ4tr([P

(b)
t ]2)− 2tr(P

(b)
t )Kσ4 +K2σ4

= (E [u4it]− 3σ4)p′
tpt + 2Kσ4 .
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Similar to Akashi and Kunitomo (2015), we obtain that E [(u′
tP

(b)
t ut−Kσ2)4] < Δ.

Applying the martingale central limit theorem, for T → ∞,

nλ̃−KT√
2KT

d−→ N (0, σ2
λ) ,

where

σ2
λ = 1 +

E [u4it]− 3σ4

2Kσ4

(
lim

N,T→∞
1

T

T−1∑
t=1

E [p′
tpt]

)
.

However, if N → ∞, then

1

T

T−1∑
t=1

N∑
i=1

p2ii =
1

T

T−1∑
t=1

N∑
i=1

1

N2
z
(b)′
it−1

(
1

N
Z

(b)′
t Z

(b)
t

)−1

z
(b)
it−1

= Op(
NT

N2T
)

= op(1) .

Since this is a bounded random variable with 0 ≤ (1/T )
∑

t

∑
i p

2
ii ≤ (1/T )

∑
t tr(P

(b)
t ) ≤

K, the convergence in probability also means the convergence in 1th mean to zero

(cf. Sen and Singer, 1993). Thus,

lim
N,T→∞

E
[
1

T

T−1∑
t=1

p′
tpt

]
= 0 ,

or σ2
λ = 1.

Finally, for the adjusted degree of freedom dT = 2KT − (G2+K1), it holds that

dT/2KT → 1 and (G2 + K1)/dT → 0. Therefore, t0 converges in distribution to

the standard normal distribution. �

Proof of Theorem 3.4 : We present the following two lemmas.

Lemma 3.2 : Suppose that for the g-th reduced form, there exists a missing

variable in z
{1}
it . Let ω̂

{1}
gg be the estimator for the variance of error term and ω̂gg

be based on the true instrumental variable zit. Then,

plim
n→∞

(ω̂{1}
gg − ω̂gg) = δg1 > 0 . (6.95)
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Proof : For the true instrumental variable zit, the following estimator is consistent:

ω̂gg =
1

n
y(g,f)′Q

′
0Q0y

(g,f)

=
1

n
(Z(f)πg + v(g,f))

′
Qｍ′

0Q0(Z
(f)πg + v(g,f))

= ωgg＋ op(1) , (6.96)

where

Q0 = In − Z(f)(Z(b)′Z(f))−1Z(b)′

is idempotent but asymmetric, and the third equality is from that the results of

(6.25), (6.45), and

Q0Z
(f) = O . (6.97)

For any candidate z
{1}
it ,

ω̂{1}
gg =

1

n
y(g,f)′Q

′
1Q1y

(g,f)

=
1

n
(Z(f)πg + v(g,f))

′
Q

′
1Q1(Z

(f)πg + v(g,f))

=
1

n
π

′
gZ

(f)′Q
′
1Q1Z

(f)πg + ωgg + op(1) ,

where

Q1 = In − Z
(f)
{1}(Z

(b)′
{1}Z

(f)
{1})

−1Z
(b)′
{1}

is generated by z
{1}(f)
it and z

{1}(b)
it , and the third equality is form that E [Z(b)′

{1}v
(g,f)] =

0 and

1

n
Z(f)′Q

′
1Q1v

(g,f) p−→ 0 .

Therefore, for any z
{1}
it , it holds that

plim
n→∞

(ω̂{1}
gg − ω̂gg) = plim

n→∞

1

n
(Q1Z

(f)πg)
′
(Q1Z

(f)πg)

= δ(g)

≥ 0 ,

in the probability limit.

We show that if z
{1}
it has a missing variable, then δ(g) �= 0. Consider the regres-

sion of π
′
gwit−1 on w

{1}
it−1 on the population. For some t,

π
′
gwit−1 = ρ

′
gw

{1}
it−1 + εit ,
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where the K{1} × 1 coefficient is given by

ρg =
(
E
[
w

{1}
it−1w

{1}′
it−1

])−1

E
[
w

{1}
it−1w

′
it−1

]
πg .

Then, the expectation of the error term becomes

E [εit] = π′
gE [wit−1]− ρ′

gE [w{1}
it−1] = 0 .

For its variance, using E [w{1}
it−1εit] = 0,

Var[εit]
= E [(π′

gwit−1 − ρ′
gw

{1}
it−1)

2]

= π
′
gE [wit−1w

′
it−1]πg − ρ

′
gE [w{1}

it−1w
{1}′
it−1]ρg

= π
′
g

(
E [wit−1w

′
it−1]− E [wit−1w

{1}′
it−1](E [w{1}

it−1w
{1}′
it−1])

−1E [w{1}
it−1w

′
it−1]

)
πg .

Now, we have that

1

n
Z(f)′Q

′
1Q1Z

(f)

p→ E [wit−1w
′
it−1]− E [wit−1w

{1}′
it−1](E [w{1}

it−1w
{1}′
it−1])

−1E [w{1}
it−1w

′
it−1]

= Γ{1} (say, ) .

Therefore,

Var[εit] = δg1 .

Suppose that δg1 = 0. Then, it holds that Var[εit] = 0 or εit = 0, and

π
′
gwit−1 = ρ

′
gw

{1}
it−1 .

Since for g, z
{1}
it does not contain a variable w

[k]
it−1, its coefficient should be π

[k]
g �= 0.

Dividing both sides by π
[k]
g and transposing the variables other than w

[k]
it−1 to the

right-hand side,

w
[k]
it−1 = ρ

′
0gw

{01}
it−1 ,

where w
{01}
it−1 = wit−1∪w

{1}
it−1 is the K

{01}× 1 vector. Expressed as the n× 1 vector

and n×K{01} matrix,

w[k] = W{01}ρ0g .

If ρ0g = 0, then w[k] = 0. This contradicts rank(W) = K∗ by assumption (A5).

If ρ0g �= 0, then w[k] becomes a linear combination of other variables. However,
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w
[k]
it−1 is not included on the right-hand side, which also contradicts rank(W) = K∗.

Therefore, it is verified that δg1 > 0. �

If there exists no missing variable, then δ(g) = 0. Therefore, we examine the higher

order in the following lemma.

Lemma 3.3 : Suppose that z
{1}
it includes the true instrumental variables zit.

Provided d <∞, for all g = 1, · · · , G,
n(ω̂gg − ω̂{1}

gg )
d−→ ωggχ

2
g, K{1}−K +N (0, σ2

g1) .

Proof : Using Q1Z
(f) = O,

n(ω̂gg − ω̂{1}
gg )

= v(g,f)′Q
′
0Q0v

(g,f) − v(g,f)′Q
′
1Q1v

(g,f)

= v(g,f)′(−P
′
0 −P0 +P

′
0P0 +P

′
1 +P

′
1 −P

′
1P1)v

(g,f)

= v(g,f)′(−2P0 +P
′
0P0 + 2P1 −P

′
1P1)v

(g,f) , (6.98)

where

P0 = Z(f)(Z(b)′Z(f))−1Z(b)′ , P1 = Z
(f)
{1}(Z

(b)′
{1}Z

(f)
{1})

−1Z
(b)′
{1} .

However, from the derivation of Theorem 2.9,

v(g,f)′P
′
1P1v

(g,f)

=
1√
n
v(g,f)′Z

(b)
{1}

(
1

n
Z

(f)′
{1}Z

(b)
{1}

)−1
1

n
Z

(f)′
{1}Z

(f)
{1}

(
1

n
Z

(b)′
{1}Z

(f)
{1}

)−1
1√
n
Z

(b)′
{1}v

(g,f)

= v(g,f)′P
(b)
1 v(g,f) + op(1) ,

where

P
(b)
1 = Z

(b)
{1}(Z

(b)′
{1}Z

(b)
{1})

−1Z
(b)′
{1} .

Similarly,

v(g,f)′P
′
0P0v

(g,f) = v(g,f)′P(b)v(g,f) + op(1) .

Using the simlar arguments of Theorems 2.9 and 2.11 under d < ∞, we have the

following relations between the forward and backward filters:

1√
n
Z(f)′v(g,f) =

1√
n
Z(b)v(g,f) − bg{0} + op(1) ,

1√
n
Z

(f)′
{1} v

(g,f) =
1√
n
Z

(b)
{1}v

(g,f) − bg{1} + op(1) ,
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where similar to (6.47), the constant vectors bg{0} and bg{1} are given by

bg{0} = −d 1
2J

′
(
IG∗ −Π∗′

)−1

Ω∗eg ,

bg{1} = −d 1
2J

′
K{1}

(
IG∗ −Π∗′

)−1

Ω∗eg .

Then,

2v(g,f)′P1v
(g,f)

= 2v(g,f)′P
(b)
1 v(g,f) − 2b

′
g{1}

(
1

n
Z

(b)′
{1}Z

(f)
{1}

)−1
1√
n
Z

(b)′
{1}v

(g,f) + op(1)

= 2v(g,f)′P
(b)
1 v(g,f) − qn1 + op(1) (say, ) ,

where the second term qn1 converges to a normal distribution if d > 0 and converges

to zero if d = 0. In addtion,

2v(g,f)′P0v
(g,f) = 2v(g,f)′P(b)v(g,f) − qn0 + op(1) (say, ) .

Therefore, (6.98) is expressed as

n(ω̂gg − ω̂{1}
gg ) = v(g,f)′(P

(b)
1 −P(b))v(g,f) + (qn0 − qn1) + op(1) . (6.99)

For the second term,

(qn0 − qn1)
d−→ N (0, σ2

g1) ,

where

σ2
g1 = 4ωgg

(
−b

′
g{0},b

′
g{1}

)( (J
′
01Γ{1}J01)

−1 (J
′
01Γ{1}J01)

−1J
′
01

J01(J
′
01Γ{1}J01)

−1 Γ−1
{1}

)(
−bg{0}
bg{1}

)
,

Γ{1} = E [w{1}
it−1w

{1}′
it−1], and J

′
01 is the K ×K{1} matrix such that

Z(b) = Z
(b)
{1}J01 .

Using J01, we rewrite the first term of (6.99) as follows:

1

ωgg
v(g,f)′(P

(b)
1 −P(b))v(g,f)

=
1

nωgg
v(g,f)′Z

(b)
{1}

((
1

n
Z

(b)′
{1}Z

(b)
{1}

)−1

− J01

(
J

′
01

1

n
Z

(b)′
{1}Z

(b)
{1}J01

)−1

J
′
01

)
Z

(b)′
{1}v

(g,f)

=
1

nωgg
v(g,f)′Z

(b)
{1}L

′
1

(
IK{1} − (J

′
01L

−1
1 )

′
(J

′
01L

−1
1 (J

′
01L

−1
1 )

′
)−1J

′
01L

−1
1

)
L1Z

(b)′
{1}v

(g,f)

=

(
1√
nωgg

L1Z
(b)′
{1}v

(g,f)

)′

Q
(b)
{1}

(
1√
nωgg

L1Z
(b)′
{1}v

(g,f)

)
(say, ) ,
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where the second equality is from that ((1/n)Z
(b)′
{1}Z

(b)
{1})

−1 = L
′
1L1. Similar to

(6.89),

1√
nωgg

L1Z
(b)′
{1}v

(g,f) d−→ N (0, IK{1}) .

Since tr(Q
(b)
{1}) = K{1} −K, we obtain

n(ω̂gg − ω̂{1}
gg )

d−→ ωggχ
2
g, K{1}−K .

�

In the following, we present the proof of theorem. If for g-th reduced form, z
{1}
it

has at least one missing variable w
[k]
it−1, then there exists some δ > 0 by Lemma

3.2,

tr(Ω̂{1})− tr(Ω̂)
p−→ δ > 0 .

For any ε0 and ε1 such that δ > ε1 > ε0 > 0, when T → ∞,

Pr(PIC1 > PIC1,0)

= Pr

(
tr(Ω̂{1})− tr(Ω̂) +G(K{1} −K)

log n

n
> 0

)

≥ Pr

(
tr(Ω̂{1})− tr(Ω̂) ≥ ε1 ∩ |G(K{1} −K)

log n

n
| ≤ ε0

)

≥ Pr
(
tr(Ω̂{1})− tr(Ω̂) ≥ ε1

)
+ Pr

(
|G(K{1} −K)

log n

n
| ≤ ε0

)
− 1

→ 1 .

This is because that the first term converges to unity, and the second term also

converges to unity by log n/n→ 0.

If there exists no missing variable, then

K < K{1} ,

i.e., zit is included in z
{1}
it . Then,

Pr(PIC1 > PIC1,0) = Pr
(
n
(
tr(Ω̂{1})− tr(Ω̂)

)
+G(K{1} −K) log n > 0

)
→ 1 .

This is because that (K{1} −K) logn → +∞, and the following holds by Lemma

3.3,

n
(
tr(Ω̂{1})− tr(Ω̂)

)
= −

G∑
g=1

(
ωggχ

2
g, K{1}−K +N (0, σ2

g1)
)
+ op(1)

= Op(1) .
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�

Proof of Theorem 3.5 : We first consider the case when the true zit is not

included in z
{1}
it . From the proof of Theorem 3.4,

Ω̂{1} − Ω̂ =
1

n
Y(f)′Q

′
1Q1Y

(f) − 1

n
Y(f)′Q

′
0Q0Y

(f)

=
1

n
Π

′
Z(f)′Q

′
1Q1Z

(f)Π+ op(1)

p→ Π
′
Γ{1}Π .

Similar to the argument of Lemma 3.2, it is shown that the K ×K matrix Γ{1} is

positive definite. From the assumption [ii] of (A5), the G×G matrix Π
′
Γ{1}Π is

also positive definite. Therefore, from an inequality for determinant (cf. Abadir,

2005), we have that |Ω̂{1}| > |Ω̂| for sufficiently large T . That is,

log(|Ω̂{1}|) > log(|Ω̂|) .

Next, consider the case when zit is included in z
{1}
it . For T → ∞, it is sufficient

to show that

n(PIC2 − PIC2,0) = n
[
log(|Ω̂{1}|)− log(|Ω̂|)

]
+G(K{1} −K) logn

→ +∞ .

For the first term, we apply the mean value theorem:

n
[
log(|Ω̂{1}|)− log(|Ω̂|)

]
= n

G∑
g,h=1

fgh(ω̂
{1}
gh − ω̂gh)

= Op(1) ,

where fgh denotes the derivative evaluated between Ω̂{1} and Ω̂, and the second

equality is from that

n(ω̂gh − ω̂
{1}
gh ) = Op(1) .

This is because that from the argument of Lemma 3.3 also holds for the off-diagonal

elements g �= h of Ω. Thus, we obtain the desired result. �

Proof of Lemma 3.1 : [i] For any (i, t), it is necessary that

y
(1)
it = β

′
2y

(2)
it + γ

′
1z

(1)
it + (αi + uit)

= π
′
11z

(1)
it + π

′
21z

(2)
it + (π

(1)
i + v

(1)
it ) ,
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since γ2 = 0. Substituting the reduced form of y
(2)
it ,

(β
′
2Π

′
12 + γ

′
1 − π

′
11)z

(1)
it + (β

′
2Π

′
22 − π

′
21)z

(2)
it + (αi + uit)− β′

(πi + vit) = 0 .

Take the first-difference,

δ
′
π(wit−1 −wit) + (uit − uit+1)− β′

(vit − vit+1) = 0 , (6.100)

where

δ
′
π = (β

′
2Π

′
12 + γ

′
1 − π

′
11, β

′
2Π

′
22 − π

′
21)

= (−β′
Π

′
1· + γ

′
1, −β

′
Π

′
2·)

is the 1 × (K1 + K2) vector. In the case when E [π∗
iv

∗′
it ] = O. Multiplying zit =

J
′
(wit−1 + μi) on the right and taking the expectation,

δ
′
πE
[
(wit−1 −wit)w

′
it−1

]
= 0

′
,

or

δ
′
πJ

′
(Γ0 − Γ1)J = 0

′
, (6.101)

where Γ0 = E [wit−1wit−1] and Γ1 = E [witwit−1] = Π∗′Γ0. Similarly, multiplying

zit−1, zit−2, · · · on the right of (6.100) and taking the expectations,

δ
′
πJ

′
(Γs − Γs+1)J = 0

′
, (s = 1, 2, · · · ) , (6.102)

where Γh = (Π∗′)hΓ0. If we add up (6.101) and (6.102), then

δ
′
πJ

′
[(Γ0 − Γ1) + (Γ1 − Γ2) + (Γ2 − Γ3) + · · · ]J = 0

′
.

From Γ∞ = O, it follows that

δ
′
πJ

′
Γ0J = 0

′
. (6.103)

Since J
′
Γ0J is nonsingular by Γ0 > O, we obtain

δπ = 0 .

In the case when E [π∗
iv

∗′
it ] �= O, applying the forward filter,

δ
′
πz

(f)
it + u

(f)
it + β

′
v
(f)
it = 0 .

Since z
(b)
it does not include π∗

i ,

δ
′
π

T−1∑
t=1

E
[
z
(f)
it z

(b)′
it

]
= 0 .
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If divided both sides by T , then the left-hand side converges to J
′
Γ0J as T → ∞,

i.e., it is the same as (6.103). Thus, the necessity is verified.

Suppose that Π2·β = 0. From the argument of the necessity, for any γ2,

−β′
Π

′
2· + γ

′
2 = 0

′
.

Then, we have that γ2 = 0 since Π2·β = 0. Thus, the sufficiency is verified.

[ii] When γ2 = 0,

γ1 = π11 −Π12β2 ,

Π22β2 = π21 .

Therefore, γ1 is uniquely determined given β2. If there exists β2, then rank([π21, Π22]) =

rank(Π22). Moreover, if β2 is unique, then rank(Π22) = G2.

Next, consider the sufficiency. Multiplying the reduced (3.9) by β, which satisfies

the rank conditions,

β
′
yit = β

′
Π1·z

(1)
it−1 + β

′
Π2·z

(2)
it + β

′
πi + β

′
vit

= γ1z
(1)
it + αi + uit ,

where αi = β
′
πi and uit = β

′
vit. In other words, the first structural equation with

an exclusion restriction is obtained by Π; however, β2 is uniquely determined by

the rank condition. For instance,

β2 =
(
Π

′
22Π22

)−1

Π
′
22π21 .

Thus, (β2, γ1)
′ is a function of Π. �

Proof of Theorem 3.6 : Following Cragg and Donald (1993), we consider the

following constrained minimization problem:

min
π

q(π) = n(π̃ − π)′W̃−1(π̃ − π) ,
s.t. rank(Π2·) = G∗ , (6.104)

where π = vec(Π), π̃ = vec(Π̃), and

Π̃ =
(
Z(b)′Z(b)

)−1

Z(b)′Y(f) ,

W̃ = Ω̃⊗
(
1

n
Z(b)′Z(b)

)−1

,

Ω̃ = H
(f,b)
n1 .
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Although Π̃ is slightly different from the instrumental variable estimator of The-

orem 1.5, it is also the consistent estimator. Then, the following lemma holds.

Lemma 3.4 : Let Π̄ be the solution of (6.104). Under the assumptions of Theorem

3.6,

q(Π̄)
d−→ χ2

(G−G∗)(K2−G∗) . (6.105)

Provided rank(Π2·) < G∗, there exists ¯̄Π such that q(Π̄) < q( ¯̄Π) a.s., and then,

q( ¯̄Π)
d−→ χ2

(G−G∗)(K2−G∗) . (6.106)

Proof : For (6.105), it follows that

√
n(π̃ − π) d−→ N (0, plim W̃) .

Therefore, the assumptions of theorem 1 of Cragg and Donald (1993) are satisfied.

For (6.106), the conditions of their Theorem 2 are also satisfied by the construction

of W̃. �

We show the case [ii] of Theorem 3.6. Then, the degree of freedom for (6.106) is

changed into (G2 − G2∗)(K2 − G2∗) by replacing Π2· with Π22 in the constraint

(6.104). It is sufficient to show that the minimum value q(Π̄) is numerically equal

to the sum of eigenvalues. In the case of [ii], the constraint on rank means that

there exist the L2 = (G2 − G2∗) linearly independent vectors (β[1], · · · ,β[L2]) =

B∗ (G2 × L2) such that

Π2·J2B∗ = O , (6.107)

where J
′
2 = (0, IG2). Note that if J2 and B∗ are replaced with IG and the

G × (G − G∗) matrices, respectively, then the case [i] of Theorem 3.6 can be

verified.

We apply the following standardization,

B
′
∗J

′
2Ω̃J2B∗ = I . (6.108)

Given B∗, consider the minimization problem of q(π) under the constraints of

(6.107):

J
′
22ΠJ2B∗ = O ⇔ (B

′
∗J

′
2 ⊗ J

′
22)vec(Π) = 0

⇔ Rπ = 0 (say, ) ,
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where J
′
22 = (O, IK2). That is,

min
π, μ

q(π) + μ
′
Rπ .

Solving by Lagrange’s method of undetermined multipliers, we obtain

π̄ =
(
I+ W̃R

′
(RW̃R

′
)−1R

)
π̃ .

Substituting this into q(π),

q(Π̄) = n(Rπ̃)
′
(RW̃R

′
)−1(Rπ̃)

= (Rπ̃)
′
(
(B

′
∗J

′
2 ⊗ J

′
22)(Ω̃⊗ (Z(b)′Z(b))−1)(B

′
∗J

′
2 ⊗ J

′
22)

′
)−1

(Rπ̃)

= (Rπ̃)
′
(
B

′
∗J

′
2Ω̃B∗J2 ⊗ J

′
22(Z

(b)′Z(b))−1J22

)−1

(Rπ̃)

= (Rπ̃)
′
(
I⊗ (Z

(b)′
2 Q

(b)
1 Z

(b)
2 )−1

)−1

(Rπ̃)

= vec(J
′
22Π̃J2B∗)

′
(
I⊗ Z

(b)′
2 Q

(b)
1 Z

(b)
2

)
vec(J

′
22Π̃J2B∗) ,

where the fourth equality is based on (6.108) and that for the (K1+K2)×(K1+K2)

partitioned matrix (Z(b)′Z(b))−1,

Z(b)′Z(b) =

(
Z

(b)′
1 Z

(b)
1 Z

(b)′
1 Z

(b)
2

Z
(b)′
2 Z

(b)
1 Z

(b)′
2 Z

(b)
2

)
, (6.109)

Q
(b)
1 = I− Z

(b)
1 (Z

(b)′
1 Z

(b)
1 )−1Z

(b)′
1 , (6.110)

we apply the formula (6.18) to the K2×K2 submatrix in the lower right of (6.109).

Now, the objective function is concentrated for B∗. We minimize the function

with respect to B∗. Put

vec(J
′
22Π̃J2B∗) = vec(Π̃2·J2β[1], · · · , Π̃2·J2β[L2]) ,

F(b) = J
′
2Π̃

′

2·(Z
(b)′
2 Q

(b)
1 Z

(b)
2 )Π̃2·J2, and Ω̃2 = J

′
2Ω̃J2. Then,

q(Π̄) = β
′
[1]F

(b)β[1] + · · ·+ β′
[L2]F

(b)β[L2]

= (Ω̃
1
2

2β[1])
′
(Ω̃

− 1
2

′

2 F(b)Ω̃
− 1

2

2 )(Ω̃
1
2

2 β[1]) + · · ·+ (Ω̃
1
2

2β[L2])
′
(Ω̃

− 1
2

′

2 F(b)Ω̃
− 1

2

2 )(Ω̃
1
2

2 β[L2])

≥ c̄
′
[1](Ω̃

− 1
2

′

2 F(b)Ω̃
− 1

2

2 )c̄[1] + · · ·+ c̄
′
[L2]

(Ω̃
− 1

2

′

2 F(b)Ω̃
− 1

2

2 )c̄[L2]

= β̄
′
[1]F

(b)β̄[1] + · · ·+ β̄′
[L2]F

(b)β̄[L2]

= λ21 + · · ·+ λ2L2 , (6.111)
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where the third inequality is from that for the orthogonal vectors (Ω̃
1
2

2β[1], · · · , Ω̃
1
2

2 β[L2]),

the sum of the quadratic forms is minimized by the eigenvectors (cf. Amemiya,

1985). In fact, for the following characteristic equation,(
Ω̃

− 1
2

′

2 F(b)Ω̃
− 1

2

2 − λI

)
c̄ = 0 , (6.112)

even if the eigenvalues overlap, the orthogonal eigenvector c̄ exists since the cor-

responding matrix is symmetric (cf. Abadir and Magunus, 2005). If β̄ = Ω̃
− 1

2

2 c̄,

then the third inequality and standardization (6.108) are satisfied. The fifth equal-

ity of (6.111) is from that the minimum value is represented by the sum of the

eigenvalues from the smaller of (6.112); however, these eigenvalues are equivalent

to the generalized eigenvalues of F(b)(= J
′
2G

(f,b)
n1 J2), since

∣∣ Ω̃− 1
2

′

2 F(b)Ω̃
− 1

2

2 − λI
∣∣= 0 ⇔ ∣∣ F(b) − λΩ̃2

∣∣= 0 .

Finally, we show that F(b) and J
′
2G

(f,b)
n1 J2 are numerically equal. For (6.109),

using the inverse of the partitioned matrix,

J
′
22(Z

(b)′Z(b))−1 = J
′
22

(
M11 M12

M
′
12 M22

)−1

= J
′
22

(
S−1
11 −S−1

11 M12M
−1
22

−M−1
22 M

′
12S

−1
11 S−1

22

)
(say, ) .

Then,

F(b)

=
(
J

′
22(Z

(b)′Z(b))−1Z(b)′Y(f)J2

)′ (
Z

(b)′
2 Q

(b)
1 Z

(b)
2

)
J

′
22(Z

(b)′Z(b))−1Z(b)′Y(f)J2

= J
′
2Y

(f)′S̄
′
(
Z

(b)′
2 Q

(b)
1 Z

(b)
2

)
S̄Y(f)J2 , (6.113)

where

S̄ = S−1
22 Z

(b)′
2 −M−1

22 M
′
12S

−1
11 Z

(b)′
1 .

For the central term of (6.113), we have that

S̄
′
(
Z

(b)′
2 Q

(b)
1 Z

(b)
2

)
S̄ = S̄

′
S22

(
S−1
22 Z

(b)′
2 −M−1

22 M
′
12S

−1
11 Z

(b)′
1

)
= S̄

′
S22

(
S−1
22 Z

(b)′
2 − S−1

22 M
′
12M

−1
11 Z

(b)′
1

)
= Q

(b)
1

(
Z

(b)′
2 S−1

22 Z
(b)
2

)
Q

(b)
1 ,
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where the second equation is due to the fact that

M−1
22 M

′
12S

−1
11 = S−1

22 M
′
12M

−1
11 .

Therefore,

F(b) = J
′
2Y

(f)′
(
Q

(b)
1 Z

(b)′
2

(
Z

(b)′
2 Q

(b)
1 Z

(b)
2

)−1

Z
(b)
2 Q

(b)
1

)
Y(f)J2

= J
′
2Y

(f)′
(
P(b) −P

(b)
1

)
Y(f)J2

= J
′
2G

(f,b)
n1 J2 ,

where the first equality is an expression of the LIML estimator defined by Gold-

berger (1964), and the second equality is due to the partitioned matrix of projection

matrix (cf. Amemiya, 1985). �

References

[1] Abadir, K. M. and J. R. Magnus (2005), Matrix Algebra, Cambridge Univer-

sity Press.

[2] Acemoglu, D., S. Johnson, J. Robinson and P. Yared (2008), “Income and

Democracy,” American Economic Review, Vol. 98, 808-842.

[3] Akaike, H. (1973), “Information Theory and an Extension of the Maximum

Likelihood Principle,” Proceedings of the 2nd International Symposium on

Information Theory, edited by N. Petrov and F. Csàdki, 267-281.
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