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1 Introduction

First, this study aims to briefly summarize the recent results of theoretical anal-
ysis in long panel data. Hsiao (2014) wrote one of the representative textbooks
of panel analysis and the book was translated into Japanese by Naoto Kunitomo.
The third edition complements a dynamic panel structural model. Moreover, Arel-
lano (2003a) wrote a textbook regarding dynamic panels, which incorporates many
empirical examples. However, in these textbooks, discussion on long panel data
is limited, which has been increasing in analysis with the accumulation of data in
recent years. Hence, we thought of focusing on long panel data. Long panel data
possibly become a problem because recent research showed that existing estima-
tion methods built into packaged software and programs (EViews, Stata, and Ox)
may not always work well. Distinguishing between short and long panel data in
empirical analyses may be difficult. Therefore, in this study, we will focus on fixed-
effects estimation because it can be a consistent estimation regardless of whether
panel data are short or long and is robust to the assumption of the individual
effect.

Second, this work focuses on endogeneity, which is one of the most important
issues in econometric empirical analyses. We apply limited information maximum



likelihood (LIML) estimation for structural panel analysis based on the simul-
taneous equation model, which is often useful in testing economic models. We
introduce the backward filter and the long difference, which are relatively new
data transformations to exclude individual effects. Then, we present that the two
LIML estimators related to the transformations have the best properties in long
panel data. Of these, the doubly filtered LIML (D-LIML) estimator can be easily
calculated using package software after data transformation.

Third, we present some useful results for the procedures of structural panel
analysis. Although theoretical analyses of long panel data have discussed the esti-
mation problem, few studies were conducted for hypothesis testing. In particular,
a model selection based on the information criterion, the exogeneity test of instru-
mental variables, and the rank test for identification are constructed based on the
Anderson-Rubin test statistic. These procedures will give a deeper panel analysis.

This paper is further organized as follows. Part I summarizes the results of ex-
isting long panel data analyses for regression analysis using a simple panel AR(1)
model. Then, Part II considers a general model, discusses the estimation meth-
ods of several LIML estimators, and shows the simulation results under a finite
sample. Part III proposes the test statistics based on the D-LIML estimator for
structural analysis and shows the simulation results. The proofs of our theorems
are summarized in the Appendix.

2 Part I: Regression Analysis

Part I provides an overview of the results for the regression model and methods
of long panel data, which are also used in Parts IT and I1I. A dynamic panel model
is given as follows:

Yit = i1 + i + v, |m| < 1. (2.1)

The individual effect n; (i = 1,---, N) is just added to the AR(1) model, but this
effect makes the estimation problem difficult. The individual effect is a unique
formulation of panel analysis and represents the individual attributes that do not
change with time. Regarding the error term, we assume the homoscedastic variance
Var[vy] = w, which can be extended to the AR(p) model. However, for simplicity,
only the results for AR(1) are summarized in Part I.

Example 1.1 : One of the simplest applications of the reduced form (2.1) is the
verification of growth rate convergence in the macro growth theory of Barro and
Sala-i-Martin (1995). The value of convergence is E[y;] = n;/(1 — ), but it varies
from country to country.



Acemoglu et al. (2008) also conducted another influential empirical analysis.
They analyzed the relationship between a democratization indicator and logarith-

mic GDP per %(21 capita using data from more than 100 countries from 1960 to

2000 (T = 40),

yz(tl) = Trlyi(tlll + 7T2yi(t221 + ;i + Vit .

The data were corrected to five-year data. Hence, the number of periods was

decreased. Arellano (2003a) provided empirical examples of the reduced form.

Let us compare the dynamic panel and the static panel model,
Yit = TZit + 1 + Vit -

In the static model, for an exogenous variable z;; that is uncorrelated with the
error term, the following hypothesis can be considered:

Hp : 5[Zz't77i] =0,

and the test of Hausman (1978) is conducted. However, in the dynamic panel, this
hypothesis testing would not hold as shown below.

The first problem with the dynamic model is that although the individual effects
are random, the reduced form has the endogeneity problem. Substituting ;1
repeatedly, we obtain the following:

3 B 1— ,n.tfl
5[3/%7177@'] = £ {(%1 + TV + -+ ! 2Uz’1 + 7t 1yi0 + ﬁﬁi) Ui}
B 1 — 7Tz‘,fl
= & [(Wt Y0 + ﬁnz) 771‘]
# 0.

From the above equation, ;1 is a function of n;. Therefore, this function corre-
lates with the individual effect, and the initial value of the first term is also highly
possible to correlate with 7;.

Hence, let us consider a fixed-effects estimation that excludes individual effects.
The covariance (CV) estimator is the standard method in static models. This
estimator is also called the least square dummy variable estimator or the within
groups (WG) estimator. Let the mean of within group as 4; = >,y , and we
have the following:

Yit — Ui = T(Yir—1 — Yi—1) + (Vie — ;) ,
which does not depend on individual effects.
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With the application of ordinary least squares (OLS) estimation after data trans-
formation, the CV estimator is given as follows:

N T _ _
-~ Zi:l Zt:l(yit — Ui) (Yit—1 — Ti—1)
7TCV - N T _ 2 .
Zi:1 Zt:l(yit—l — Yi 1)
However, in the dynamic panel model,
Elir—1 = Ji—1)(0n — )] = E[(Yir—1 — Ji,—1)(—0:)]
40,
endogeneity will occur because of data transformation, and then, the CV estimator

is biased. According to Nickel (1981) and Anderson and Hsiao (1982), the bias is

as follows:

_ltx [1 _ ll—ﬂT:|
~ » T—1 T 1-n
Trcv — T >
N—oo 1— 2r |:1 _ 1—=T ]
(T-1)(1—m) T(1—m)
p 0 :
N, T—o0

and the inconsistency in the short panel data (I" < oo) is well known. In the
long panel data (T" — o0), the bias of the CV estimator becomes weaker and
is the consistent estimation. However, constructing the t¢-test using the CV es-
timator is difficult, as will be further discussed later. Hence, the instrumental
variable method or the maximum likelihood method in the dynamic panel should
be considered.

2.1 Long Panel Data

Considering the properties of long panel data, although the total number of
panel data is n = NT, either N or T must be considered large enough for the
asymptotic inference.? A long panel is defined by T' — co. In actual, T is finite
such as T" = 100, and such data are not observed even nowadays. What matters
is the relative ratio of T to NV,

T—> >0
N C .

A problem arises when the ratio cannot be ignored as 0. We formally represent
an estimator 7 as follows:

z
F=(T+by) + =t

VNT

2Depending on the estimators n may become N (T — 1) or N(T — 2), but it does not affect
the asymptotic theory because (' —1)/T — 1.




where z ~ N (by,v) due to the asymptotic normality. As will be further discussed
later, the bias term by and the noncentral parameter by often depend on the ratio of
the sequences such as T'/N or its reciprocal N/T. Hence, the ratio is the important
value for a long panel data. For example, if (N, 7") = (100, 10) or (200, 20), then
the ratio becomes ¢ = 0.1. However, the small value might have a non-negligible
effect on estimators from the numerical experiments of the previous studies. Such
a situation may occur because of the accumulation of data in recent years. As for
hypothesis testing, notably, the t-test or x2-test cannot be conducted when b; # 0,
and the CV estimator under long panel data is an example.

In the usual short panel data (N — 00,7 < o0) of empirical analyses, ¢ is
regarded as 0. Thus, the estimation is based on the asymptotic theory in the
cross sectional data (N — oo, T' = 1). In the long panel data, we are interested
in the behavior of the estimator when 7' also increases, and thus, we consider it
based on the double asymptotics (N — 0o, T — 00). Alternatively, the repeated
measurements of the time series data (N < oo, T" — o00) can also be included
in the long panel data (cf. Anderson, 1978a). Therefore, we allow the situation
N < T, such as (N,T) = (5,30). In terms of application, this study focuses on
the estimation method such that the estimators does not depend on the sample
size of N. That is, we consider the consistent estimators regardless of whether N
is fixed or tends to infinity.

2.2 Incidental Parameters Problem

The second problem is the initial values. (2.1) is equivalent to the following
state-space representation:

Yie = Wig+ fhi, (2.2)

Wiy = TWi—1 + Vit ,

where p; = 1;/(1 — 7). Assuming that p; follows a certain distribution, the indi-
vidual effect becomes a random effect, which means Var[u;] = w,,. For instance, if
yit is considered a household income, then p; may follow the Pareto distribution.
Meanwhile, if y;; is the growth rate of each country, then assuming what type of
distribution p; follows may be difficult. However, if the heteroscedastic variance
Var(pu) = wy; (i =1,---, N), then it depends on many parameters. The random-
effects maximum likelihood estimation (MLE) is valid when the model has a finite
number of unknown parameters.

Anderson and Hsiao (1981) verified for the first time that the initial value is
another issue in the dynamic panel model, even if the random effect is assumed



for the individual effect. We do not have much information on the distribution of
the initial value y;0 = w;p + 1; and make almost no assumption if wy is considered
as fixed.

When (p;, vi) is normally distributed the likelihood function is given as follows:

fi(yi0> Yi1, - >yiT)

1 \* 1 <
= ( ) exp {_% Z [(yit — Yio + wio) — T(Yit—1 — Yio + in)]Q}
1

2mw P

1 2
X exp s —— (Y0 — w; .
o p{ 2wu(yo 0)}

The random-effects MLE 7y, is obtained by maximizing this log-likelihood func-
tion with respect to (7, w ,w),) and (wi, - - ,wno). They pointed out the inciden-
tal parameters problem such that the random-effects MLE would be inconsistent

in the short panel data, which is caused by many equations:

ol;
8wi0

—0, (=1, N), (2.3)

where ¢; = log f; is the log-likelihood function of each individual. By estimating
W;0, Try becomes inconsistent if 7' is not large. The reason is that 7y, cannot be
solved independently from the normal equations of (2.3). This has been known as
the incidental parameters problem, as noted by Neyman and Scott (1948).

As T — oo,

Trm = oy + Op(l) )

they also showed that the random-effects MLE is asymptotically equivalent to the
CV estimator. The CV estimator is consistent in the long panel data but has the
noncentrality parameter as we will show later.

In empirical analyses, deciding whether it is short or long panel data is difficult.
The use of different estimation methods depending on whether T is fixed or not
would be inconvenient. Therefore, in this study, we also focus on the estimators
that are consistent even if T" — oo or 1" < co. Moreover, Section 3.7.1 shows that

some maximum likelihood estimator can avoid the incidental parameters problem.

2.3 Fixed-Effects Estimation

If the individual effects are fixed rather than random, then a method that can
consistently estimate is called a fixed-effects estimation. Anderson and Hsiao
(1981) considered a fixed-effects method that does not depend on the assumptions
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of individual effects or initial values. A simple instrumental variable estimator
is presented and is one of the main estimation methods in the early stages of
panel analysis. The instrumental variable (IV) estimator is based on the following
orthogonal condition,

ElYir—2Avy] = 0.
Taking the first-difference in (2.1),
Ay = Yit — Yir1
= TAy;1 + Avy

where the difference Auy; = w; — ui—1 does not include the individual effects
and is uncorrelated with the level y;;_o, which becomes an instrumental variable.
Similarly, the difference Ay;; o is also an instrumental variable, and thus, the
orthogonal condition E[Ay; 2Au;| = 0 is satisfied. The first-difference of panel

data is obtained from Dry;, where y; = (i1, -+, yir) and
1 1 0 --- 0
o -1 1 --- 0
Dy = ) o A (2.4)
(T-1)xT . : t. . .
o -~ 0 -11

We refer to the estimators of Anderson and Hsiao (1981) as AH estimators, and
they are as follows:

~ Z@]\il Zthg Ay Ayir—o
v N T
Z?; Zthg Ayityit—Q
N T :
Zi:l Zt:B AYir—1Yit—2

The assumptions for the following theorems are given by the following:

?

(al) {wvy} (t=1,---,T;i=1,---,N) are ii.d across time and individuals. v;
is independent of y;o with E[v;] = 0, Var[v;] = w, and has a finite moment up to
the eighth order.

(a2) The initial observations satisfy the following:

yiozLﬂ—Fwio, (¢=1,---,N),

]_ _
where w;y = Y-, m°v; _p, is independent of ;.

(a3) n; are i.i.d. across individuals. 7; is independent from {v;} with E[n;] =
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0, Var[n;] = w,, and has a finite moment up to the fourth order.
(ad) (1/N)L 7?2 = 0(1) and vy ~ N (0,w).

These assumptions are the same as those of Alvarez and Arellano (2003) and
simplify the derivation and expression of theorems. Assumptions (a2) and (a3)
are for setting a random-effects model, but the fixed-effects estimators may not
need the assumptions of the individual effects or initial conditions. If the random-
effects model is correct, then the issue will be whether the fixed-effects estimator
can achieve the same efficiency as the random-effects MLE. Assumption (al) means
the homoscedasticity of the error terms, and assumption (a4) is used in deriving
the lower bound of efficiency. Assumption (a2) is regarding the initial conditions.
If the data is generated from a sufficient past before the initial value, then the
next relation may be natural,
1 —qtt 1

tlircrjo 1—m =

From the expression of (2.2),
Yit — Yit—1 = Wit — Wig—1 -

Notably, the individual effect disappears by the first-difference Ay;, at all . Hayakawa
(2008) examined the IV estimator when the initial condition is different from
n;/(1 — m), but the initial effect diminishes in the stationary process and does not
affect the consistency.

The following results hold.?

Theorem 1.1 (Anderson and Hsiao, 1981) : Supposing assumptions (al)-
(a3) hold, then as N — co or T — oo or both, Try - 7 and Tpy 2> .
Provided T' — oo

) S (0205200

VNT (g —71) 5 N(0,2(1+7)) .

3The derivation of the asymptotic variance is based on the studies by Hsiao and Zhang (2015)
and Phillips and Han (2014).



The AH estimators are consistent estimators for short and long panel data,
and assumptions (a2) and (a3) are not necessary for consistency. Regarding the
two asymptotic variances, 7y is smaller because (3 — m)/(1 — m)? > 1. However,
Anderson and Hsiao (1981) pointed out that AH estimators are the simplest IV
estimators, so that efficiency can be further improved.

The next issue is the improvement of efficiency, but White (1999, Ch.4) ex-
plained that increasing the instrumental variables can improve efficiency in the
usual situation. Therefore, the variability of an estimator is suppressed by the
orthogonal conditions as the correct constraint increases. As a lagged endogenous
variable, the instrumental variable is not only y;_» but also y;;_3. Therefore, in
each period t ,

S[yitfsAUit]:O, 822’3’...’t’

that is, (¢ — 1) orthogonal conditions exist. As a whole,

T

Z(t_l):T(T—l)'

2
=2
Let the (7" — 1) x 1 vector of the first-order difference be
Ay; = mAy; 1+ Av; .

If the (T'— 1) x T'(T — 1)/2 matrix of the instrumental variables is

Yo O 0 v .- 0
0 ; e e 0

A N (25)
0 - 0 %o - Yr—

then the orthogonal conditions are collectively £[Z;v;] = 0.
Notably, the error term becomes the moving average process MA(1) by taking
the difference with the serial correlation £[Avy_1, Avy] = —w,

E[AviAvg} = wW

(T—1)x(T—1)
2 -1 0 0
-1 2 -1 0
= w : (2.6)
0 -1 2 -1
0 0 -1 2

10



Arellano and Bond (1991) proposed the generalized method of moment (GMM)
estimator which efficiently estimates under serial correlation. This method belongs
to the efficient GMM estimator in the framework of the moment method. Their

AB estimator becomes

-1
Zij\il AY;,—lzi <Zf\;1 Z;Wzi> Zf\;l Z;‘AYZ‘

71 .
Zﬁil Ay;,flzi <Zfi1 ZgWZz‘) sz\il Z;AYZ',—I

Tam =

Theorem 1.2 (Arellano and Bond, 1991) :  Supposing assumptions (al)-
(a3) hold, then as N — oo and T is fized,

\/N(ﬁ-GM_ﬂ-) i> N(O,%),
where .
br = & [Ay;_lzl} £ [Z;WZZ} £ [Z;Ayi,_l} .

The above equation is the result under the short panel data. Therefore, the asymp-
totic variance depends on T'. Arellano and Bond (1991) estimated the UK wage
equation in short panel data (N = 611, T = 6) and stated that efficiency was
significantly improved by the AB estimator. Moreover, they found that the esti-
mation results were stable compared with those using the AH estimator. After
that, the AB estimator is known as a representative in the estimation of the dy-
namic panel model and is installed in the package software.

However, in the AB estimator, the number of instrumental variables increases
rapidly on the order of O(T?) as T increases. Wooldrige (2002, Ch. 11) showed
that the finite sample properties of GMM were not so good when the instrumental
variables were increased. The use of many instrumental variables is not recom-
mended. Although these are empirical discussions, the next section will clarify the
point of the problems.

2.4 Forward Orthogonal Deviation

This section considers the properties of the GMM estimator in the long panel
data. In preparation for that, we look at a simpler expression of the GMM esti-
mator. Although the serial correlations by £[Av;Av;] = wD7yD7, exist, the data
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transformation in which the serial correlation does not occur from the beginning

is given as follows:

D, = (DyD;) ?Dy. (2.8)
(T-1)xT

Then,
DD} =1,

by the definition. In particular, Arellano and Bover (1995) noted that

[ -1 1 S S O
T-1 T-1 T-1 T-1 T-1
0 1 1 - 1 __1
T-2 T-2 T-2 T-2
: T—1 1 . . .
Df:dlag T,..., 5 : : : :
0 0 1 -z -1
0 0 0 0 1 —1

Considering that the sum of each column is zero, the individual effects disappear
from the regression equation when this transformation is applied.

v =myl v (29)

where (yz(f),ygf_)l) = D¢(yi,yi—1) and ng) = Dyv,. As this transformation is

orthogonal, the homoscedasticity is maintained, and no serial correlation exists:
e[ = o
£[fal] = 0, (40,

The transformed error becomes

1
’Ui(tf) = fi [Uit_ﬁ(vitJrl‘i‘"""UiT) )
where
T—t
fl=7—,
T—-t+1

with respect tot =1,---,T — 1. As the average after period t is subtracted, the
orthogonal condition of each ¢ can be

S[yisvftf)} =0, (s=0,1,---,t—1).

However, notably, the yl(t]:)l on the right-hand side of (2.9) correlates with the

transformed error term,
&yl n] #0.
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From the above properties, we may call the forward orthogonal deviation the
forward filter in this work.

Next, the AB estimator is equivalent to the GMM estimator with the forward
filter. Given the n x 1 vector y/),

y) = (yy), J%’)

) is defined. Then, the simple expression of the AB estimator becomes

Similarly, y/

) B y(_f1) Py
TeMm — W y (210)
y-i Py
where the projection matrix is P = Z (Z/Z)f1 Z' constructed by
Z:(Zl,"'7ZN).
As the serial correlation disappears, the weighted matrix becomes W = 1, so that
it is expressed by the two-stage least squares estimator. As for another expression,

Y po ()
ﬁ_GM — Zt 1 yt 1 tY( ) ’ (211)

Zt 1 Yt 1Pth 1

where the N x 1 vector ygf ) is
vi' = (uw) s (=1, T=1).

-1 7

() Z,

Similarly, y;"’; is defined. The projection matrix of each ¢ becomes Py = Z; (Z;Zt)
and then, the i-th row of the N X t matrix Z; is (yio, - ,¥i—1). Although the
forward filter is complicated at first glance, calculating the asymptotic property
in the long panel data based on (2.7) is difficult. That is, the calculation of (2.11)
is still easier.

Let us check why they are numerically equivalent. Using the relation of (2.8),

’ / / / -1 /
Zﬁ\; yi,—lDTZi <sz\il ZiDTDTZi> Zz]\; Z,Dry;
-1
Sy DrZ; (vazl Z;DTD/TZZ) S ZDryi

v (Iy®D))Z[Z (Iy®D;D})Z] 'Z (Iy®Dy)y
(e D)) Z[Z (ly®D;D)) 2] 'Z (Ixe D)y

Tam —

Therefore, (2.7) is equal to (2.10). Next, rearranging the rows with J,Z = diag(Z,)

gives




Hence, (2.10) is equal to (2.11) because J,J, =1I,.

The CV estimator can also be expressed in the form of OLS, because

D;D; = Qr
TxT
1
= Ir— Tl
Using this relation, we have
_ y( )y
cvV — ’
y( ) ygf)

Regarding the LIML estimator, Alonso-Borrego and Arellano (1999) examined the
estimator using the same instrumental variables as that in the AB estimator. The
detail will be discussed in Part II, given as follows:

T =

y< >Py Ay y(f)

where A is the minimum eigenvalue of some eigenvalue problem.

Using the representations by the forward filters, Alvarez and Arellano (2003)
derived the properties of these estimators under the double asymptotics (N, T —
o0) in a long panel data.

Theorem 1.3 (Alvarez and Arellano, 2003) : Supposing assumptions (al)-
(a3) hold, then
[i] as T — oo, regardless of N is fized or tends to infinity, provided N/T3 — 0,

\/ﬁ(ﬁcv_ﬂ') i) /\/’<_\/g(1—}-77),1—7T2>,

where d =1im N/T such that 0 < d < o0.
[ii] As N and T tend to infinity, provided (logT)?/N — 0,

VNT (fow =) =5 N (=Ve(l+m)1-7°)

where ¢ = im T /N such that 0 < ¢ < 00.
[iii] As N and T tend to infinity,

—C

VNT(ﬁ'LI_Tr) i) N(—Q\/E (1+7T),1—7T2> ,
where ¢ = im T /N such that 0 < ¢ < 2.
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The model is quite simple, but the forward filter and many instruments make the
derivation complicated. Hence, their derivation of the noncentrality parameter is
a pioneering result in the theoretical analysis of the long panel data. In the long
panel data the number of instrumental variables can be O(T?) — oco. We will
discuss the many instruments problem in Prat II. Even in this situation, the three
estimators are consistent and have the same asymptotic variance. In a short panel
data, the CV estimator is inconsistent, because d becomes infinite. Meanwhile,
the noncentrality parameter of the AB estimator disappears because ¢ = 0. In
the case of a long panel data, the noncentrality parameter appears because of the
effects of a large number of instrumental variables and the data transformation.
Thus, the property of the GMM estimator differs between the short and long panel
data.

Bias correction may be applied to the noncentrality parameter. Hahn and Kuer-
steiner (2002) considered the bias-corrected CV estimator and relating ¢ test. The
GMM and LIML estimators also have the noncentrality parameter so that the ¢
test cannot be used as it is. 7' may be reduced to Ty (Ty < T') and estimate it as
short panel data, but this method would not be a fundamental solution because
the speed of convergence drops from vV NT to v/NTp. In our simple model, 7 is
the only unknown parameter. Thus, the bias-corrected ¢ test statistic is given as

- 1 . T
t= m (W(WGM—W)—F\/;G'}‘W)) ,

where 7 is assigned to a hypothetical value.

follows:

Next, we consider the property of the GMM estimator proposed by Blundell and
Bond (1998) in the long panel data, which is called the system GMM estimator.
This estimator widely used as often as the AB estimator. They pointed out that
the AB estimator is less efficient depending on the variance ratio ¢ = w, /w when
7 is close to the unit root or the variance of the individual effect is large. For an
instrumental variable to be valid, in addition to no correlation with the error term,
the condition of correlation with the endogenous variable is required. However,
when the variable is close to the unit root, the instrumental variable y;; ; as
the level becomes a weak instrumental variable, which can hardly explain Ay;.
Conversely, if the regression equation does not take the difference and the level
yir is used, then the difference Ay; 1 can be used as the instrumental variable.
Therefore, the influence of the near unit root will be mild. For the following
equations,

Ay
Yit

sz‘t
;i + Vit

Ayt
Yit—1

=T
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the system GMM estimator is given as follows:

’ / A
Ztha Ay, P;Ay; + Zthg yt—1P§ )Yt
T ’ T ’ A
Zt:B Ay, \PAy, 1+ thg Yt—lpg )Yt—l

where P = Ay, 1 (Ay;_,Ayi1) 1Ay,
The result of the short panel data shows that efficiency is significantly improved

Tsa — )

over the AB estimator, particularly in 7 = 0.9 and so on. Moreover, the result of

the long panel data is as follows.

Theorem 1.4 (Hayakawa, 2006a) : Supposing assumptions, then as N and
T tend to infinity, provied that T/N — ¢ (0 < ¢ < 1),

- P Cc
7TSG — T > - — .
c+ 3—2m

1+m

That is, the system GMM estimator is inconsistent in the long panel data.* Al-
though the AB estimator uses the instrumental variables of the same order O(T?),
the AB estimator is consistent. Alvarez and Arellano (2003) showed that a GMM
estimator that does not use the optimal weighted matrix W results in inconsis-
tency in the long panel data. Thus, the inefficiency of the system GMM estimator
may cause inconsistency.

These GMM estimators were derived in short panel data, and they are still
useful methods for short panel data. From the above discussions, the properties
of estimators significantly change between short and long panel data, which is one
of the motivations of research on long panel data in recent years.

2.5 Optimal Instrumental Variable

The IV and GMM estimators are robust to the assumptions of individual ef-
fects and initial conditions in the sense that they use only orthogonal conditions.
However, the GMM estimator may show poor properties under many orthogonal
conditions. Meanwhile, Wooldridge (2002, Ch.8) noted that an argument called
the optimal instrumental variable exists, which searches for an efficient estimator
with the minimum necessary orthogonal conditions. Arellano (2003b) considered

the optimal instrumental variable 21(21 in the dynamic panel model. In the case

4Bun and Windmeijer (2010) also discussed the bias of the system GMM estimator.
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of the AR(1) model,

9 Zz 1 Z zt* lyzt)

= bl
Zz 121& 1 Zz: 1yzt)1

Ty =
where the condition of the optimal instrumental variable is given as follows:

Ritt1 T 5[y§f21|yit—1}

- |- egig) e ()]

Similar to AH estimators, the estimator uses one orthogonal condition for each

t, but 7, is infeasible because it depends on an unknown parameter. For the
optimum instrumental variable, the following conditions should be noted. If t is
large, then the instrumental variable does not depend on the individual effect, and
if T is large, then it becomes almost w;; 1.

Hayakawa (2006b) considered the transformation yg’ll = Dy, —1, which is al-

most equivalent to the following,

—1 1 0 0 0

1 1

-1 1 0 0 0
D, = : : : : : : ;
(T-1)xT 1 1 1 1

7% “T3% “73 75 L 0

T T B 1 1 g

T—1 T—1 T—-1 T—1 T—1

where the sum of each column is zero and the individual effect disappears.

(b)

Yierr = by [Yiem1 — (Yio + -+ + Yir—2)

t—1
1
Wit—1 — 1€——1(in o wia)
by =1, (2.12)
for t = 2,---,T.> Such a transformation is called the backward orthogonal devi-

ation, or the recursive mean adjustment in So and Shin (1999) in the time series
analysis. In this work, we call this transformation the backward filter. In contrast
to the forward filter, the historical average is subtracted to have the orthogonal

conditions:

5[y§t)1uzt)} 0, (t=2,---,T—1).

°It may be replaced with b? = (t — 1)/t or f;. As orthogonalizing the instrumental variables
is not necessary, it is simply set to 1. However, b; = f; is used only in Section 3.7.2.
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This instrumental variable does not depend on individual effects, w;;_; is the main
term, and thus, the condition of the optimal IV is satisfied. Considering that the

IV estimator is replaced with the optimal instrumental variable,

- Zz 121‘, 2 yzt lyzt)

7TIV — b .
Zz 121: 2 yz(t)lyztf)l

This is equivalent to the estimator proposed by Hayakawa (2009), and the next

result can be considered in the AR(p) model.

Theorem 1.5 (Hayakawa, 2009) : Supposing Assumptions (al)-(a3) hold,
then, as N and T tend to infinity,

VNT (7, — ) N N(0,1—7%) .

Similar to the AH estimator 7y, this estimator does not require assumption (a3)
because the individual effects disappear from the regression equation and the in-
strumental variables even under a finite sample. Therefore, this estimator is not
affected by the variance ratio ¢ under a finite sample. In addition, the result
holds with T" — oo alone. Above all, the noncentrality parameter disappears and
efficiency does not decrease compared with that of the GMM estimator, which is
an important result. In general, a trade-off exists such that when the number of
instrumental variables is large, the noncentrality parameter becomes large while
the efficiency increases. The IV estimator decreases the number of instrumental
variables, so that the noncentrality parameter becomes small. However, as this
estimator uses asymptotically optimal instruments, efficiency can be maintained.
Finally, we consider. the lower bound of the asymptotic efficiency. When as-
suming the individual effects n; (i = 1,--- , N) as incidental parameters, the lower
bound for 7 is not obvious because the parameters involved are infinite. The fol-
lowing result also holds for the panel VAR model in Holtz-Eakin et al. (1988).

Theorem 1.6 (Hahn and Kuersteiner, 2002) : Supposing assumptions
(al), (a2), and (a4) hold, then as N and T tend to infinity, the asymptotic distri-
bution of any reqular estimator of ™ cannot be more concentrated than N(0,1—m?).

2

The lower bound is 1 — 7 and some of the estimators that we have seen above
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attain the bound. As suggested, the slope 7 can be estimated efficiently with-
out depending on the information of the individual effects. On the contrary, if
an asymptotic variance depends on the variance ratio v, then an estimator is
inefficient in long panel data.

We consider the optimal instrumental variables more intuitively. In the case
of the AR(1) model of the time series (N = 1), the individual effect can be
n, =n=0. If y,_1 = wy_1, then we should use the OLS estimator ;4 without
using the instrumental variable (y;_o, y;—3, ),

Yt = TY—1 + V¢,
T
Zt:l Yi—1Yt
R
thl ?Jt{l

If the error term is normally distributed, as is well known, then the OLS is the

s =

same as the MLE. The Cramer-Rao lower bound becomes 1—72, and the coefficient
is estimated independently from the intercept. That is, the optimal instrumental
variable is E[y;—1|yi—1] = y¢—1, which is the explanatory variable itself. As for 7y,

for a sufficiently large t,
b
uh =y +0p(1), yl =y + (1)

Although 7 is the IV estimator, it can be interpreted as it is fairly close to the
OLS estimator.

From the above discussions, regression analysis of long panel data has several
efficient estimators. From the viewpoint that no condition for the data sequence
exists, 7y has the most desirable result. As Anderson and Hsiao (1981) pointed
out at the beginning, in terms of the results, efficient estimation can be constructed
by the IV method if the appropriate data transformation is used.

In the next part, we will examine the structural analysis in the long panel data,
but the result may be different from that of the regression analysis because the

estimation problem becomes more difficult.

3 Part II: Structural Analysis

The simultaneous equation model was developed to verify the economic theory.
This model raises the issue of endogeneity and identification in the field of statistics
and is still one of the central issues in econometrics today. The structural form
considers an estimation problem in which endogenous variables are included on
the right-hand side. In the dynamic panel model, the instrumental variables have
been already used for the reduced form so that the estimation method does not
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change. However, in structural estimation, whether variables are predetermined is
important. Therefore, there are test procedures that are not used in the regression
analysis, such as the overidentification test and the identification test for structural
parameters. Then, the economic model can be verified deeply.

In the dynamic panel structural model, Bhargava and Sargan (1983) investi-
gated the random-effects LIML, and Moral-Benito (2013) considered the partial
system method. Moreover, Alonso-Borrego and Arellano (1999), Akashi and Ku-
nitomo (2012, 2015), and Hsiao and Zhou (2015) proposed the fixed-effects LIML
estimators. Huang and Quibria (2013) also used the fixed-effects LIML estimator
in their empirical analysis. In the next section, we consider the formulation and

estimation problem of the dynamic structural panel model.

3.1 Dynamic Panel Structural Equation Model

Let us start with the simplest structural equation,

yi(tl) = Byi(f) + /yyz(tlzl + Qy + Uy, 5[95152)(0%‘ +u)] #0,

where «; is an individual effect. The difference from the reduced form is that the
variable yz(f ) on the right-hand side in period ¢ correlates with the error term w;;.

Following the notation of Anderson and Rubin (1949), § and v stand for the
structural parameters, and the reduced form parameter is represented by 7. Be-
fore considering a general model, we provide the examples of dynamic structural
panel models based on the economic models. The following is an example of why
simultaneity occurs in profit maximization.

Example 2.1 : Endogeneity can occur in the analysis of production functions,

as explained by Hayashi (2000, Ch.3). For simplicity, let yz(tl ) = (xi(yi(f ))B exp(u;)

be a Cobb-Douglas production function, where yl(f ) is the amount of labor, and
«y; is the total factor productivity combined with the initial technology. If a firm
maximizes the expected profit given «;, then the first order condition is given as

follows:

2 _
aiﬁ(yz(t))ﬁ b=z,

where E[exp(u;)] = 1 is assumed. For the price taker, the real wage z; is an
exogenous variable. The logarithmic value of the supply function and the factor
demand function are as follows:

log(y)) = Blog(y) +log(as) + s ,

log(yi(f)) = wlog(z) — wlog(Bay) ,

20



where 7 = 1/(8 — 1). Therefore, log(yft2 )) on the right-hand side becomes the
endogenous variable and correlates with the structural error through the individual
effects.

The next one is an example of the dynamics in structural and reduced forms.

Example 2.2 : Let yl(tl ) = B*yl(f ) be a linear production function, where yl(f ) is
the capital. In empirical analyses, the output often has no data, and thus, the
amount of sales yz(f ) is used as the proxy variable. However, sales are most likely

to include the inventory in the previous term,

3 G . (1
yi(t) = (1-«a )yi(t) +a yi(tzl + Ui
= (1—a)Byy + "By + ua

2 2
= Byi(t) + ’yyi(tll + Uit -

If the inventory-sales ratio a* = (1+ /7)~! is obtained, then the original capital
coefficient §* = [5/a* can be estimated. Using the identity of capital accumulation
as the reduced form,

yz(tQ) = (1 - 5)%(1‘,221 + Vit ,

where ¢ is a depletion rate. If the investment v;; is determined by the error term

as an innovation with £[v;] = n; > 0, then it becomes a panel AR(1) model.

We consider how the limited information method (single-equation method) is use-

ful in the example of utility maximization.

Example 2.3 : Let the Stone-Geary utility function be 25;1 B, log(yi(tg)* - ugtg)*)
and the budget constraint be 25:*1 Zt(g)yl-(f)* < Zi. Zt(g) is the price of good g, z; is
income, and ugf * > 0 is called the minimum required amount, which is different in
preferences and changes over time such that it cannot be observed by an econome-
trician. When maximized under a budget constraint, marginal utilities are equal

between two goods. In the first and second goods,

b _ Ba
1 1)* Dxy (2 2)x 2)ky
Zt( )(yz'(t) _uz('t) ) Zt( )(yi(t) _uz(t) )
Then, the following structural equation is obtained,
By = By + iz + e +uly (3.1)
where
v = ="y
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is the expenditure function that is the endogenous variable,

Y1 = Papir, Y2 = —Pipe , Ui = ﬁQ(uz(tl)* - Nl)zt(l) — ﬁl(ug)* - M2)Z§2) ;

where 1, = 5[u§f)*]. Normalization such as Z;;:*l B, = 1 is required because the
utility function allows a monotonic transformation. The reduced form is known as

the linear expenditure system,

K
k *
yz(tg) :Zﬂgkzi(t)_'_vi(f)? (gzla 7G )7
k=1

where the number of instrumental variables is that of goods and income, that is,
K = G* + 1. In empirical analyses, the number of goods or services is reduced by
some classifications, but originally, many goods or services exist. When verifying
the optimization problem, estimating many structural forms simultaneously would
be difficult. The limited information method can estimate the first structural
equation of interest or can estimate individually. Instrumental variables become
many (K — 00) even with one structural estimation, but the LIML estimator is

known to be robust in this situation.

An empirical analysis may not be strictly derived from an economic theory. How-
ever, a reverse causality exists, then, we can start with two structural equations.
For instance, a foreign exchange rate is influenced by a foreign exchange interven-
tion. Conversely, the authority decides to intervene depending on the fluctuation
of the exchange. When starting from the reduced form, having common factors in
endogenous variables is expected. For example, the relationship between income
and years of education is usually explained by common exogenous variables, such
as ability (IQ).

This section presents the simultaneous equation model with one endogenous
variable on the right-hand side and explains the estimation theory of the structural

form in the long panel data. We consider the two structural equations:

1 2 1 1 1
yz'(t) = ﬁ2yz(t) + ’Ylyz‘(tzl + Oéz( ) + uz('t) ) (3.2)

2 1 2 2 2
yz'(t) = ﬁlyz(t) + ’723/1‘(1521 + Oéz( Ly uz('t) :
One of the structural equations of interest to be estimated is called the first struc-
tural equation, such as (3.2). The number of endogenous variables on the right-
hand side of the first structural equation is equal to Gy = 1, and thus, the first

structural equaiton contains G = 1 + Gy = 2 endogenous variables. The reduced
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form solved for the endogenous variables in period ¢ is as follows:

W = ol gy, LT
1= f15s — BB 1 — B152 1 — 1
= Wllyftll + 7T12y2(t21 + 7TZ-(1) + v(l) ,
o= L e B’ + o Bl +u?
1= f15s 1 — B1fs 1 — B152 1 — 1
= 721%’(1&21 + 7T22yz'(1€221 + 7T( = U(Q) ;

where from the discussion in the previous part, all variables (yl-(tlll, yft), yz(t2 ) 1 yz(t ))

correlate with the individual effect (7ri(1), W§2))

. The endogenous variable on the
right-hand side of the first structural equation generally correlates with the fol-

lowing:

E[Pul] = € [uPull]
# 0,

and the structural error term ugtl ) which is called the simultaneity or the endogene-

ity in period t. That is, the source of endogeneity of the first structural equation is
due to the simultaneous equations behind it. In some cases, the variable in period
t on the right-hand side may also be exogenous,

ely] = 0.

The above case occurs when the endogenous variable does not appear because
B1 = 0, and the reduced form error and the structural error are uncorrelated, that
is, £ [uzt uzt)] = 0. Then, the structural equation is called a triangular or recursive
system, and yl(f ) is determined independently of yz(tl ). We can test whether the
variable is exogenous or endogenous.

The above expressions are based on the full information method (system method)
that specifies the two structural equations. Moreover, the limited information
method specifies and estimates only the first structural equation. The advan-
tage is that considering the specification and identification for the other structural
equations is unnecessary. All of the coefficients of the reduced form (my; 72, o1,
and my) are implicitly estimated by some estimator. Hence, we do not usually
denote the second reduced form in an empirical analysis. The limited information

method simplifies the estimation problem as follows:
1 2 1 1
v = b yft) +%yft)1 +af”

Z’it = {yzt 1» yzt 1 ) (33)
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where z; is the list of instrumental variables that includes the predetermined
endogenous variables in the period t. By only setting the list of IVs, package soft-
ware can estimate the first structural equation. The zero constraints or exclusion
condition is necessary for the identification of the structural parameter. Part III
discusses the tests for endogeneity and identification.
Blundell and Bond (2000) considered a simple structural model with 8; = 0 in
the panel analysis of a production function.
u = B + s+l +ul (3.4)
v =yl +pal) +uip
where E[ul}ulP] # 0 and 02 = £[(u}’)?]. Akashi and Kunitomo (2012) examined

the estimation method of this structural panel model. For a comparison with time
1)

series analysis (N = 1), let us start with «;”’ = 0, that is, no individual effect

exists. Then, how should the first structural equation (3.4) be estimated?
Anderson and Rubin (1949) focused on the marginal likelihood function of only

GG endogenous variables contained in the first structural equation for the first time.

The log-likelihood in this model becomes the following:

T

T 1 1 f 2 ’ _
L= —Elog |Q| - 5 tzl |:yz(t) — T Zj, yz(t) - WQZit:| Q !

1 /
y@(t) — T Zt ]

2) !
Yy W — ToZj

where 71 = (m11, m2), w2 = (71, ma2)’, and Q is the variance-covariance matrix

of the reduced form errors. They considered the constrained maximization problem

as follows:
max L,
B2, 11, ™1, ™2,
s.t. T — Bamor = Y1, T2 — Bamae = 0.

The constraint is relating to the identification of structural parameters, which is
obtained by multiplying 8 = (1, —f2)" on the left side of the reduced form. They
also derived the concentrated log-likelihood function for S5 and obtained the LIML
estimator Bg as follows:

’

. BGp
min —; ,
B2 ﬂ Hﬂ

where the T' x 2 matrices consist of the following:

(3.6)

G = YP-P)Y,

2x2

H = YI-P)Y,

2x2
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where Y = (yl(t . Y ), and P and P; are projection matrices generated from
(yl(tl)l, yl(f )1) and y§t21, respectively. The derivation is similar to Lemma 2.3,
which will be described later.

Under the assumption of a normal distribution, the MLE is obtained as the OLS
in regression analysis by minimizing a quadratic form, that is, the sum of squares
of residuals. Meanwhile, in the case of structural analysis, they found that the
MLE can be obtained by minimizing the ratio of the quadratic forms. For the

LIML estimator 6;, of the parameters 6, = (B2, 71)’, the following result holds.

Theorem 2.1 (Anderson and Rubin, 1949, 1950) : Supposing assump-
tions (A1) and (A2) hold, then as T — oo and N =1,

ST <0 - [BQ

71

) L N(0,5%@7Y).

The notations and assumptions of Theorem 2.1 overlap with the general structural
models as discussed later. Hence, we describe them in Section 3.2. Theorem 2.1
shows that the LIML estimator is consistent and efficient in the time series analysis,
and the noncentrality parameter does not appear because individual effects exist.
The assumption that the error terms follow a normal distribution is not essential
for all MLE estimators mentioned in this work. The same result holds without the
normality assumption and the LIML estimator is considered a pseudo-MLE. The
LIML estimator can be also derived only by the orthogonal condition £ [zitugtl )] =0,
which is interpreted as a class of the moment method. The filters and appropriate
instrumental variables for the panel analysis should be considered as shown in Part
I. Therefore, we slightly improve the original LIML method.

Alvarez and Arellano (2003) examined the estimators of the simplest regression
under a long panel data. Meanwhile, we consider the same estimators with the
simplest structural equations (3.4) and (3.5). Using the forward filter, the CV
estimator is expressed as follows:

T-1 L
~ / / 1’
o= (X)) T
=1 t=1

where X(f) (y(2 h yg 1)) is the N x 2 matrix, and y> D is obtained by mul-

tiplying the endogenous variable ylt by the forward filter. yg{ ) and y,gl’f )
defined in the same way. The AB estimator is based on the GMM method,

) T—1 14 /
OGM:<ZX(f X(f> fo)]_:)y(lf)’

t=1
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where P, is equivalent to the projection matrix provided in (2.11). The instru-
mental variables become (yz(t)l, yl(t 1), and thus, Z; is only replaced by the N x 2¢
matrix. The LIML estimator should be the minimum solution 0LI of the following
ratio,

. 8GN
min —; ,
6. HUDO

where 8 = (1,—6)) and 8, = (B,, ). If the log-likelihood function is also
cocentrated on 7y, then we have

<« [y L) )
o _ Z : L,
G = (X“)/)Pt(y'f X ) :

1
(f) — (1 7 (1,£) (f)
I;Ixzs - tzl — P <Yt » X ) ’

For the simple structural model of Blundel and Bond (2000), the asymptotic results
under the long panel data are as follows.

Theorem 2.2 (Akashi and Kunitomo, 2012) : Let assumptions (A1)-(A3)

hold, and suppose that (v Zt), Uy ) follows a normal distribution.

[i] As T — oo, regardless of N is fixed or tends to infinity,

-1
oo 2] o (o] [0
M 0 0
ii] Assume T/N — ¢ (0 <¢<1/2) as N and T — oco. Then,
-1
6 [&] TR (é) (1’0)] [ (0, é)szﬂ

7
When ¢ = 0, we additionally assume that 0 < limy 7 ,oo(T?/N) = dy < oo.
Then,

JFT (e . [52

"1

) i) N(bo,dzq)_l) s

where

by = /&~ 0>

[iii] Assume N and T — oo and T/N — ¢ (0 < ¢ <1/2). Then

4!

VNT (éu— [ﬁQD L N (b, 0?@ 7+ W),
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where

b = Ve, - mos,
— C

v = |Q@! ! (1,0)®7,
0

and ¢, = ¢/(1 —¢).

The notations and assumptions of Theorem 2.2 are also described in Section 3.2.
The assumption of the normal distribution is not essential but simplifies the rep-
resentation of the asymptotic variance under many instrumental variables.

First, the CV and GMM estimators are not consistent in the structural estima-
tion under the long panel data, which is the important difference from the regres-
sion analysis in Part I. Arellano (2003b) also pointed out an order for the bias of
the GMM estimator, where we clarify the form of the bias. If we compare the CV
and GMM estimators with the OLS and TSLS estimators in the cross-sectional
data, then the CV estimator has the simultaneous equation bias.Moreover, the
GMM estimator suffers from many instrumetal variables. In the case of Theorem
1.3, a correction of the noncentrality parameter can be considered using the con-
sistency result but cannot be corrected in the structural estimation. Therefore,
the structural analysis of long panel data by these well-known estimators is not
recommended.

Second, the LIML method can consistently estimate the structural parameters.
However, similar to Theorem 1.3, the noncentrality parameter remains because of
many instruments and the forward filters. Notably, by of the GMM estimator and
b. of the LIML estimator are different, where we make that of the LIML estima-
tor strict as a condition. For instance, the GMM method has the noncentrality
parameter even under ¢ = 0, but the LIML is centered in the case of ¢ = 0. As
for the asymptotic variance, unlike the regression analysis, the second term c,¥
appears which is the same as the result of Anderson et al. (2010).

In the next section, we consider why these results are obtained from the per-
spective of many instruments problem in the dynamic panel model.

3.1.1 Many Weak Instruments Problem

Kunitomo (1980) and Anderson et al. (1982) conducted early studies of many
instruments problems, which are known as the comparative studies of LIML and
TSLS estimators. One of the applications was a large macroeconometric model.

In recent years, since the study of Angrist and Krueger (1991), discussions in the
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field of microeconometrics have been active. Moreover, Andesron et al. (2010)
and Kunitomo (2012) reaffirmed the superiority of the LIML estimator. In cross-
sectional analysis, the theory of many instruments is sometimes called the large-K
theory, but all of the results in this work are set as follows, except for Section
3.7.2,

K < o0,

where K is the number of instrumental variables included in the structural equa-
tion at period ¢. For instance, K is equal to 2 as in the simple model of (3.4) and
(3.5). Although it can be relaxed by K — oo, even if the number K is finite, the
total number of instrumental variables of long panel data can be O(KT?) — oo,
as shown in the following example.

Example 2.4 : In the previous part, the reduced form is given by AR(1) model

yz(f ) = Wyfle + 1; + v, where the number becomes K = 1. However, the filtered

2,f)

variable yi(t’ becomes the actual endogenous variable. Arellano (2003a, CH. 7)

discussed the reduced form, which then becomes similar to the AR(¢) model,

2 2 2 2
yi(t 9= thyi(tL + W(t—l)tyz(tzz + Wltyfo) + Vit

where .

(T, T, = 77Ttt)/ = <5 |:yZ(2—)1yz(2—)/1:|) & [YZ(,Q—)MZQJ)] :
The number of instrumental variables in period t is Kt = t, and each coefficient
depends on t. When t and T are sufficiently large, we have

(s— 1
Wst:O(ﬂ't( 1))_0(1—H> — 0.

If period s is separated from period ¢, then the correlation is reduced due to
the nature of AR model, and the instruments can be called the weak instrumental
variables. In this estimation, the number of total instruments is O(7?) and includes
many weak instruments. Thus, the LIML method has the robustness to estimate
the structural parameter, even if many reduced form parameters 7 exist.

We first consider why even if the correct orthogonal condition &|z;;uy] = 0 is used,
it causes inconsistency when the number of instruments is large. When ignoring
the influence of the forward filter and expressing the sampling error,

~ 1 /
O — 0 ﬁf [y Pu}
tr(P
= ]\(fT) ) [Uz'tuit]
LKT?
= 2NT g[’l}l‘tuz‘t] . (37)
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If a variable is exogenous, that is, y; = 2z, then (3.7) becomes 0 because the
sum of the orthogonal conditions is zero. However, in the case of an endogenous
variable, the sum of the squares of the error term does not become 0. However, in
general structural analysis, tr(P) = rank(P) = rank(Z) < oo due to the property
of the projection matrix. If the number of instruments variables is small, then it
can be ignored, and the consistency is held. Under many instruments, the ratio r,
of the total number of data and that of instrumental variables converge to nonzero:
%K T?
NT

K
Ty = —>§c#0,

and this causes inconsistency.

We consider the consistency of the LIML estimator in many instruments. When
viewed as an M-Estimator, which is obtained by minimizing an objective function,
the objective function of the GMM estimator is the numerator of (3.6),

3Ga0 - O 5’G0ﬁ+§cﬁ’ﬂ,@.

As the true value is the minimization point of ﬂ,GOB, the GMM estimator cannot
reach the point because it depends on ¢ in the second term. However, with the
LIML objective function,

3 Gf ‘GB K

BGB, o, BGB K _

/

BHB o2 2

where the relation o2 = ,B/Q,B > 0 exists. The second term is canceled by o2.

Therefore, the minimization point can be reached only by the first term without
depending on ¢, whether the objective function is the quadratic form or the vari-
ance ratio is the crucial difference between LIML and GMM (TSLS) methods.®
Notably, the LIML method of Theorem 2.2 is based on data transformation and is
not derived as an exact maximum likelihood estimator, and thus, it is a variance
ratio estimator. However, Alvarez and Arellano (2003) and Akashi and Kunimoto
(2012, 2015) used the name LIML because of the characteristics of its objective
functions. Regarding the asymptotic variance of the LIML estimator, the first term
can be improved by increasing the instruments, but the second term c, ¥ becomes
large as the instrumental variables increase. Therefore, the aforementioned discus-
sion of White (1999) is precise, if the number O(KT?) of instrumental variables is
finite; that is, the discussion is limited to short panel data.

The above discussion is common to cross-sectional and time series analysis. In

the dynamic panel, we have the additional noncentrality parameter as shown in

6 Anderson (2005) stated that the TSLS had already been derived in the work of Anderson
and Rubin (1949), and why LIML was adopted is discussed.
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the theorems. By the effect of the forward filter, even the exogenous variable z;; on

the right-hand side changes into zz(tf ), which is an endogenous variable. However,

the endogeneity is considered & [zz(tf )ugf )] — 0 when T is large. Hence, its weak
endogeneity disappears asymptotically. In the case of regression analysis, only the
weak endogeneity exists, and then, the GMM estimator can maintain consistency.
If the weak endogeneity accumulates under many instruments and long panel data,

then the noncentrality parameter of the LIML estimator appears as follows:
1 /
be o VNT—=€ 20 Pul)|
1
= VNTO | —
o ()
— 0o .

3.2 D-LIML Estimator

In this section, we formulate a general model of the dynamic panel structural
equations for empirical analyses and describe the assumptions for the following
theorems. This section also shows the asymptotic results of estimation methods

in long panel data.

3.2.1 General Model
The first structural equation of the general model is as follows:

1 r(2 e
yi(t) = o+ 52.%(1&) + '71Zz('t) + Uit

= a; + H;Xit -+ Uy s (38)

where yz(tl) and yz(f) = (yz(tg)) (9 =2,---,1+ Gy) are G = 1+ Gy endogenous
variables in period ¢. Hence, for the endogenous variables on the right-hand side,

& [yPua] #0.

Let zgtl ) be the K; x 1 vector of the instrumental variable that appears in the first
structural equation. The unknown structural parameters are GG, X 1 and K7 x 1 for
B, and =, respectively, and are collectively expressed as 1. «; (i = 1,---, N)
are the individual effects, and wu; stands for the structural error term assuming
Eluy] =0 and E[u] = o2
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The reduced form of G endogenous variables (yl(t1 ), ceey yZ(tG )) appearing in the

first structural equation is given by

Vie = Hll, zﬁ,}) + H;, zgf) + 7+ Vi
Gx1 Gx Ky Gx Ko
o = H/Zz‘t + T+ Vi, (39)

where z§f ) is the instrumental variables that does not appear in the first structural

equation and is the Ky x 1 vector. Then, the number of the instrumental variables
Zip = (zgtl) , zz(f) )" in period ¢ becomes K; + Ky = K < oo. ; is the individual
effects of G x 1, and v;; stands for the reduced form error assuming &[vy] = 0 and

Eviv,] = Q@ > O (a positive definite matrix). For the instrumental variable,
& [zitvgt] =0, &lzyuy)=0,

hold in period ¢. More precisely, &[u;|z;] = 0 may be used by the conditional ex-
pectation. Notably, z;; includes the endogenous variables (ygle, yngQ, ygfzg, o)
as the lagged endogenous variables or the exogenous yz(tg ) (g9 # 1) in period ¢, which
is separately determined by a triangular system. In the reduced form of the dy-
namic panel model, the instrumental variables are generally correlated with indi-

vidual effects,
& [Zitﬂ';i| #0.

However, in the fixed-effects method, they are not a concern. The instrumental
variables mentioned here are different from the instrumental variables used for
estimators, because the latter is transformed by some filters.

We look at the relation between the parameters of the first structural equation
and those of the reduced form parameter. Then, we divide the coefficients of the
reduced form as follows:

Gx(K1+K2) 1, IIL, } Gy
If we set 3 = (1,—8,)", then

I o
Dm_[“]}fﬁ’ gas=o’, Bm=a.

must be satisfied, because yl(tl ) in the first structural equation and that in the
reduced form are the same variables. The first K equations include the constraints

relating the overidentification. The details of the identification for the structural
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parameters are discussed in the last section because the test of identification seems
more difficult than the estimation theory.

The data generation process of reduced form is necessary for the proof of theo-
retical analysis but, in practice, we do not have to care about it. The dynamics of
G-variate endogenous variables involved in the first structural equation may not be
autonomous systems, nor are these necessary. Then, we consider the reduced form
as a subset of the G*-dimensional panel VAR(p) model of all possible endogenous
variables,

i =0y +- -+ I0y, , +mi+ Vi,

G*x1 G*x1
where G < G* by the definition, and each IT, becomes the G* x G* square matrix.
Moreover, we turn this panel VAR model into the following extended VAR(1)
representation:

zZj; = H*/Z;'kt—l + 7+ vy (3.10)
K*x1 K*x1

where G* < K* and IT" are the K* x K* square matrix. We call equation (3.10)
the companion reduced form, and the standard case is K* = G*p, that is,

’

z; = (yg<1t,> y;,—l’ >Yf,;_(p_1)) )
o, I, --- I,
I, O --- O

z, = O I, -+ O |z, +m +v;. (3.11)
O O - I,

In this work, as shown in example 2.5 below, equation (3.10) is made for the
minimal representation of the K-variate autonomous system. Then, the VAR(1)
representation holds even in the case of K* < G*p.

Using the selection matrix J; = (I, O) and J* whose elements are 1 or 0, let

the endogenous and exogenous variables of (3.9) be
Yit = Jllzrt » Zit = J/Z:tfl )

where the representative subscript of z; is t but is uncorrelated with v;; by defi-
nition. For convenience, the first G rows of z}, are the endogenous variables y;;.
Then, the relation J\TT*J = IT exists because J;IT"z%, | = IT zy, and J'J = I;.
Put p, = (I— H*/)_lﬂ'f. Then, we have a state-space representation:

Oz, = witun,, (3.12)
Wit = H*/Wit—l + V;kt .
K*x1
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The following assumptions are made for the structural estimation in long panel
data.”

(A1) {vi}@=1,---,N;t=1,---,T) are i.i.d. across time and individuals

and independent of z}, with E[v3] = 0, E[vivy] = QF, and E[||v5||®] exsit. For
some J, ,
, Q. O
0J.QJ, = | ¢x6 , (3.13)
K*xK* O O

where ©, > O. All roots of |H*, — (1] = 0 satisfy the stationarity condition
] <1 (k=1,--- K*).

(A2) The initial observation satisfies y% = (I —IT*) "' + wyy (i = 1,..., N),
where wig = 3220 (IT")*v?

t,—S *

(A3) p, are iid. across individuals with Ep;] = 0, E[p,p;] = Q) with the

finite moments up to fourth order and is independent of {v};}.

These assumptions correspond to those of the regression analysis in the previous
part. In fixed-effects estimation, assumption (A3) is unnecessary for the results
presented in this work. Except for some proof of theorems, we do not need to define
the companion reduced form. As in (3.3), only the setting of the first structural
equation and the instrumental variables under the limited information method is
necessary for empirical analysis.

In the following example, we can confirm that the reduced form of thr dynamic

panel model corresponds to a subsystem of the panel VAR model.

Example 2.5 : The case of the model of Theorem 2.2 holds that J = Iy by
IT = IT*, and the reduced form is a two-dimensional panel VAR(1) model through
(3.4) and (3.5).

As for a slightly more general model,

M = 523/53) + ’711%(21 + Y12Ti—1 + Q; + Uzt

Yit
1 2 2
Zy = {yz(tzla Tit—1, yz'(tzla yz'(tz2 )

where K1 = Ky = 2. We suppose that the following three-dimensional panel

"The existence of the eighth moment of (A1) is made for Theorem 2.2, 2.3, and the other
theorems need only that of the fourth moments.
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VAR(2) model is behind. Its companion’s reduced form becomes

yi(tl) T T2 713 ms 0 yi(tlzl 720) -'Ui(tl) |
yi(tz) To1 T2 To3 a5 0 yi(fll 7TZ-(2) ’Ui(tz)
i | = 0 0 w33 735 736 Tig—1 | T+ 7T§3) + 1 e |, (3.14)
1%(21 o 1 0 0 0 %@2 0 0
Tit—1 0 0 1 0 0 Lit—2 0 L 0 ]

where the coefficient matrix of the reduced form IT corresponds to the upper left

' 11 712 713 715
II = .
To1 T2 T3 T25

As all information on the structural parameter is included in this coefficient ma-

2 x 4 matrix:

trix, only IT needs to be estimated. Although the reduced form simultaneously

determines the endogenous variable (yz(t1 ), yl(f )) in period ¢, IT may not be a square

matrix if several exogenous variables exist, and the dynamics are not determined
and not autonomous after period (¢ + 1). Thus, x;_o is irrelevant to the reduced

form but is added for the VAR(1) representation.

If vy = yi(f) and €; = 'Ui(f), then G = 2 and G* = 3. Hence, 7,41 = yl(le in the

first structural equation is a lagged endogenous variable yl(t3 ) that does not appear
in the structural equation. That is, the predetermined variables are not limited

to those of the G endogenous variables that appear in the structural equation. If

Ty = yl(i)rl and & [’Uz(tl )'Ui(f )] =¢£ [vl(f )UZ-(E’ )] = 0, then the data generating process of x;

means a triangular system. Hence, ;1 = yl(t3 ) in the first structural equation is

an exogenous variable in period ¢. The test of whether yz(f ) is exogenous and the
model selection of the reduced form are examined in the next part.

As for the standard VAR(1) representation,

- A - A _ i o
yi(t ) m1 m2 m3 0 ms 0O yi(tzl 7Ti(1) 'Uz‘(tl)
ye o1 Ty T3 0 w5 0 i s v
Tit 0 0 m3 0 w3 w36 Tit—1 7Ti(3) €t
o | =] 4 m | T + )

Yit"1 0 0 0 0 0 Yit—2 0 0
2 2

yz'(tzl 0 L0 0 0 0 yi(tEQ 0 0

i 00 0 1 0 0 0] |z, 0 0

)

where the fourth row and column may be excluded because yz(tl

, does not directly
affect the variables in period ¢. Then, the minimum expression becomes (3.14),
and we call the expression of (3.14) the companion reduced form.
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3.2.2 D-LIML and Other Estimators to the General Model

Considering a fixed-effects estimation for the general model, the first structural

equation applied the forward filter is given as follows:

1 1,
yz(t P :62% "‘ 71 Et fl) + UEI{) )

Applying Dy, the filtered data are obtained:

1 1, 2, 2, 1, 1,f)
v =) YD = () 2 = ().
(T-1)x1 (T-1)xG2 (T-1)x K1

The data reorganized in each period t are expressed as follows:

1 2, 2, 1, 1,
v =), YD = D), 2t = &)
Nx1 NxG2 N x K4

The variable on the right-hand side of the first structural equation is summarized
by the N x (G2 + K;) matrix:

X0 = <Y§2,f)’ ng') .

The LIML method studied in Alonso-Borrego and Arellano (1999) is based on
the following two (G + K3) x (G + K1) matrices,

T-1
17
G ( f)/) (yt( . ng)) ’

y LH <P
H(f) = X(f)/ [IN - Pt] <yt 7 ’ Xt > )
t

t=1

ﬂe»
HH

For @ = (1, —8)), the estimator corresponds to the minimization point 6, =

(BLI’ S’;I)/ Of

0Ge
O HWE

The general case has one difference in terms of the instrumental variables, which
are included in the estimators. In the case of the general model, we have

5[znu§{)} —0,(t=1,---,T—1).
Kx1

The number of orthogonal conditions increases as period ¢ becomes larger. How-
ever, for the projection matrix P, = Zt(Z;Zt)*lzt, Z, = (z;) cannot always be
N x Kt. As in example 2.5, if the model consists of the AR(2) process, then
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(Vi1 Yites 9its o) and (y7, yis, yitls -+ +) overlap in aset of instrumen-

tal variables in a certain period ¢, or redundant instruments exist. That is, the

rank of Z; is reduced, and thus, we have to set Z; as N x G*t by selecting the G*
different series. In the case of example 2.5, G* is equal to 3 from (yl( ), yZ(Q) i),
and the number of total instrumental variables becomes O(G*T?).

We consider another estimation method as follows. In Part I, we introduced the
instrumental variables applied the backward filter, and Hayakawa (2006b) obtained
the same results as Theorem 1.5 based on a GMM estimator. As the reduced form
is implicitly estimated even in the structural estimation, the optimal instrumental
variables are expected to improve the LIML estimator. Akashi and Kunitomo
(2015) investigated the following fixed-effects estimation.

For the (G + K;) x (G + K;) matrices,

Tl LfY
G — Z Yt(f P()< (1f) X(f))
X_ Y

t=

1,1
= 55 (30 ) el (s )

t=1
let Oy, = (B,,, 4,) be the minimization point of the follwing:
6'GUhe
OHUDO
In this work, we call it D-LIML estimator. The difference from éu is that the
D-LIML estimator uses the projection matrix P,Eb) = Zgb)(Zgb) Zib))_lng), and the
number of orthogonal conditions is the same for each t,

& [zgt)ug)} =0.

Kx1

The instrumental variable is applied the backward filter D,

1

(b) ?(Zit—Q + -+ 20+ Zi,—l)] )

Ziy1 = |:Zz‘t—1 -
where z;_y) is included to simplify the notation regarding the range of subscript.
Then, the instrumental variable matrix Z\” = (zz(t)) is N x K, and thus, the
number of total instrumental variables is reduced to O(KT).

If minimizing the numerator of variance ratio VR,

Q, =6GYg,

then the GMM estimator (D-GMM) 0, = (Bpe, Yoe) is obtained as the mini-
mization point. The explicit forms of these estimators are given in the section of

numerical experiments.
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We prepare the notations to state the results of the asymptotic theory. Regard-
ing the moment matrix of instrumental variables,

Lo =€ (Wit 1 W), 4] (3.16)
_ Z(H*/)hﬂ*l—[*h -0 :
h=0

because 2, > O (cf. Anderson (1971, Ch. 5)). Then, © > O and ¢* > 0 hold.
The leading term of the asymptotic variance becomes the same as that of the usual
LIML estimator,

P — ILJ'T,JII, I, = < I, I ) . (3.17)
(G2+K1)x(G2+ K1) (Ga+K1)xK Ir, O

If rank(Ily) = Go, then @ > O, which can be tested in the last section. The

noncentrality parameter may appear. From the previous discussion, the reason is

the influence of many instruments based on T/N — ¢. If depending on N/T — d,

then thw reason is the problem related to the initial value as shown in a later

section. Both noncentrality parameters are proportional to the following p*:

pt = ®ILI(I-1I1")"'QJ,3,
1,08

— P!
Po 0

where J, = (0, 1g,).
In the structural estimation for the general model (3.8), the asymptotic results
of ém, éDg, and éDL in long panel data are as follows.

Theorem 2.3 (Akashi and Kunitomo, 2015) : Suppose assumptions (A1)
and (A2) and that v follows a normal distribution.

i] Provided 0 < G* limyr0o(T/N) <1 and assumption (A3), then as both N
and T — o0,

VNT (8, -61) ~% N (b0’ +c9)

[G* e
- 71—cp’

T = &', [0%Q - Q6880 T8,

where

o
)
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c. =c/(1—c), and I}y = (J5, O) .

[ii] Suppose ¢y = K/N >0 or N is fized. Then, as T — oo,

wra (000

-1

1,08
O

éDG - 01 i>

)

As for ¢, =0 or N — oo, provided 0 < limyr_,00o(T/N) = ¢ < 00, then
V NT (éDG — 01) i) N (b1~07 0'2(1)71) s

where
b= Kv/cp, .

[iii] For 0 < ¢; < 1, then, as T — oo,
VNT (00— 6:) =5 N (0,0°07" +0.9)
where c1. = ¢1/(1 — ¢1).

Similar to Theorem 2.2, the assumption of normality is to express the asymptotic
variance concisely. These results do not depend on the parameter of the individual
effect €7, The difference between the assumptions of [i] and those of [ii] and [iii] is
that the former must be the double asymptotics whereas the latter can be T — oo
only. Hence, the definitions of ¢ =lim7'/N and ¢; = lim K/N are also different.
First, we compare [i] with [iii], which are the results of the LIML methods. The
result of [i] is reduced to Theorem 2.2 when K = 2, but the correction of the non-
centrality parameter becomes difficult because IT* must be estimated. Moreover,

in a general model, the data sequence may be constrained by the following:

T 1
G'T < N — < —
< = v <&

to define the projection matrix in period 7', and thus, it cannot be provided for
any long panel data. To compare relative efficiency, set c;. = 0 or the double
asymptotics. Then, the difference in the asymptotic covariance matrices is given
by the following:

(*® ' +c,¥)-0*Pd ' >0.

Therefore, the D-LIML estimator of [iii] is relatively efficient.

Second, we compare the D-GMM estimator of [ii] with the D-LIML estimator of
[iii]. The LIML method always does not have a noncentrality parameter. Although
the GMM estimator is consistent in the double asymptoitcs, if N is regarded as
fixed, then it becomes inconsistent. As for the approximation of the asymptotic
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distribution in a finite sample, the LIML estimator would be better because the
second term ¢;, ¥ does not ignore the value of K/N when N is fixed. Therefore,
we conclude that the D-LIML estimator of [iii] has better asymptotic properties
than that of [i] and [ii]. The finite sample properties of D-LIML estimator are
expected to be better than those of the D-GMM estimator, and in fact, it will be.
There is a remark on the D-LIML estimator. The ratio of the number of instru-
ments to that of the data should satisfy r1,, = K(T—1)/NT ~ K/N < 1. Although
K < N does not seem to be restricted in a cross-sectional analysis, it is somewhat
puzzling because it cannot be used in a time-series analysis (N = 1, T — o00),
which is a special case of panel analysis. This is not a problem with the property
of the LIML method, but the usage of the orthogonal conditions can be further
improved. This problem is reconsidered and improved in a later section.

3.3 Transformed LIML Estimator

The transformed maximum likelihood method discussed by Hsiao (2014, Ch.
4) is another different approach from the fixed-effects estimation. Hsiao et al.
(2002), Binder et al. (2005), Hayakawa and Pesaran (2015), and Hsiao and Zhang
(2015) examined the transformed MLE with the regression analysis. In addition,
Hsiao and Zhou (2015) investigated the structural analysis. Although this method
is an exact maximum likelihood estimator, the approach is also different from
the random-effects MLE, which assumes the identical distribution for individual
effects. In previous studies, the finite sample properties show that the transformed
method is better than the estimator of Arellano and Bond (1991) for the reduced
form, and the estimator of Akashi and Kunitomo (2015) for the structural equation.
We reconsider the transformed maximum likelihood estimator in the following
sections.

Considering the reduced form of the AR(1) model again, if we take the firest-
difference in (2.1), then the individual effect 7; disappears.

Ayit = ﬂ-Ayit—l + Avit ) (t = 2a 3a e 7T) .
However, the right-hand side of Ay;; in period ¢t = 1 is the problem because Ay;

cannot be observed. Through repeated substitution,

s—1

Ay = 7 Ayn_s + Z ™ Aviy
h=0
= T Ayn_s + €1,
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where s < oo can be allowed. However, for the sake of simplicity, we put s — oo
similar to assumption (a2). Then,

2w
1+7

E[Ayzl] =0 s VaT[Ayil] =

= W1,
and the correlations of the error term become
g[Ez‘lAUig] = —Ww, S[EilAUit] = O s (t Z 3) .

Hsiao et al. (2002) discussed some types of the data generation process for Ay,
and stated that even if the form of variance is different it can be expressed as
the free parameter w;. Then, the correlation structure for the entire period is

determined, and thus, the joint distribution of
Ay; = (Aya, Ay, - >AyiT)/
Tx1
= (Aya, Ay;) ,

is also obtained under the assumption of a normal distribution. The Jacobian of
the transformation form Ay’ to the following error vector is unity,

AV = (Ayi, Avg, -+, Avir)

Tx1

The variance-covariance matrix of the error terms becomes

Qp = WWO,
where
Wo -1 0 0
—1
W,=| o W
TxT .
0

W is given by (2.6), and wy = w; /w is redefined. Then, the log-likelihood function
for the joint distribution of unconditional Ay} is as follows:

N 1 &
o * y—1 *
LA = —510g|QA| b ;1 AvI QL AV] (3.18)

except for the constant part, where

Av; = (Aya, Ay — TAYn, -+, Ayir — WAyinl), .

Tx1
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Maximizing with respect to the unknown parameter (7, w, wp), the transformed
MLE 7y (T-MLE) is obtained. A feature is that it is the exact likelihood function
after the data transformation, which can be called a fixed-effects MLE, and does
not depend on the individual effect ;. The first element Ay;; of Av} that is
treated as an error term should be observed, and its variance is estimated by the
free parameter w;. If we use the pseudo likelihood function of Ay; without the
initial distribution of Ay;;, then the objective function is equivalent to Lemma 2.1,
as wil be described later:

mln Z ﬂ-nyl QT 1( WYi,fl)-

O That is, the CV estimator is obtained. The T-MLE has the asymptotic nor-
mality,

d w

VN (fpg — 1) -5 N(0, —

where the asymptotic variance is

(0. Ay ) Wy ( Ay(11 )] |

Then, the following holds in the short panel data.

¢or =&

Theorem 2.4 (Hsiao et al., 2002) : Supposing assumptions (al)-(a3) hold,
then as N — oo and T is fized,

w w
- > =
¢r — Qor

That is, T-MLE is relatively efficient than the AB estimator in Part 1. Hsiao et
al. (2002) suggested in the numerical experiment that the gain of efficiency by
estimating initial values is large in short panel data. The result should be held in
the limit of T" — oo, that is, the gain would also be more efficient in long panel
data. As w/¢r — 1 — 2, T-MLE may also reache the lower bound of efficiency.
Although we would like to confirm it in the asymptotic theory (T — o0), the
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structure of the log-likelihood function is given by as follows:

Qal = W (1+T(wo— 1)),
1
w
T T-1 2 1
T—1 (T-Dwy - 2wo wo
. . . . , .
STy | : i : :
2 %o o 2((T = 2wo — (T —3)) (T —2wo — (T —3)
1 wo i (T=2wo—(T—=3) (T—1wo—(T—2)

Thus, structure is highly nonlinear, and derivation becomes complicated as it is.

3.3.1 Long Difference

Grassetti (2011) provided another useful representation of the transformed max-
imum likelihood method:

Dy; =yi — yiot (3.20)
where y¥ = (yio, Yi1, , -+, i) is (T + 1) x 1 including the initial value y;, and
110 --- 0
101 --- 0
D, =
Tx(T+1)
100 - 1

The relations with the transformed method using the first-difference are given by
as follows:

Dgy; = LAy;
= (LDTJrl)y;ka

where D7, is the T'x (T'+1) first-difference matrix of (2.4) and L is the cumulative

matrix, which is a lower triangular matrix, and is nonsingular:

100 v 0
11
L - 00 (3.21)
TxT
111 --- 1

Therefore, the first-difference, including Ay, is also represented by the difference
from the initial value y;0, and then, (3.20) is called the long difference.

Consider the reduced form of AR(1), for period ¢t > 1, an identity is formulated
as follows:

O vit — Yio = ™(Yir—1 — Yio) + (—Yio + TYi0) + 1 + Viz -
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Let yl-(f ) be the data applied the long difference,
O yz(f) = Wyz'(21 + (=Yio + TYi0) + 1 + Vit

[ ;i
= Wyz'(tzl —(1—-m) (wio + 1—x
= Wygf)_l + &+ Vi

where we note that y%) = 0. The second equation uses the state space represen-

)_'_ni_'_vz’t

tation of (2.2) so that the individual effect 7; disappears. However, & appears

instead of n; ,

sz = —(1—71')’(1]@'0

= —(1—-m) iwsvi,_s :
s=0

where §; is invariant for ¢ > 1 so that the subscript becomes only 2. That is,
the long difference eliminates the original individual effect n; but uses an artificial
individual effect &; as an error correction. Importantly, & can assume a random-
effect which follows the identical distribution.

The transformation Ay} = Dry1y} is the shift by y; — yiot because of (3.20),
and it remains 7" x 1. Meanwhile, the filtered data Dry; are (T' — 1) x 1. The
transformed maximum likelihood method is invariant to a regular transformation
T as follows.

Lemma 2.1 (Hsiao et al., 2002) : For Dr,y}, the log likelihood function
Ly of the transformed data TDp 1y becomes

Lo=—Nlog|T|+ La .

Therefore, we need to consider only the first-difference matrix D7, on how to
eliminate the individual effect. If T does not depend on unknown parameters of
interest, then we can select a retransformation T that is easy to calculate. In
the case of the long difference, T = L, and L does not depend on the unknown
parameters. From Lemma 2.1, we conclude that the long difference is another
expression of the transformed maximum likelihood method.

We consider the log-likelihood function L£j. For the long difference, n; can be
elimonated even with —y;;¢. However, if the initial value —y;o¢ is used, then
E[&vi] =0 (t > 1), which is the simplest. Then,

0 Q¢ = ngL/ + wlr
TxT
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where we = Var[¢;], which is equivalent to the correlation structure of the random-
effects MLE and is easy to handle. The log-likelihood function is given by

N

N 1 ¢ 0 V' y—1/ .t ¢
0 Lo=—F1og ||~ Y0 —my? )L v - wy?))
i=1
where yZ@) = (yz(f), cee yZ(T) and yz) = (0, ---, yl(fp) ). Moreover, when

maximized with respect to the unknown parameter (7w, w, we), the transformed
MLE 71y (T-MLE) is obtained. This log-likelihood is simpler than (3.18), Grassetti
(2011) pointed out the advantage that it can be calculated through the random-
effects routine of existing packages.

Next, consider the case of structural estimation. For a simple structural model
presented in the previous section, Hsiao and Zhou (2015) proposed a transformed

LIML estimator using the expression by the long difference:
) = By iy b+, (3.22)
yz(t2) = 7T21yi(t121 + 7T22yz(t221 + 7Ti(2) + 0(2) ,

where yl(f ) is represented as the reduced form by the limited information method.

With the long difference,

1,0 (2,0)
yl(t ) = ﬁ ylt _'_ ’ylyzt 1 _'_ fuz _'_ Uit )
N4 )
yz(t2 )= 7T21yz‘(t—1) + T2 yz(t2 1 "‘f + Vit

where y(g = yi(t) yl(g) (g=1,2;t>0). (&u, £Z ) turns out to be a random

it

individual effect generated from the initial state. The notations are regarded as
wy = (a1, Ta2),

/

(wity V)| s Qe = € |(Euir €7 (Euis €7)

2x2

Q,=¢ [(Uiu Uz(tQ))

2x2

and then, the correlation structure is as follows:

Qe = Qe @t +Q, 017 .

2T'x2T

The log-likelihood function under the limited information method is given by the

following:
0 Ly = ——log|Qe,| — ZV
where
(1,9) €
¢ y —x"g, ¢ 2,0) (1,0 ¢ Lo (20
0V = | Y T |y (e y0a) v, 2 (400, y2)
2Tx1 Y. Y 172 T><2 Tx2
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They provide the exact LIML estimator of the fixed effect method. If we set the
parameters as follows:

/NG

¢ = (0/17 772) ;Wi = (VeC(QU)

’ /

, VeC(ng)/) ,

then é’)TL(T—LIML) is obtained by maximizing £; with respect to ¢ and w,.

Theorem 2.5 (Hsiao and Zhou, 2015) : Supposing assumptions (A1) and
(A2) hold and that (’Ui(tl), vf)) follows a normal distribution, then as N — oo or
T — oo or both,

VT ($r=0) =5 N (0, ~(Hap — HWHLIHL) ) |

where
1 8L 1 0L 1 0L
H¢¢_8[ﬁa¢a¢’] ’ H¢“_8[ﬁa¢aw;] ’ H””_Slﬁaw*awj ‘

As (i, §f2)) also follows a normal distribution due to the normality of the error
term, the asymptotic variance-covariance matrix of (&TL, W,ry) s given by the
inverse of the information matrix, which becomes a simple structure. This result
is desirable because the noncentrality parameter is zero even if a nonnormality
assumption exists. Considering that T-LIML estimator is an exact maximum
likelihood method, the score functions corresponding to the orthogonal conditions
become a finite number which is equal to that of unknown parameters. Thus, the
many instruments problem does not occur. In the next section, we investigate the

results of Hsiao and Zhou (2015) in more detail.

3.3.2 Asymptotic Variance When 7" — oo

This section clarifies the asymptotic variance for the structural parameter 6,
of interest within &TL and compares it with other estimators. Before that, we
derive the asymptotic variance for the reduced form AR (1) model using the long
difference and confirm that the conjecture relating to Theorem 2.4 is correct. Hsiao
and Zhang (2015) derived the T-MLE with the first-difference, and Hsiao and
Zhou (2016) derived the T-LIML using the long difference when €, is given. We
consider the following assumptions for the case when 2, is not given.

We generally refer to the log-likelihood functions of the transformed maximum
likelihood method as £. In deriving the maximum likelihood estimator, the fol-
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lowing is obtained by the Taylor series:

\ 1 L ' 1 oc
VNT —)=— (—7,> _—, 3.23
where 1) denotes all parameters appearing in the transformed maximum likelihood
estimator. For instance, 9 = (qz’),, w.) holds in the case of Theorem 2.5 and " is
a mean value between the estimator 1" and the true value 1. The following are

made for the asymptotic results of the transformed methods.

(A3) [i] As N and T tend to infinity,

S N O ] P
NT orp* oy YT N T 0o | NT Opory’ |
ii] As T tends to infinity, (1/NT')L converges to a nonstchastic function which

attains a unique global maximum at 1 .

The transformed maximum likelihood estimator shows that some off-diagonal ele-
ments of Hy,, are zero. Thus we do not need to derive all elements of Hy,, under
assumption [i]. Then, we focus on the inverse matrix of the diagonal block of
H,,. Although the asymptotic property of the transformed maximum likelihood
method may be obtained under N < oo, the law of large numbers then does not
hold for the terms related to the random effects & (¢ = 1, ---, N). Thus, the
assumption [i] is not sufficient. The second assumption [ii] is made for the case of
N <

The results of Hsiao and Zhou (2016) also hold for 7, when the long difference
of (3.20) is applied.

Theorem 2.6 : Supposing assumptions (al), (a2), and [i] of (A3) hold, then
as N and T tend to infinity,

VNT (i —7) -5 N(0,1—72) .

This result is equivalent to Theorem 1.5 in Part I, that is, T-MLE attains the
lower bound of efficiency. Therefore, a consequence here is that the IV estimator
or T-MLE is the desirable methods for regression analyses in long panel data.

To derive the asymptotic variance for the structure estimation of (3.22), we
simplify the model as my; = 0 because f; = 0. Furthermore, we have to consider
the parameterization of the structural parameter 8, = (8, 71) regarding the
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maximization of the log-likelihood function. In the work of Hsiao and Zhou (2015),
the representation of the first structural equation is given by the following:

1 2 1
yi(t) = BQyz(t) + 71%(1&21 + o + Ut .

Let us call this the first formulation. If we substitute the reduced form of yz(f =

ngyfle + 7TZ-(2) + vftg), then

yi(tl) = 52722%‘(15221 + 71%(1&121 + 7Ti(1) + Uz(tl) : (3.24)
For instance, this formulation was used by Hahn (2002), and we refer to it as the
second formulation. A difference between the formulations whether the right-hand
side is represented by an endogenous variable. The first formulation is natural,
but the second one can easily derive the asymptotic variance. We confirm in the
following example that the asymptotic variance is invariant by these formulations.

Example 2.6 : We illustrate the asymptotic variance of the first formulation,
using the simplest simultaneous equations model under the cross-sectional data

(T =1).

y = By o,

yl-(z) = mz; + vi@) ,

which is further simplified by €2 = I, for the error terms of the reduced form.
Then, the variance-covariance matrix £[(u;, '0(2))’ (u, U(Q))] = Q, of the structural

7 %

and reduced form error terms becomes the following:

~1
Qfl — 1+ 62 _6

Regarding the Hessian of the log-likelihood function, we put w_ = vec(€2;") and

¢ = (P, 7T)/ because of the invariance for parameter transformations of MLE. Then,
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the following are obtained:

1 0%L
Hyy = | ———
oy {Nacbc‘?cb’]

_ (-1 —prel
_BrElE]  —(1+BIERF |

2
H,, - 5{1 0°L ]

) N 0¢pdw_
(s
N 0 000"
H, = 5_1
v | N Ow_dw_ 8w}
—(1+p%* BA+p%) B(L+p5%) —p

B(14 5% -2 —(1+p) B
B(1+p%) —(14p%)  —=p° B
—3? B B —1

In the second formulation, the (1,1) element of Hy, is —m2E[z7]. Hence, —1 seems

DO | —

to be different from the first formulation. Notably, H, = O in the second formu-
lation, whereas the first formulation is not a zero matrix because of endogeneity.
The asymptotic variance-covariance matrix of ¢ becomes the 2 x 2 submatrix of
the 6 x 6 inverse matrix. As shown in Theorem 2.5, we must evaluate the following:

—(Hgp — He HJH, )7 (3.25)

Finding only the upper left 3 x 3 matrix of H_! is sufficient, because Hy,, contains
zeros as its elements. Using the formula for the submatrix of an inverse matrix,

-1

I, —5(14+26%) 38 36
(I3, 0)H_ (0’) = 1B 0 —3
T
LB B
= =2 p p* 1+p
g 1+p* p?

Therefore, we have that

-1 0
H, H 'H, = .
@ wwT T pw ( 0 0 )

That is, the variance-covariance matrix of each formulation for ¢ is the same as in
(3.25). Therefore, the asymptotic variance for ¢; = §, which is the (1,1) element,
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is also the same.

In panel estimation, the covariance €2,¢ of the individual effect must be consid-
ered, but Hy, = O holds asymptotically. We adopt the second formulation for

deriviation using the long difference:

1,6 2,0 1,0 1 1
yi(t ) = 527223/1'(1&—1) + ’Ylyz‘(t—l) + Ez( ) + Uz‘(t) )
2.0 2.0 2 2
yi(t )= 7T223/1'(1t—1) + Ez( 4 Uz‘(t) :

Then, we correct the notation slightly,

Q =2, eV, &), Q0 =Qsu 0l (3.26)

2%x2 2T x2T

We replace the log-likelihood function £ of the limited information method with

N 1 @ —1..(0)
0 Ly =~ log || - E;Vi Qv (3:27)
where (1.0 © /
I Vz@ _ [ i —(2%'@',—1(%7 Patas) ] , o= (0, 7r22)/
2T x1 Yi Y 1

For the T-LIML estimators obtained by maximizing ¢ and (vec(2)’, vec(€)),

the following holds for the estimator of the parameters of interest éTL = ( BQTL, %TL)/.

Theorem 2.7 : Supposing assumptions (A1), (A2), and (A3) hold, then as
T — oo, regardless of N is fized or tends to infinity,

VNT <9TL . 01> s N(0,0%®7Y)

This result clarifies the expression of Theorem 2.5. When 1" — oo, the normality
assumption of the error term would not be necessary. We compare it with the
D-LIML estimator of Theorem 2.2 [iii]. Although the result of Theorem 2.2 is for
a general model, the form of the asymptotic variance does not change in the case
of (3.22). Under the double asymptotics, the D-LIML and T-LIML estimators
do not have the noncentrality parameter and have the same asymptotic variance
o2®!. However, when N is fixed, we conclude that

0 (0*® ' +c,¥)—0?® ' >0,

49



where ¢; = K/N = 2/N. That is, the T-LIML estimator is more efficient than
the D-LIML estimator and is expected to have better finite sample properties with
fixed N.

3.4 Extension of the T-LIML Estimator to General Models

From the discussions in the previous section the T-LIML estimator is the best
method, but two issues should be to consider as far as the author knowns. Weakly
exogenous variables and AR(2) models are considered the first extensions to the
model. Previous studies on the transformed maximum likelihood method focused
on AR(1) or VAR(1) models, and strongly exogenous variables are assumed. Thus,
we extend the model as follows.

3.4.1 Weak Exogeneity

In this section, we consider why strong exogeneity is necessary and demonstrate
the estimation method under weak exogeneity using a simple model. Let us con-
sider an additional exogenous variable z;, which is not the lagged endogenous

variable of (yftl )7 yz(t2 )):

yz'(tl) = 52%(1‘,2) + %1%‘(21 + Y122i + Q; + Uy .

The reduced form is as follows:

yz(tl) = Wllyz(tlzl + 712:%(321 + Mgz + T + Ui(tl) g

yz(tQ) = 721%(21 + 7T22yz(t221 + Toazie + 0 + Ui(t2) :

—_~ S~

~

In vector representation,

!

yie = Ilzy+m+vy
2x1 2%x3
!

= ILLyit—1 + 32 + 5 + Vi,
2X2

! . . .
where 3 = (73, me3) . The linear process is assumed for the exogenous variable:

Ze o= i+ Y Onea—n, Y |0k <00, (3.28)
h=0 h=0

To eliminate the individual effect 7r;, the long difference is taken with respect to

Yio:
Yio = (12 — H;QL)ilﬂ'gZZ’O + (12 — H;QL)ilTl'i + (IQ — H;QL)ilvl'O y
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where L is the lag operator such that Ly;; = y;_1.
yz(f) = Hizyz(f)q + w2 + & + Vit
= Myl +moze+ €z &) + Ve
where
& = m— (- H/12)Yi0

= (I = T0},)(Ty — T, L) Mrgzi — (To — Ty,) (I =TT, L) "My

= Ei,z + €i,v :
The individual effect disappears at the second equality from the following fact:

/

(I, — I, ) (I, — I, L) iy = ;.

For simplicity, suppose that we can observe 51’2.8 If not observed, z; and &, ,
correlate, thereby causing endogeneity. If observed, then the strong exogeneity is
also necessary for the following orthogonal condition,

Elzin(&ip + Vi) =0
For instance, if v; and ¢;5 are independent for all (¢, s), then
Elzuvis)| =0, (t,s=1,---T).

However, this assumption is strong for the dynamic panel model. We would like
to consider the variable z; as a weakly exogenous one,

Elzuvi) =0, Elzuvis) #0, (s<t—1).

That is, this variable is uncorrelated in period ¢ but is allowed to correlate with
the past v;s. As the reduced form is considered a panel VAR model in this work,
the exogenous variables in period ¢ generally become weakly exogenous, which are
generated by a triangular system. If we change the model of example. 2.5 into

000000 2z = 1261 + ¢23/i(t211 +mi+ €, E[vaen] =0,
then this bariable is weakly exogenous such that the feedback loop with yz(le exists.

The representation in MA(oco) process is given as follows:

o
s = ey(I3—T17) ') +eg > (T1)'vi
h=0

1’1@1 = ¢21)i(t221 + €

®In previous studies, the regression &; , on z; = (1/T) Y, zi is adopted.
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where v}, ;| = (Vi,_;, Uz(?21), and e3 = (0, 0, 1)". Thus, we can confirme that the
variable is weakly exogenous.

Next, we consider the estimation method. In the first place, the lagged endoge-
nous variable that applied the long difference has the following properties,

O Ey (&, +va)] = ElVSLE]
+ 0.

The orthogonal condition is not satisfied because of the correlation with the initial
value. However, the transformed maximum likelihood estimator is the consistent
estimation because one-to-one correspondence exists between the observed data
and the error terms as a 7T-variate system:

14 14 4
O {yz(0)7 yz(1)7 ) yz(T)} = {ﬁi,va Vil, 500, ViT} .

If the exogenous variable z; is also treated such as a lagged endogenous variable,
then parameters can be estimated consistently using the long difference zz(f ). For
this purpose, we consider the companion reduced form that extends the two re-
duced forms of (3.28) into three equations. Notably, z; is not an endogenous
variable in period ¢, so that it must be included in the right-hand side in the
reduced form. To express the companion reduced form, we introduce the lead

variable z;41:

O = 7T11y§t121 + 7T12?Ji(t221 + Mgz + 0+ Uz'(tl) )

—

yit 7
Uy = Ty + Ty + e + w0 o)
Zigy1 = Q12 + ¢2yi(t2) + i + €ir - (3.29)

@)

We would like to summarize the left-hand side as z%, = (3., 457, zi41)’, but yz(f )

remains on the right-hand side.” By transposing this to the left-hand side and

solving it or substituting (3.29) into yl(f ), the companion reduced form is obtained:

(1) (1) 1) (1)

Yir 1 T2 13 Yit—1 m Uit
2) | = 2 2 2)

yz‘(t) - 21 722 23 yl-(tll + | + | vy

3 3
Zit+1 P21 PaTaz  P1 + PaTas Zit 7TZ-( ) ’Ui(t)

In the vector representation defined in the previous section,
* * % * *
zy =10 z;; | + 7 + vy,
3x3
9In example 2.5, the lead variable becomes z;; 11 = 332 + 7T35y§,5211 + m362zi4—1 + - - -, and

thus, the endogenous variable yZ(f ) does not appear on the right-hand side.
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where the original coefficient of reduced form IT is invariant. Using IT*, the
MA expression of (3.28) is obtained. Applying the long difference, we have the
following;:

2, =12 &+ v (3.30)

where z;(f)l = Zit — %1

From the above discussions, if we add an exogenous variable following a panel
VAR(1) model, then the exogenous variable should be treated as a lagged en-
dogenous variable. Moreover, we consider the companion reduced form, which is
applied the long difference. On the contrary, only applying the long difference is
not sufficient, and IT* should be estimated instead of the original IT. The same is
true when adding multiple exogenous variables. By setting a lead variables on the
left side, we extend the dimension from G to G*, regarded as a natural extension.

The D-LIML estimator implicitly estimates only II, but the T-LIML has to es-
timate IT*. We consider the effect of estimating IT* on the estimation of structural
parameters. Although z;; is the exogenous variable in period ¢, the lead variable

Zit+1 1S endogenous as follows:

Q
S[Uz‘(tg))vit] = Wi3 7é 0 ) Q* = ( w13> .

!
Wig Wss

However, this variable can be considered as an endogenous variable that does not
appear in the first structural equation, that is,

3

Zit+1 = yft) .

If the reduced form of the endogenous variable that does not appear is estimated,
then what happens to the asymptotic variance or the efficiency for the structural
parameters of interest?

Theorem 2.8 : Supposing Assumptions (A1), (A2), and (A3) and that the
exogenous variables z},_, are common, then the structure of asymptotic variance-
covariance matriz is invariant, that is, o?® L.

In a simultaneous equations model, the error terms of the reduced form are gen-
erally correlated between equations. Hence, this model is the seemingly an unre-
lated regression model (SUR) by Zellner (1962). When estimated with common
instrumental variables, the efficiency for the coefficient of reduced form IT does
not change even if estimated as a system (cf. Amemiya (1985)). Meanwhile, in

the estimation of the structural parameter 6, estimating the companion reduced
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form through the transformed maximum likelihood method has no effect if the
estimation is conducted for endogenous variables that do not appear. In addition,
0% = ,B/Q,B is affected by €2 but not by vz(tg ). If we added the structural equations
of the additional endogenous variables, then we could obtain a full information
maximum likelihood method.

3.4.2 Higher Order VAR

Hsiao et al. (2002) stated that when a variable has a higher order than the
AR(2) structure, the transformed maximum likelihood method can be applied,
but it becomes complicated. In the case of the VAR(1) model, the estimation
method is a natural extension even if the dimension of the variables increases as
shown in the previous section. However, the case of VAR(2) model cannot be
called a natural extension in the expression by the long difference. Therefore,
the generalization for the higher orders seems more difficult than that for the
additional exogenous variables.

In the following example, we consider how to apply the transformed maximum
likelihood method when the AR(2) model is included.

u = Byl iy eyl i+ (3.31)

The reduced form is as follows:

yz(tl) = 7T11£%€:121 + 7T12yi(t221 + 7T13yi(t122 + 7Ti(

yz(tQ) = 7T22yz(t221 + ng) + Uz(tQ) .

1) (1)

+ vy,

For simplicity, we suppose that the reduced form of yl(f ) is AR(1), and only yg) is

VAR(2). In vector representation, using the companion reduced form, the following
is formulated:

y§t1) T T2 713 yi(tlzl 7Ti(1) Uz'(tl)
=0 o | || | ]
1 1

I I T N D I O A

where the third equation is the identity yi(jll = yi(jll. In the case of the AR(p)

model, we suppose that data are available from (y;o, - -+, ¥;1-p). The initial value
eliminating the individual effect m; can be either y; o or y; _;, which is adopt as
follows:
3/@'(;) - yfol) T M2 T3 %(15121 - yi%) fz‘(l) Ui(tl)
u = | = 0 me 0 | [y |+ P | [
yz'(tlzl - yi(,lzl 1 0 0 yz'(tlz2 - yi(,lzl fz'(m) 0
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In vector representation such as (3.30),

2 =Tz + €4y (3.32)
where the vector of initial values in the long difference z;(z) =z}, — zj, is given as
follows:

* IO ORY
ZZ'O = <y1(0)’ yz'(0)7 yz(,—)1> ) (333)

and Z:O(E) = 0. As for &,

& = (06 )
= —(I—H*/)Wio,

is the same as before. Using the long difference, the third identity of (3.32) slightly
changes into

(yi(tlll - yz(l—)1> = <yz(t121 - ?Jz‘%)) + 5@(01) . (3-34)

Unlike time series analyses, the new individual effect 51(01) is unknown, so that this
identity should be included in the likelihood function. As the representation of ex-
tended VAR(1) is obtained, we consider whether the likelihood function forms the
same as before. In the transformed maximum likelihood method, the expression is
simplified using the long difference because it can be the following random-effects

model:
JTQ£UJT = . . . . + . . . . ’
3Tx3T : : . . . . . :

where j/T is a sort matrix. Then, the expression of the inverse matrix becomes
simple, and the following result can be applied,

Q, = Qou+QaI)™!
= Q'Qr+(Q+TQ) '®IJr, (3.35)

where Jr = (1/T)el.
However, if a structure of AR(2) is included, then the variance-covariance matrix
for the error terms of the companion reduced form is given by

Q. 0
QF = | 2x2 ,
3%x3 0/ 0
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where the notation in (3.13) is used. From the assumption 2, = Q2 > O, but Q*
is clearly singular. If T = 1, then J /Tﬂzvj 7 is nonsingular because it is the sum of
the positive and semi-invertible matrices. However, if 7' > 2, then it is singular:
2| = 3792, 37| = 0.

Under the singularity z:t(g) follows a degenerated normal distribution, so that the
likelihood function cannot be constructed as it is (cf. Anderson (2003)). That is,
if one of the G* variables has the structure of AR(2), then the simple expression of
(3.35) cannot be obtained, which is also clear because (3.34) holds for any period
t. In other words, 7" — 1 equations are redundant, and (3.34) is equivalent to the
following initial conditions.

vy =i+

In the case of the AR(1) model, the effect of the initial values can be replaced with
a new individual effect by the long difference, but in the case of the AR(2) model,
another initial condition needs to be added.

Excluding the redundant conditions, the log-likelihood function including AR(2)
structure of (3.32) is given by the following:

N

N . O -1, (0)
0 Ly == log|9,| - 5;“ Qv (3.36)
where the initial conditions are as follows:
1 1
, yi(O) - yz(—)l
0 VZ() _ yzg,é) _Ygel( M1, Bamaz, 712) y T2 = (0, 22, 0) )
(1427)x1 ygz,z) N ng’ezlﬂ_Q

and

¢ Lo (20 (¢ 1,0 1,0
YO = (v v v) oy = (W) -
2T'x3 Tx1

Notably, yz(ltg = yi(vlt)f2 - yl(lzl . Regarding the variance-covariance matrix,

Q* _ w§0 w&
3y - Q ’
(1427 x (14+27) We S

where

Weo = 5[(@(01))2] )

we, = E[EMEN, €P)] =wie@r
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Q¢, is the same as the variance-covariance matrix in (3.26) of the VAR(1) model.
If the following holds,

Wigo = w@—wgbﬂgvlw&
# 0,

then the inverse matrix becomes the following from (6.18) and (6.3):

wigo \ —, we WeeoSg, + Qg wewe
The inverse matrix is more complicated than ngl because the bordered matrix
has to include the additional initial conditions. However, as the long difference
is applied, the dependence of T on each element becomes uniform through ngl
as compared with the inverse matrix in (6.3). The, the determinant becomes the
following:
192, | = wieo Qe -

The model of (3.31) is the case when only one initial condition is added. From
the above discussions, if the number of exogenous variables or the order of AR
model increases by one, then the dimension of €2, must also increase by one. In
the following, we give the T-LIML estimation method for the general structural
model in Section 3.2. To simplify the expression, the order of the VAR model is
p(> 2) using the standard representation in (3.11).

N

N i L (&) r—1,,(0)
0 Ly =~ log |2, [ - E;Vi Qv (3.37)
where
[ Ay ]
Ay;.:_(p_Q) ,
@) _ 1,0 ¢ / re r
O - ;’):LG - = yz( ) — Zz(,zl <(’71 + BoI1},), ﬁ2H22>
*(p— * % N
yz@g) - Zi,(f)ln*eQ
! v -z e ]
the only gth element of e, (¢ =2, ---,G*) is 1 and 0, otherewise.
¢ 1,0) 2,0) *(¢ *(0)!
Zz(,zl = (Zz('t ) 7Zz(t ) ) ) Zi,£)1 = <Zit(f)1 ) .
TX(K1+K2) TxK*
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*

Regarding the exogenous variables in period ¢, the lead variables of G+1, --- | G
must also be included in addition to the original G variables of the first structural
equation. The initial conditions represented by the first-difference before t = 0
should be added, and the number becomes G*(p — 1) in total. In the general
model, the log-likelihood is expressed by the first-difference and the long differ-
ence. Notably, for the long differences, each element of the initial value has to be
in the representation of the extended VAR(1), as shown in (3.33). That is,

* 1 G* 1 G* '
zl, = (ygox... R PPV IS ,y;’_(;_l))

The variance-covariance matrix is given as follows:

2; :<“w5%>
(G*(pfl)JrG*T)Q Q& Q*gv

where 550) = (Ayf(;, ER Ayzi(p%))/ ’
0 = €[]
G (p—1)xG* (p—1)
Q/SL - Qz)f ® v ’
G*(p—1)xG*T
and
QL = 07 @Qr+ (TR @7

G*TxG*T  G*XG*

The upper left submatrix of €2, is the G x G matrix 2. From (6.18), the inverse

matrix becomes

—1 -10 —1
Ot = o et
v — — — — — — Y
_Q*gvﬂébﬂ*go Q*gv + Q*ng§LQ*§OQ£LQ*§U

where Q¢ = Qg — Q,&Q;;UQ&. As for the determinant,
192, = [€ue0] Qe -

Although the parameters of interest is 8, = (,6/2, ~1)’, the maximization procedure

has to be performed using the following parameters:
{017 H127 H227 H*eGJrla Ty H*eG*a Q&Oa QO§7 Q*a Q*g} .

Thus, in the case of the general model, the likelihood function of the T-LIML
estimator becomes complicated and the number of parameters to be estimated

can be quite large.
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3.5 D-LIML Estimator Revisited

In the case of the general model, T-LIML estimation is not a natural extension
of the VAR(1) model, and the calculation becomes complicated. Moreover, as the
D-LIML is based on orthogonal conditions, this estimator has the advantage that
the calculation does not change even with the general model. However, as shown
in Section 3.3, if N is fixed, then the D-LIML estimator is inferior in asymptotic
efficiency to the T-LIML estimator. In the following, we discuss that the D-LIML
and T-LIML estimators are asymptotically equivalent under T" — oo by slightly
modifying the projection matrix of the D-LIML estimator.

3.5.1 Improving the Projection Matrix

In the estimation method of Arellano and Bond (1995), the matrix of instrumen-
tal variables contains zeros as shown in (3.11). This corresponds to the orthogonal
condition being considered in each period ¢t and may be called the sequential mo-
ment condition. Akashi and Kunitomo (2015) applied the instrumental variables
with the backward filtere, but its construction is the same as the sequential mo-
ment condition. That is,

& [Au] = 0

Kx1’
fort=1;---, T — 1. If all periods are collectively represented by a matrix, then
£ [Z(b)’u(f)] — 0
o K(T—1)x1’
where
b !
AR (())/ .. 0
, o zy --- O by ) ,
o o OB g = (o, 20)
K(T-1)xN(T-1) : - : O KxN
o o ...z
and
u>(s<f) = <u§f),7 Ty u’gfz/1> :
N(T-1)x1

Unlike regression analyses, structural estimation is generally overidentified (K >
G9+ Ky). Thus, a projection matrix is used in the objective function. If evaluated
by the true value @, then the numerator of the objective function of the D-LIML

estimator is as follows:
u PO = Wz <ngb>/ ng))‘1 VAGRN

T-1
= S u?PPuf)

t=1
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where P is a diagonal matrix in the case of sequential moment condition, so
the objective function is expressed as the sum of the quadratic form similar to
Alvarez and Arellano (2003). From Theorem 2.3-[iii], the asymptotic variance of
the D-LIML estimator is as follows:

@ 4, U . (3.38)

In structural estimation, the first term o?® " can be smaller if many instrumen-
tal variables are used, but the second term ¢, ¥ becomes larger on the contrary.
Regarding c¢1. = ¢1/(1 — ¢1), as discussed in Section 3.1.1, ¢; is the ratio such that

(b)
6 — lim rank(P,”)
T—o00 n
K
= 5

which depends on the total number of orthogonal conditions and the total data
n = NT. If we consider reducing only the second term, then the number of
orthogonal conditions should be decreased. Therefore, instead of the sequential
moment condition, we consider the orthogonal condition added over the entire
period:
0, ()
£ [;zit u ] =0 (3.39)

When expressed collectively as a matrix,

E[Z(b)/u(f)} - 5[(25”’, ---Z(T”Xl) uif)}
- 0 (3.40)

K><1’

where in the case of arranging data in each i, we have the following:

KxN(T—1) ! N Kx(T-1) i0 i(T-1)

and

% :< o <f>’>'
N(}“lfl)xl e » U

Then, the projection matrix is given as follows:
PO — Z(b)(z(b)/z(b))*lz(b)/’

where the construction of Z® becomes simple such that the vectors zgf) are re-

arranged into n. In addition, each instrumental variable is the same as that of
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Akashi and Kunitomo (2015). The numerator of the objective function is based
on the K orthogonal conditions in (3.40) compared with (3.15), that is,

a ' POLD

Then,!°

= 0.

' However, we need to confirm

Therefore, the second term ¥ may disappear.
that the efficiency of the first term o?® is not reduced by the summed orthogonal
condition in (3.39).

We redefine the D-LIML estimator using the projection matrix above. The data

are rearranged into n = N(T — 1) pieces,

1, ’ 1, ’ ! / ’ ’
y(Lf) :<yg f)a"'ay](\ff)> ) ( X(f) :<X§f)77X§\}/f)> )

N(T-1)x1 Ga+K1)xN(T-1)
where
Lf) 1,f 1L,f Lf) f) f)
yz( ' = <yi(1 )7 T ’yi((T—)l)) ) Xz( ) = <Xz(1 e >X§(T—1)> )
1x(T—1) (Ga+K1)x(T—1)
and

’ 2, ’ 1, ’
= (2 A

For the two (G + K;) x (G + K;) matrices,

17f !
Qb — ( y! (f)) ) PO (y1) X1)
n X / Y

and

(f.0) _ y O (v x )

Let 6, = (B,,, 45.) be the minimization point of

0G0
oH"o

ORigorously speaking, the expectation of the numerator becomes E[u(f)'P(b)u(f)/n] # 02K /n.
This detail is described in Section 3.7.2.

HHsiao (2014) and Hsiao and Zhou (2015) also discussed why the efficiency decreases in
sequential moment conditions.

VR, = (3.41)
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Then, unlike the D-LIML estimator @y, in Theorem 2.3-[iii], the following holds

A

for the new D-LIML estimator @p;.

Theorem 2.9 : Supposing assumptions (A1) and (A2) hold, then, as T — oo,
regardless of N 1is fived or tends to infinity,

W(@DL—el) 4y N(0,0%07) .

As the asymptotic variance-covariance matrix is the same as the first term of (3.38),
this result improves Theorem 2.3 of Akashi and Kunitomo (2015). Moreover, the
revised D-LIML and T-LIML estimators are asymptotically equivalent in long
panel data without depending on N because the result is the same as that of
Theorem 2.7.

The following also holds for the GMM estimator based on (3.39).

Corollary 2.1 : The D-GMM estimator 0, obtained by minimizing the fol-
lowing objective function

Qy = H/Ggf’b)e

18 asymptotically equivalent to 6,,.

We summarize the results regarding the asymptotic efficiency of the LIML esti-
mators. In the works of Alvarez and Arellano (2003) and Akashi and Kunitomo
(2012), the ratio r,/n of the number of instruments to the total data n = NT is
presented as follows:

KT(T-1) . K ’ T

2 NT € O NTBwN
where K is the number of instrumental variables for the structural model in pe-
riod ¢. In the work of Akashi and Kunitomo (2015), the asymptotically optimal
instrumental variables are used, and the number is reduced such that

K(T —-1) K

NT —>61:N.

If N — oo, then ¢; becomes zero. Furthermore, when the sequential moment

condition is improved such as in Theorem 2.9, we obtain the following:

us — =0
NT =5
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As the first term 02® ! of the asymptotic variance is common to the three estima-
tion methods, the third estimation method gives the best result. Meanwhile, if the
normal equations of the T-LIML estimator are regarded as the orthogonal condi-
tions, then the number of the conditions is equal to that of estimated parameters.
The number is finite, and this method does not cause incidental parameter prob-
lems. In Theorem 2.9, the number of orthogonal conditions is also K, so that the
D-LMIL and T-LIML estimators have the same asymptotic property. In addition,
when the ratio r,/n is zero, the many instruments problem does not occur. Hence,
the LIML and GMM estimators can also be asymptotically equivalent. That is, if
K < 00, then the number of orthogonal conditions can be finite even in long panel
data. The comparison between the LIML and GMM estimators under K — oo is
examined in a later section.

3.5.2 Relation between T-LIML and D-LIML Estimators

As the objective functions have a similar form, we confirm that the asymptotic
properties of the T-LIML and D-LIML are equivalent. That is, the variance ra-
tio of D-LIML is an asymptotic approximation of the concentrated log-likelihood
function of the transformed method.

For simplicity, we consider a VAR(1) model with G = G.. The log-likelihood
function £y of (3.37) represented by the long difference becomes

N 1 &
0 Ly = ) log |Q¢,| — 3 ZVZ@ nglvzw .
i=1

By applying the inverse transformation such as Lemma 2.1, the function is returned
to the expression by the first-difference:

N 1 &
Lan = — log| sl - 3 ; AVIQEAVE
where
Q -9 0 --- 0
-0
Q2A = O QA )
GTxGT .
(@)
9 = 5[AYi1AY;1],
GxG
Avi = (Ayy, Avy)' .
GTx1
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This function is a multivariate version of the transformed maximum likelihood
method in Section 3.3. This log-likelihood is devided into the pseudo likelihood
Ls.o and the term Ry, in which the initial value Ay;; is included:

Loan = Loo+ Ry ,
where
N 1
_ "—1
Log = —= log QA — 5 2 AV, QL Ay, (3.42)
20 - .- 0O
Q0 20 .. O
Qa =
G(T-1)xG(T—1) : : - :

o .. —Q 29

Ls.o resembles a conditional likelihood function given the initial value Ay;;. The
first-difference of the initial value is an endogenous variable that correlates with the
first-difference of the error term, so it is not the conditional likelihood function.!?
Thus, we call L9 the pseudo log-likelihood function of the transformed method.

As for the D-LIML estimator, we replace the projection matrix P® of £, with

P — Z(f)(z(f)/z(f))*lz(f)/ ]
We define the objective function expressed only by the forward filter as follows:

pr. 0G0
20 O/H%f’f)a )

where the instrumental variable matrix that applied the forward filter is

KX%V((}CI)LD - (Zgl)a"' 7Z§T)717"' ,Zg\;i,“' ’ng%fl) .

Then, the following holds.

Lemma 2.2 : Suppose assumptions (A1), (A2), and (A3) hold.
[i] Mazimizing the concentrated pseudo log-likelihood function of 6y is identical

to minimizing the variance ratio:

argmax L9 = argmin VRo .
91 91

12 Although it is a random-effects model, the correct conditional likelihood method given the
initial value is examined by Alvarez and Arellano (2003).
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[ii] As T — oo and N s fized

plim argmax £, = plim argmin VR

= plim argmin VR, ,

and these estimators have the same asymptotic distribution.

The estimator obtained by the pseudo log-likelihood Lo is the pseudo T-LIML
estimator @,,. Lemma 2.2-[i] states that this estimator is derived from the min-
imization of the concentrated pseudo log-likelihood function VRso. When N is
fixed, the result of [ii] implies the following:

1 1
—max £y —= const. — log(1 4+ — min VR,) .
n 6 n 6;

That is, the concentrated log-likelihood function of T-LIML is asymptotically equal
to VR, which is the objective function of the D-LIML estimator, and thus, they
have the same asymptotic distribution. Another implication of [ii] is as follows.
When N is fixed, the variance €2¢ of the random-effects or €2, of the initial value
cannot be consistently estimated (cf. Hsiao (2014)). However, the structural
estimator for 6, is unaffected and is consistent such as Theorem 2.7.

Next, we confirm the properties of the pseudo T-LIML estimator éPL, which
is the case when the initial value Ay;; is not used in the transformed maximum

likelihood method and is expressed as follows:
JoDr1y; = Dry;

where Jo = (0, Ir_1).'? Hsiao and Zhou (2015) showed that the T-LIML estimator
without initial values has the noncentrality parameter whose order is O(d%). We
clarify the noncentrality parameter in the following. From Lemma 2.2, the pseudo
T-LIML estimator is the D-LIML estimator based on the incorrect orthogonal
condition:
e [2lf] 20

To state the results first, as discussed in Section 3.1.1, this endogeneity is weakened
as T — oo, so that the pseudo T-LIML estimator is consistent but has the non-
centrality parameter —v/dp* of (3.43). Similar to Hahn and Kuersteiner (2002),
the noncentrality parameter can be consistently estimated by other statistics, and
the corrected estimator becomes

Y o 1.
0p, = 0, + Tp* )
13Hsiao and Zhou (2015) considered JE)LDTHy;‘ without the initial value y,%) expressed by
the long difference, which is slightly different from our formulation.
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where the detail of correction term p* is given in the proof of Theorem 2.10. The
following holds for the general model of (3.8).

Theorem 2.10 : Supposing assumptions (A1) and (A2) hold, then as T — oo,
regardless of N is fixed or tends to infinity,
[i]Under N/T — 0 < d < o0,

W(ém—el) L N(bgo’d"),

where
by = —Vdp* . (3.43)

ii] Under N/T — 0 < d < o0,

v

VNT (éPL . 01> s N(0,0%®7)

The corrected estimation of [ii] must estimate IT* compared with the D-LIML
estimation and has the constraint on d < co. Hence, the corrected estimation is
not recommended.

From the results so far, the following implications are obtained. First, asymp-
totic efficiency does not change without using the initial value, but the noncen-
trality parameter occurs depending on d = lim N/T. For instance, a time series
analysis (N = 1) does not have the noncentrality parameter because d = 0. Thus,
the dynamic panel analysis is more sensitive to the initial values. The reasen is
that the bias of O(1/T) accumulates as N increases. Second, the noncentrality
parameters depending on d are due to the initial value, and those depending on
¢ are caused by many instruments. For instance, the CV estimator in Theorem
1.3 has the noncentrality parameters depending on d because its objective func-
tion is the same as the pseudo-log-likelihood function in (3.42). The noncentrality
parameter based on the instrumental variables also depends on K, and the bias
of O(1/N) may accumulate as 7" increases in the case of the sequential orthogonal
conditions.

3.6 Lower Bounds of Asymptotic Efficiency

In the dynamic panel structure model, we have examined several estimators for
the structural parameter ;. The lower bound for efficinecy under the long panel
data shoul be considered a criterion for deciding which estimation method to use.
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First, we extend the result of Theorem 1.6 of Hahn and Kuersteiner (2002) to
the dynamic structural model. Hahn (2002), a related study, which investigated
the effeciency lower bound using the Hajek-type convolution theorem when many
instruments in a structural model of cross-sectional data has many instruments.
In a panel model, if the individual effect «; is regarded as the fixed-effects, then
these become the incidental parameters under N — oo. Thus, the Cramer-Rao
lower bound for €; may not be evident because the incidental parameters a; (i =
1, -+, N) exist. Similar to Hahn and Kuersteiner (2002), we make the following

assumptions,
(A4) (1/N) XL, pip; = O(1) and vy ~ N(0,9) .

For estimation methods to the structural parameter of the general model (3.8),
the following holds.

Theorem 2.11 : Supposing assumptions (A1), (A2), and (A4) hold, then as
N and T tend to infinity, the asymptotic distribution of any regqular estimator of
0, cannot be more concentrated than N'(0,52® ).

The lower bound is ¢2® ' which appears in the theorems and does not depend on
incidental parameters such as the result of regression analysis. That is, the bound
is the same as when N < oco. Although the theorem does not state whether it is

attainable, our results suggest the following.

Corollary 2.2 : Under assumptions (A1), (A2), and (A4), the T-LIML, D-
LIML, and D-GMM estimators are asymptotically efficient.

The T-LIML, D-LIML and D-GMM estimators here correspond to Theorem 2.7,
Theorem 2.9, and Corollary 2.1, respectively. The asymptotic normality of these
estimators does not depend on normality of the error term vy, but whether the
form of the lower bound is ¢2®~" depends on the normality assumption (A4).
Other estimators attain the lower bound, but the additional constraint on 7'/N
or N/T is then necessary. Therefore, the conclusion so far is that the estimation
methods of Corollary 2.2 have the desirable properties in the structural estimation
in long panel data.

The above results need the assumption that the error term follows a normal
distribution. Second, let us consider another approach to show the lower bound
without the normality assumption. Anderson et al.(2010) investigated an esti-

mator ¢(G, H) based on the sufficient statistics for the structural parameter 6,
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where G and H correspond to the sufficient statistics in the cross-sectional or time
series data under the normality assumption. In the panel analysis, the asymptotic
sufficient statistics of the transformed maximum likelihood estimator can be in-
terpreted as G and HYY by Lemma 2.2. The transformed method does not
depend on the individual effects, but the pseudo T-LIML estimator may have the
noncentrality parameter when N is fixed. Although the noncentrality parameter
is irrelevant to the lower bound, we replace G%f ) with G%b’f ) to obtain simple
results, where G\/) satisfies the orthogonal condition in (3.40). We consider the
class of the estimators as follows:

A 1
0, = o( ﬁngb’f) ) -

For simplicity, set 7v; = 0 or 8; = 3,, that is, the exogenous variable does not
appear in the first structural equation:

i = Bayi ity
Moreover the reduced form is supposed as the VAR(1) model.

(A4") [i] ¢(.) is the consistent estimator of @ for any N and T — oo. [ii] ¢(.)
is a continuously differentiable function that does not depend on n, and the first

order derivative is bounded in the neighborhood of any true value 6. [iii] For any
T, $(G%)) = B,, where

b, b.f) b))\ "L ~ 0,
G(Tof) = Ggof) (Ggof)> Ggof)a

b, 1 b /
Gl = Y ey

~1
b, 1 b) (b
Gy = ﬁzg [th)zgt)} :

Assumptions [i] and [ii] are equivalent to those of Anderson et al.(2010). Assump-
tion [iii] is related to the possibility of the asymptotics under N — oo or T — o0,
and the meaning of this assumption is explained by the following example.

Example 2.7 : Suppose N — oo and T = 2, and consider the TSLS estimator
with the following objective function:

. / b)’ ) 1)1\ b !
min b S[yg)zgt) ] <5[Z§t)zgt) ]) 5[Z§t)yz(tf) b

This solution is immediately obtained by the true value b = 3, because the or-

thogonal condition of E[ZZ(?)UE{ )] = 0 is then satisfied. Although the expectations
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are unknown, they are approximated by a law of large numbers. Similarly, they are
also consistently estimated under N — oo and T' < oo. Therefore, the meaning
of assumption [iii] is to consider a class of consistent estimators even in the short
panel data.

Under the assumptions, the result for the simple case of Anderson et al. (2010)
holds.

Theorem 2.12: Supposing assumptions (A1), (A2), and (A4 ) hold, then as
T — oo, regardless of N is fived or tends to infinity,

VAT (0( 1600 ) 0]~ N0 ).
for any function ¢.

This asymptotic variance is the lower bound in the sense that any ¢ cannot be
smaller than ¢?® !, which is the same as that of Theorem 2.11. As K < oo is
assumed here, the usual bound appears, but importantly, this approach can obtain
the lower bound even under K — oco. Then, Anderson et al. (2010) showed that
the lower bound becomes larger such as (3.38), and the LIML estimator can attain
the bound. Although the D-GMM estimator, which is based only on el ), can
be consistent and attain the bound under K < oo, the next section considers the

setting K — oo in the dynamic panel model.

3.7 Incidental Parameters Problem Revisited

Under standard assumptions, the T-LIML, D-LIML, and D-GMM estimators
have the desirable properties. This section relaxes the standard assumptions and
investigates the two incidental parameter problems. First, Anderson and Hsiao
(1981) raised the problem of the initial value in Section 2.2, which is related to
the robustness of the T-LIML estimator for the initial value. Second, we com-
pare the D-LIML and D-GMM estimators under the large-K theory and show the
superiority of the D-LIML estimator.

3.7.1 Robustness of T-LIML for the Initial Condition

The finite sample properties of the T-LIML estimator are better than those of
other methods using the filters as shown in the next section. One of the reasons
is that the number of total data decreases from NT to N(T — 1) when filtered.
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However, in order for the transformed maximum likelihood estimator to use all
data, assuming the random-effects on the initial values is important. Hence, we
consider the asymptotic properties of the T-LIML estimator when the initial values
are incidental parameters.

Regarding the setting of the initial value, we consider the case when the maxi-
mum likelihood method falls into the incidental parameters problem as discussed
by Anderson and Hsiao (1981). That is, the initial state w;y, which is not ob-
servable unlike 1,9, is heterogeneous even if individual effects are removed. The

structural model is the one considered in Section 3.3.1, expressed by the long

difference,
1,0 2,0 1,0 1 1
yi(t )= 52722%‘(1&71) + ’ylyz‘(tfl) + fz( Tt Uz'(t) )
2,0 2,0 2 2
v = may] + 67 40

The estimation method is based on (3.27). That is, even if the initial values are
incidental parameters, we regarded it as a random-effects model. Therefore, we ex-

amine the property of the maximum likelihood method under the misspecification
as in the work of White (1982).

2,0 2,0 2 2
yz(t )= T2 + 7T22yi(t71) + gz( : + Uz(t) )
unlike Hsiao and Zhou (2015), the estimator is made without including the con-
stant term oy for absorbing the initial value. Instead of assumption (A2) for the
initial value, we consider the initial state w;y (i = 1, ---, N) as incidental pa-
rameters; that is, &; is also set as an incidental parameter.

(A2") [i] Let Q¢ > O be the parameter space. Suppose that ||&;|| (i =1, --- , N)
are bounded and that
L
by = N;&ﬁz LY

where the (1,1) and (2,2) elements of ¢ are not zero.
[ii] Hy, of (A3) exists when evaluated at €2 .

Although we 11 > 0 and we 22 > 0 by definition, we assume we 11 7 0 and We 20 # 0
to avoid a corner solution.'* |€k| > 0 generally holds, but if the model has a
constant term &, = £ for all i, then Q¢ = 0. The case of starting from the
common initial state is included:

W0 = Wg —> Qg = (]:2 — H/)W()Wé) (]:2 — H) .

141f short panel data (T < oo), Qn would be an interior point.
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When the initial states wyy (i = 1, -+, N) are the incidental parameters, the
following holds.

Theorem 2.13 : Supposing assumptions (A1) and (A2°) hold, then as both N
and T tend to infinity,

élTL i) 01 5 QéTL & Qé’ .
If |€%] > 0, then

VNT <9TL . 01> s N(0,0%®7Y)

Even if the initial values are incidental parameters, the result is the same as that
of Theorem 2.7. Therefore, the T-LIML estimator can be said to be robust to
the incidental parameters of the initial value. However, when € is a semidefinite
matrix, a more detailed examination would be required.

This result may have issues. First, the maximum likelihood method can be a
consistent estimator without a noncentrality parameter. In the work of Anderson
and Hsiao (1981), estimating many initial states causes the incidental parameters
problem, which is the motivation to develop the instrumental variable method.
However, the maximum likelihood method works well under the misspecification,
thereby providing a solution to the problem. Second, the asymptotic variance
of Theorem 2.7 does not depend on Qg. That is, whether the initial value is
random or an incidental parameter does not affect the asymptotic efficiency in long
panel data. Third, including a constant term is not necessary. The transformed
maximum likelihood method can include a constant term to absorb the effect of
the initial value. When the constant term 7y is added, then we have the following;:

. . 1
To0TL 2y lim NZQ(Q) .

That is, the constant term estimates the average value of the individual effect that
depends on the initial state. Meanwhile, the T-LIML estimator can absorb the
influence by the average of the second moment €2 without the constant term.
The transformed maximum likelihood method is an approach that combines
the fixed-effects and random-effects estimations and has the form of the random-
effects MLE under the assumption that the initial value is random. Notably, our
result can be interpreted as the robustness of the random effects-MLE itself to
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the incidental parameters. Hence, we reconsider why we need to care about the
random-effects or the fixed-effects. Binder et al. (2005) discussed the settings of
several random-effects. A nonrandom-effects is not to follow the same distribution
independently, and the following examples clarify the several cases.

Example 2.8 : When the original individual effect n; does not follow the identical
distribution, the following two cases can be considered.

[i] The expectation varies between individuals with zero variance,

Emil =mi -

That is, N constant terms or incidental parameters exist.

[ii] The individual effect have a distribution but the variance is not homogeneous,
Var[n?] =w; >0,

then, the effects depend on the parameters of N distributions. However, a counter
example is such that

DDT]Z NN(MZ7WZ)7 uZNN(uku)a wZNX%a

and p; and w; are independent. If (u;, w;) is conditioned, then the distribution is
not identical, but the unconditional expectation and variance are given as follows:

00 &m)l=p, Varln]=w,+1.

That is, a random-effects model follows the identical distribution with only two
parameters (1, w,). When parameter ; or w; is constant, it is not a random-effects
model.

The followings are related to the assumption of independence.

[iii] The individual effect correlates with other variables. When correlated with
z;; on the right-hand side,

0 S[UZzzt] 7é 0 s

or with the error term,
Dg[nivit]:pita (tzlaaT)v

then the model can include NT parameters.
[iv] The effects are not independent between individuals,

Dg[ninj]:wija (’L,j:l,,N),
then, the order of parameters can be O(N?).
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[v] Although the distribution is identical, the moments E[n;] or £[n?] does not
exist.

Even in the above cases, no problem with the T-LIML and D-LIML estimators
exists because they eliminate individual effects n;. The case of [i] is related to the
setting of Anderson and Hsiao (1981) or the incidental parameters problem of the
initial states &, if n; is regreded as ;. In relation to [ii], Hayakawa and Pesaran
(2015) suggested that the transformed maximum likelihood method is robust when
the error term of the reduced form is not identical, Var[vi(f )] = wy;. Even when
i] and [ii] are combined, the T-LIML method without adding a constant term
consistently estimates the second moment (1/N) >, (n? + w;) and is not affected
by the incidental parameters. We may call Qg the averaged parameter for the
incidental parameters. If the random-effects MLE consistently estimates a finite
number of averaged parameters, then it can be a consistent estimator without
the homogeneous assumption of the individual effect. The fixed-effects estimation
eliminates the individual effect by subtraction, but the random-effects estimation
can be interpreted as adding up the individual effects to eliminate the individual
effect.

Thus, in linear panel data models, the problem with the random-effects esti-
mation may not be significant for the heterogeneity of individual effects, but the
correlations between individual effects and other variables may be crucial such as
the case of [iii]. In empirical analyses, Hausmann test often suggests a correlation
between the individual effect n; and the explanatory variable z;. In the dynamic
model, of course, a correlation exists because z; = y;;_1, but the random-effects
MLE is consistent. The reason is that the AR structure completely describes the
data generation process in the likelihood function. Therefore, the correlation is
also not the problem, but whether the correlation between all variables z;; and the
individual effect 7; can be specified and added to the likelihood function is im-
portant. For instance, Hsiao and Zhou (2015) suggested that the random-effects
MLE is biased when the individual effect correlates with the exogenous variable z;;,
which does not follow an AR model. The formulation of the random-effects model
requires additional attention to the endogeneity biases based on the individual
effects.

3.7.2 Robustness of D-LIML for Large-K Asymptotics

This section closely compares the D-LIML estimator of Theorem 2.9 with the
D-GMM estimator of Corollary 2.1. From the numerical experiments in the next
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section, their finite sample properties can be quite different. For instance, when
N = 100 and T = 25, if the number of instrumental variables is K, = 2, then
the finite sample properties are similar. However, if K,, = 10, then the empirical
distribution of the D-GMM estimator seems to have a noncentrality parameter.
The results of Theorem 2.9 cannot explain this phenomenon because the LIML
and GMM estimators have the same asymptotic distribution under the standard
assumptions.

As shown in example 2.3, many instrumental variables are available in some
cases. The advantages of panel analysis is that the total data n = NT is large,
so that the number of explanatory variables K, can be increased. However, K,,/n
is usually considered as almost zero, that is, K,/n = 10/2500 ~ 0 in the above
example. Therefore, for long panel data,

K,
NT
may be natural even in K,, — co. However, the following is possible,

(F£n)?
NT
Then, the asymptotic properties differ between the LIML and GMM estimators.

In the previous example, K?2/n = 100/2500 may be better not regarded as zero.

O

— C2:O,

0

In the following, we explain the difference in finite sample properties by using the
large-K theory. In the long panel data, a sufficient condition for dy # 0 is as
follows:

K, T
DT — C3>O, N — ¢>0.

Then, dy = c3¢c > 0 is obtained, and the assumption of c3 > 0 is relatively weak
than the standard assumption c3 = 0. That is, if the ratio K, /T in the long
panel is not regarded as 0, then the situation of ¢co = 0 and dy > 0 most likely
occurs. This asymptotics is more accurate, so the differences in the finite sample
properties can be explained.

Considering the simple structural model in Section 3.1,

v = Boyy) F oy o (3.45)
K2n+2
y = Ty + Z Toea¥ly ) + 70+
k=3
- _ T2k
2]{},71 KQn 9

where the many weak instrumental variables are added. Then, the reduced form
of the first structural equation becomes
K2n+2

) = myldy + may) + Z Wlk,nyz(le +a) o)
k=3
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yftl_l (K; = 1) appears in the first structural equation, and the number of in-
strumental variables that do not appear becomes Ky = 1 4+ Ky,. ygle (k =
3, -+, K, = Ky, +2) are Ky, instrumental variables that can increase, and we
assume AR(1) models as follows:

y = gyl 47 ol k=3, -+, K,) (3.46)
and
K,=2+K,, — 0.
Thus, incidental prameters as the coefficients 7, and mo, (kK = 3, -+, K,,)
exist.

We consider the setting under the large-K asymptotics in the dynamic structural
panel model, which is different from the previous sections or the previous studies
in cross-sectional analysis. First, the reduced form becomes the high dimensional
VAR(1) model (cf. Davis et al. (2016)). Then, the number of potential endogenous
variables is also large, so the stationarity condition should be confirmed. To be a

covariance stationary process under Ks, — 0o, the following is required,
Var [yz(f)] =0(1).
If yl(le (k=3, ---, K,) are mutually independent and

Topn = O (K;j) , (3.47)

then the variance becomes bounded, which can be interpreted that the contribution
of each coefficient is small when the number of explanatory variables is large.

Second, the dimension of the projection matrix is large, and we have to evaluate
the effects of the filters in the panel data analysis. For instance, we need to evaluate
the following quantity,

L @pbs Looroo Y (Loorom\  (Lyer-
v PY%ar, = -v¥9Z YA/ -7 ur. | .
n n n n

I1xKn KpnxKnpn Knx1

As K,, — oo, evaluating each of the three terms by a law of large numbers such
as the estimator in Theorem 2.9, is not possible, which is a difficulty of the large-
K asymptotics. Moreover, if the error terms have heterogeneous variances such
as Chao et al. (2012) and Kunitomo and Akashi (2010), or a serial correlation

15The case of the cross-sectional analysis is usually expressed on the order of may ,, = O(N *%).

As K,, = O(N), it has the same meaning,.
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such as Alvarez and Arellano (2003) and Akashi and Kunitomo (2015), then the
calculation becomes complicated. By the influence due to the filter,

I B N |
gst_( ft > ) uzt,T—T_t+1(uzt+ +U/ZT)7

are heterogeneous and have a series correlation. To reduce the calculation, we
consider the technical conditions for (3.44),

ON=0(T2), K =O0(T%),

and then, K3,/n = O(1) holds again.

Third, the model has weakly exogenous variables under the large-K asymptotics.
The weakly exogenous variables (yi(jll, yz(le) are included in the n x K, instru-
mental variable matrix Z®, and many terms correlate with u = (u;). Then, for

the conditional expectations given Z®,

5[u/P<b>u|Z<b>} £ o*te(P®)
= o’K,, .
In cross-sectional analysis, P(®) can be treated as constant so that the first equality
holds, but more careful evaluation is required in the dynamic model. However, if
K < oo or the sequential moment conditions, then it does not matter.

The objective functions of the D-LIML and D-GMM estimators are the same as
Theorem 2.9 and Corollary 2.1, respectively. That is,

yr, 0G0
©ouVe’

and

Q, =6'G{Yg .
Instead of (2.12), we use the following:
O bt = ft )

this is not essential but simplifies the evaluation of the filters.

Instead of assumption (A1), we make the following assumption.

(A1) [i{vi}(i=1,---,N;t=1,---,T) areiid. across time and individu-
als, normally distributed random variables, and independent of z}, with £[v}] =0
and E[vivy] = QF, where

Q o
O Q* — 2%x2 .
K*xK* O ngK%
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All absolute values of w1, 799, and 73, = 733 are less than 1, and

Uy’
Tl: 5 k;:37 "‘,Kn .
T )

ii] N = O(T?2), Ky, = O(T%), and K2, /n — dy as N, T, and Kj, tend to
infinity.

From the assumption of ", the K, variables are strongly exogenous instrumental
variables and are mutually independent, so that the order of (3.47) is supposed.
As for the required stationary condition, s is not included in the condition unlike
the assumption in (A1). However, 7y affects the asymptotic variance through IT;,,

as follows:
& = II,T,II,
= II,T.I0, + IO, T, 00, + 0, T, 10y, + o210, 11,
where the notations are given in the proof. The simplification of the coefficients
is as follows:
O o = mo, T3, = T33, Var[vff)] =ws, (=3, -, K,),

these may not be essential. The following is the result under the triple asymptotics
that N, T, and K5, go to infinity.

Theorem 2.14 : Supposing assumptions (A1°) and (A2) hold, then Ky, /n —
co =0, K3 /n— dy, and
i A
V NT <0DG - 01) i> N (bg.o, O'QQ*_l) y

bao = \/dapy -

where
VNT (ém—ol) s N(0,0%®" ) .

Unlike Theorem 2.9 and Corollary 2.1, the asymptotic distributions of the D-
LIML and D-GMM estimators are not the same. The D-GMM estimator has the
noncentrality parameter, whhereas the D-LIML estimator is still centered. ®* of
the asymptotic variance corresponds to the first term so far, and the second term
¥ does not appear because c; = 0. The D-LIML estimation is robust because
the same result as the usual asymptotics can be obtained even if the explanatory
variables increase. Theorem 2.14 can explain the difference between the D-LIML
and D-GMM estimators in the finite sample properties as shown in the next section.
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3.8 Simulation

This section compares the finite sample properties of various estimation meth-
ods. Following Akashi and Kunitomo (2012, 2015), we use the cumulative empir-
ical distribution, which is the most informative. Although the normalization of
B = (1, —B,) is commonly used in econometric analyses, the exact moments of
the LIML estimator may not exist. Thus, the comparison by the mean square
error is meaningless and should be based on such as the median of the empirical
distribution.!®

First, the calculation method for each LIML estimator is shown. Although
the LIML estimator can be obtained numerically by maximizing the objective
function such as —VR,, the following simple procedures are usually taken. We
represent/ the LIML estimators frgm Theorem 2.3 to Theorem 2.10 as a generic
6, = (8,,%;), and then, (1, —6,)" becomes an eigenvector from the first-order
condition of minimization,

Vi

(G — \H] [ 1@) ] —o0, (3.48)

A, is the smallest root of the following eigenvalue equation,*”

IG—H|=0,

where G = GU), GUb), Gflf’b), and GY) for Theorems 2.2, 2.3, 2.9 (2.14), and
2.10, respectively. H is defined in the same way, for example H = HY? for
Theorem 2.9. The minimum eigenvalue A, is also related to the minimum value,

and if the generic variance ratio is expressed as VR,,, then

A, = min VR, .
01

Once the minimum eigenvalue )\, is obtained, by solving (3.48) for 6:, the LIML
estimator is calculated as follows:
A~ ’ / -1 ’ /
0, = (3,GIo — AJuHIy ) (J5,Ge — A Hey )
(G2+K1)x1
where Jy; = (0, Ig,ix,) is the (G2 + K;) x (G + K;) selection matrix, and

e, = (1,0, ---, 0) is the (G + K;) vector. The corresponding GMM estimator
can be obtained by putting A, = 0.

6 However, Anderson (2010) observed a moment under the natural normalization of ,BIQ,B =
o2 =1.

"In the case of Ox, the generalized eigenvectors and eigenvalues are obtained by eigensym-
gen(mG, mH, &vlambda, &vtheta). As for a usual command, the smallest root is obtained by
[H~'/2?GH~'/2 — 1| = 0. Ox is provided by Jurgen A. Doornik.
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The T-LIML estimator is obtained by maximizing the log-likelihood function
for all parameters. For example, in the case of (3.36), the T-LIML estimator is
maximized with respect to ma, €2, and €2¢ in addition to the parameter 8; of
interest. Hsiao et al. (2002) and Han and Phillips (2013) noted that in a nearly
nonstationary process, the behavior can considerably change.®

The following settings compare the estimators based on the cumulative standard

normal distribution, which requires the same standardization for all estimators.

We represent each estimator as 9[1]] (j =1, -+, J), for example, 9[11] = 0., or
9[12] = 0,. Then, the estimator of the k-th parameter Hllek (k=1, -+, Ga+Ky)
becomes 9lek (k=1, -+, Gy + K;). The number of endogenous variables on

the right side is Gy = 1; for example, we have that 0/161 = [y or 9/182 = 5.
The asymptotic variance of many estimators becomes ¢?® " in this work. Using
the D-LIML estimator 8 = (1,—8,,) of Theorem 2.9, we define the consistent

variance estimator for the standardization as follows,
y Lomaong) (L qung. )
n n
LA

The empirical distribution of the standardized statistic ¢;;, for the k-th parameter
of a certain j-th estimation method is summarized in each figure,

L= VD (é[lﬂ — o) ex. (3.49)
e, Ve

where n = N(T'—2) because the D-LIML estimator uses the forward and backward

filters. If the asymptotic variance of the j-th estimator is actually o2®~ ', then

tik KN N (0, 1); that is, it becomes a t-test statistic.

Regarding Theorem 2.2, Akashi and Kunitomo (2012) already compared the
finite sample properties in detail, so that they are omitted. Akashi and Kunitomo
(2015) compared Theorem 2.2 with Theorem 2.3 and found that the D-LIML
estimator of Theorem 2.3 significantly improved the finite sample properties. In
the following, the finite sample properties of the efficient estimators such as the
D-LIML and T-LIML estimators are investigated. We confirm that the proposed

estimators in this work, which are not based on the sequential moment conditions,
further improve those of Akashi and Kunitomo (2012, 2015).

Design 2.1 : This setting uses the simplest model in the works of Blundell and

18The maximization is based on Ox’s BFGS algorithm by imposing the stationarity constraint
of y1 = 27/(1++?) (cf. Bhargava and Sargan (1983)).
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Bond (2000) and Akashi and Kunitomo (2012). The number of repetitions is
R = 3000 times.

v = Byl e+ e

Uy = i+ e+ i
where the coefficients are as follows, (2, 71, 72) = (0.5, 0.3, 0.3). The error term
follows the normal distribution with zero mean and (wq1, wes, wiz) = (1, 1, 0.3).
The individual effect «; also follows A(0,1), where p = 1. The stationary and
identification conditions are |y1| < 1, |72] < 1, and 7o # 0. We start with
(y§t1), yz(f )Y = (0, 0) and discard T_ = 10 times before the initial value to ap-
proximate the stationarity.

In the following, R = 3000 and 7_ = 10 are the same, the error term and
individual effect are based on the same normal distribution, and the stationary
condition (A1) is satisfied. However, in Design 2.2, the initial value is accurate.

Figures 1-3 show the empirical distributions of the D-LIML (D-LIML’15 in the
figure), D-GMM (D-GMM’15), D-LIML (D-LIML), and T-LIML (T-LIML) esti-
mators, which correspond to Theorems 2.3-[ii], 2.3-[iii], 2.9, and 2.7, respectively.
Notably, in a just identified case such as this design, the D-GMM estimator of
Corollary 2.1 is numerically equal to the D-LIML estimator of Theorem 2.9.

1.0
i — D-GMM'15 —— D-LIML'15
D-LIML  ——-T-LIML

09- 1 - N0,

0.8
0.7;
0.6
05
0.4;
0.3;
02

0.1+

Fig. 1: Design 2.1 (52, N =100, T' = 25)

First, Figure 1 shows that the D-LIML estimator is more efficient than the
D-LIML’15 estimator because the empirical distribution is shrunk. This result is
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Fig. 2: Design 2.1 (v1, N =100, T = 25)
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Fig. 3: Design 2.1 (82, N =100, T = 50)
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consistent with the fact that the second term W of the variance appears in Theorem
2.3, whereas the D-LIML estimator of Theorem 2.9 is the efficient estimator. The
noncentrality parameter of D-GMM’15 estimator is confirmed similar to the result
of Akashi and Kunitomo (2015). Hsiao and Chou (2015) also showed that the
T-LIML estimator is better than the D-LIML’15 estimator.

Second, although the D-LIML and T-LIML estimators are asymptotically equiv-
alent, the T-LIML seems to be more efficient because the empirical distribution
of the latter shrinks. The reason may be that there is no loss occurs because of
the forward and backward filters. Figure 2 shows the case of ;, but the difference
is not as large as that in Figure 1, so the results for the case of §y are mainly
shown in the following. Figure 3 shows the case of T' = 50, and the convergence
in distribution can be confirmed. As V is used for the standardization, the em-
pirical distribution of D-LIML is the closest to the standard normal distribution.
Therefore, if viewed as the t-test statistic, then the case of D-LIML has less size
distortion.

Design 2.2 : We confirm that the T-LIML estimator can estimate the AR(2)
model and the case when the initial values are incidental parameters. The panel

VAR(2) model in Section 3.4.2 can be expressed in state-space representations:
(1) (1) 1)

Y ' = Wy 1y "
2 2 2
yi(t) = wz(t) + Nz( ) ) (3.50)
and
wftl) = Bsz(f) + Wllwlgtlzl + ’}/1211}1(15122 + Ust
w? = )+,

where (B2, v11, Y12, 72) = (0.5, 0.3, 0.3, 0.3), and the values of € are the same
as those in Design 2.1. The individual effect is p; = (I, — IT )~ 'ar; as shown in
(3.12), where m; ~ N(0,I3). The initial value vector (wz(ol), wg(lzl), wg)) follows
N(0,1T,).

When the AR(2) model is included, the likelihood function £, is calculated using
the long difference and first-difference for the initial value as shown in (3.36). Fig-
ure 4 suggests that the T-LIML estimator is more efficient similar to the previous
design.

Next, we consider the case when the initial states are incidental parameters
using the VAR(1) model. Expressed in state-space representation to set the initial

value, the observation equation of (yl(t1 ), yz(f )) is the same as that in (3.50):

’wgtl) = Bzw§f) + ”ynwgll + Ui

wz(tz) = 72wi(t221 + Vit
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Fig. 4: Design 2.2 (55, N =100, T' = 25)
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Fig. 5: Design 2.2 (82, N =100, T = 25)
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where (B2, 711, 72) and p,; are the same as those in the VAR (2) model above.
However, the initial state (w!] ), wt? )) is generated by
wz‘%) ~ N(-1,3),

wl ~ N(3,2).

Notably, the same realization is used as the initial value for all repetitions R =
3000, and thus, it can be regarded as the incidental parameters. Even if we try
other fixed-effects such as wZ%) = —1+1log(i)/N, a similar result is obtained.
From Figure 5, even if the initial values are incidental parameters, the D-LIML
estimator is consistent. Moreover, as the empirical distribution of T-LIML is
centered at the origin, the noncentrality parameter does not appear although the
initial state is not random-effects. The finite sample properties of the T-LIML

estimator are also better than those of the D-LIML estimator.

Design 2.3 : We consider the more general model and the large-K model.

yz(tl) = ﬁQyz‘(tQ) + ’7113/@-(;11 + Y12%i + Oy + Uge
2 2 2 2 2
yz'(t) = '7213/1‘(1521 + ’7221%(1,22 + 7Tz'( ) + Uz'(t) )
Ty = Y31Tq—1 1+ V32Tir—2 + 7T§3) + UZ-(E) )

where the structural parameters are as follows (a2, 711, Y12, Y21, 722) = (0.5, 0.3, 0.3,
0.3, 0.1) and (731, 732) = (0.3, 0.1) for z;z. The values of € are the same as those
in Design 2.1, but ’UZ(S ) with unit variance is independent of v;;, so x;; is exogenous
in period ¢t. As for the individual effect, m; ~ N(0,I3).

Although the finite sample properties of the T-LIML estimator are the best in
the previous designs, the calculation becomes quite complicated in the case of the
general model, so the results without the T-LIML estimator are given. Moreover,
the procedure for calculating the D-LIML estimator is easy even with the general
model. For instance, with the package software such as EViews, the D-LIML
estimator can be obtained by the procedure of the original LIML estimator for
cross-sectional data. We generate the filtered data using Dy in Section 2.4 and D,
in Section 2.5. Then, we consider the data as the cross-sectional data consisting
of n = N(T — 1) samples, that is,

(y10, XU, Z0) .
nx(G+K1+K)
The D-LIML estimator is obtained by specifying (G + K) variables in the first
structural equation and K variables as the instrumental variables.
From the reduced form of (ygtl), yl(f )), the use of (yi(;;bl) , yi(f;bl), ylgf;bz),ng) ) as
instrumental variables is sufficient, where K = 4 and Ky = 2. Figure 6 shows
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that the D-LIML estimator is a further improvement over D-LIML’15 compared
with Design 2.1. Moreover, the empirical distributions of D-LIML and D-GMM
are almost the same. The result corresponds to Theorem 2.9 and Corollary 2.1
because co = K/n = 4/2500 can be regarded as almost zero.

1.0

| [—— D-LIML'15 -~ D-GMM
ool [=—D-LIML ° N@©21)

0.8;
0.7;
0.6
05
0.4;
0.3;
0z

0.1+

Fig. 6: Design 2.3 (82, N =100, T = 25)

Next, we consider the design of the large-K asymptotics. The setting is the same
as that in (3.45) to (3.46) in Section 3.7.2:

(1)

M= ﬁQyz‘(tQ) + YY1 T Qi+ U,

Yit
12
yz(tQ) = 7T22yz(1‘,221 + Z WQk,nyz(le + 771(2) + Uz‘(f) ;
k=3
where (£, 71, m2) = (0.5, 0.5, 0.3). Regarding £ = 3, ---, 12, the common

values are used such that mo,, = 0.1, w3, = 0.5, and w3 = 1. The individual effect
is the same as in Design 2.1, but the setting of the error term is (wyq, wag, wiz) =
(1, 1, —=0.3). In other words, K =2+ 10 = 12 and ¢, = 12/2500. Although ¢, is
also almost zero, dy = 144/2500 may be better regarded as nonzero. As indicated
by Theorem 2.14, Figure. 7 shows that the D-LIML estimator is still centered at
the origin, whereas the D-GMM estimator has the noncentrality parameter by,
depending on ds.

We summarize the results of the estimation theory in Part II. We introduced
that the GMM estimator of Arellano and Bond (1991) may not perform well
in Part I, but in the structural estimation, this estimator becomes inconsistent
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Fig. 7: Design 2.3 (52, N =100, T' = 25)

in long panel data, which is more remarkable. The T-LIML, D-LIML, and D-
GMM estimators are shown efficient so that the estimators based on the sequential
moment conditions mean inefficient. The finite sample property of the T-LIML
estimator is the best, and the D-LIML estimator is more robust than the D-
GMM estimator. Hence, we would like to recommend the T-LIML and D-LIML
estimators of Theorems 2.7 and 2.9. However, as the T-LIML estimator is the exact
maximum likelihood method, the calculation is complicated for a general model.
Therefore, the D-LIML estimator, which approximates the T-LIML estimator and
is easy to implement, is practical. In Part III, we examine the hypothesis testing

for the panel structural estimation using the proposed D-LIML estimator.

4 Part III: Tests of Structural Analysis

This part discusses the hypothesis testing and the specification of the dynamic
structural panel model from the viewpoint of empirical analyses. Unlike regression
analyses, structural models require some additional procedures. In particular, we
consider testing exogeneity, model selections by information criterion, and rank
tests for identification. We mainly use the variance ratio as the statistics, which
is the objective function of the practical D-LIML estimator. The test of the sig-

nificance for each coefficient is also important in empirical analyses, for instance,

H()I 5220
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The t-test statistic has already been given by (3.49), which is based on the D-LIML
estimator of Theorem 2.9.

For the hypothesis test of structural parameters, the variance ratio of the LIML
estimator has been called the AR test statistic since Anderson and Rubin (1949).
In the following, the test statistic is composed entirely of the variance ratio of the
D-LIML estimator. The advantage of the LIML method is that it can discuss the
estimation and testing in a unified manner, and we may refer to as the panel AR
test statistic in a broad sense.

4.1 Overidentification Tests

To estimate the structural parameters, the instrumental variables in period ¢
must satisfy the orthogonal condition,

HO . & [zituit] =0. (41)

If the specification is correct, then u; = v;,3, so that the condition is satisfied.
When the D-LIML estimatior is used, the orthogonality after removing the indi-
vidual effect implies the following:

Ho: & [zg’)u;{)] =0,

where z;; consists of the lagged endogenous variables before period ¢ — 1, such as
yt@l and yﬁ)Q or the exogenous variables in period ¢. For instance, Arellano and
Bond (1991) considered the case when the error term follows a moving average
process, then, the orthogonal condition is not satisfied.

On the basis of D-LIML estimator, we check whether the candidates of instru-

mental variables are the predetermined variables, satisfing (4.1). Let
A= r%in VR , (4.2)
1

be the panel AR test statistic, which is the same as the minimum eigenvalue in
Section 3.5.1 by (4.2). Put n = N(T — 2), and the following holds under the null
hypothesis.

Theorem 3.1 : Suppose assumptions (A1), (A2), and Ky > Go hold, then as
T — oo, regardless of N is fized or tends to infinity,

d
nx — X2K2—G2 ,
under null hypothesis (4.1) .
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If the conditions are not satisfied, then the estimation becomes inconsistent. There-
fore, this test is crucial for the structural models. The AR statistic follows a chi-
square distribution because the D-LIML estimation does not have a noncentricity
parameter even in long panel data. Similar to the overidentification tests in cross-
sectional analyses, the degree of freedom is equal to that of the overidentification
in period ¢, that is, K —(Gy+ K;) = K;—Gs. Hence, this AR test can be called the
overidentification test of all instruments. In the empirical analysis, not rejecting
the null hypothesis at 5% or 1% significance levels is desirable.

4.1.1 Testing Exogeneity

In the structural panel model, we suspect yz(f ) as the endogeous variables on

the right-hand side, or not all variables may be endogenous. Thus, whether it is
endogenous or not is interesting, which is known as the Wu-Hausman specification
test and is a special case of the overidentification test (cf. Wooldridge (2002)).

Example 3.1 : Let yl(tl ) and yl(t2 Y be growth rates of GDP and government
expenditure, respectively,

1 1 (22 21 e
yi(t) = + 52)’51& ) + (’721%(1‘, ) + '7121('1‘,)) + Uit - (4.3)

If an original budget is implemented as it is, then yl(f Y should be an €X0genous

variable in period t. Meanwhile, if a supplementary budget is passed in period
t, then yl(f Y is determined simultaneously with the GDP growth rate; that is, it
becomes an endogenous variable. We are interested in whether it is statistically
endogenous.

Similar to (4.3) in this example, we check whether some yZ(t2 Y of yZ(t2

)

is endoge-
nous variable,

(22)
(2) Yit }G22
it 2 (21)
y G o
(1) Yit G
Zit M 7Y K
2 it
Zz(t ) }KQ Z(2) }K2
it

where Gy = Gag + Ga1. Assuming that all instruments z;; satisfy the orthogonality

condition and that yz(f Yis an exogenous variable, we consider the null hypothesis:

Hy: € [yg%it] ~0. (4.4)
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Then, the G9; variables appear on the Goy reduced forms, that is, yl(f Y is included

in the projection matrix of instrumental variables. Moreover, yl(f 2 appears in the
first structural equation, and it is treated in the same way as the K variables; that
is, the number of parameters 6; to be estimated is still Go + K7 = Gag + G971 + K7,
whereas the number of instrumental variables usually increases from K to Go + K.
The case of the K5 variables decrease is illustrated in the section of numerical
experiments.

7 = (Y@ Z®) is the n x (Ga; + K) instrumental variable matrix when
ygfl) is added, and

A= r%iln VRs (4.5)
is the AR test statistic generated using Zgb).

Hayashi (2000) discussed the relation between the overidentification test and
the Wu-Hausman test statistic expressed in the form of the difference, nA; — nA.
When considering the form of the difference, we suppose that the denominator 52
of X in (4.2) is replaced with % of \; in (4.5) for convenience.

Under the null hypotheses, the following holds as an exogeneity test.

Theorem 3.2 : Supposing assumptions (A1), (A2), and Ky > Gy hold, then
as T — oo, regardless of N s fized or tends to infinity,

n)\l i> X2K27G22 Y (46)
and
A —nx - X, (4.7)

under null hypotheses (4.1) and (4.4) .

Assuming that the exogeneity of z; is guaranteed by the overidentification test in
the first step, then, the exogeneity tests in (4.6) or (4.7) should be performed as
the second step. If the chi-square statistic becomes large because of the additional

yl(f 1), then null hypothesis (4.4) would be rejected, or yl(f Y s regarded as the
endogenous variable.

4.1.2 Many Instruments for Just Identified Case

In the just identification case, the structural model cannot be generally tested,
because the degree of overidentification becomes Ky — Gy = 0. Hence, the chi-
square distribution degenerates on the origin. However, if we start with a simple

structural model in empirical analyses, then Ky — G5 =1 — 1 can occur.
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In another context, Hayakawa (2014) considered the overidentification test using
the diagonalized projection matrix. Then, we notice that the degree of overiden-
tification increases. Moreover, Lee and Okui (2012) and Anatolyev (2013) inves-
tigated the overidentification tests under many instruments. In their argument,
the chi-square test statistic based on the GMM estimator diverges. However, the
panel AR test statistic based on the D-LIML estimator in Theorem 2.3 is robust
even in many instruments;

)= rréin VR, .

This estimator is also made by the sequential moment conditions as described in
Section 3.5.1, that is, the projection matrix is diagonalized. In the case of overi-
dentification, the test of Theorem 3.1 based on the efficient D-LIML estimation
is desirable. However, in the case of just identification, the D-LIML estimator of
Theorem 2.3 can be applied. The statistic under many instruments becomes the
sum of many chi-square distributions, so that it converges to a normal distribution.
In the dynamic panel, the case when ¢; = K/N converges to zero is also impor-
tant. However, if regarded as ¢; = 0, then the expression of \/ﬁj\ degenerates.
Therefore, we use another expression of normalization in the following theorem.

Under null hypothesis (4.1), t-tests can be constructed by the panel AR test
statistic even in the case of Ky = Gj.

Theorem 3.3 : Supposing assumptions (A1), (A2), and Ky > Gy hold, then
as T — oo,

[i] N is fixzed or ¢y > 0. If v}, follows a normal distribution, then

tc:M i> /\/’(0’1)’

Vv 201*

where ¢y = K/N and c1. = ¢1/(1 — ¢y).
[ii] N tends to infinity or ¢y = 0. If N/T — 0 < d < oo, then

fo— TLS\ — dT i>
" V2dr
where dp = KT — (G2 + K).

N(0,1),

Similar to the chi-square test, the one-sided test should be conducted in the right
tail area. As shown in the numerical experiments, t. and t; are numerically almost
the same value, so ty is recommended. For the result of [ii], —(G5 + K7) is not
necessary for the asymptotics in KT — oco. However, as shown in the numerical
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experiments, this finite sample correction, which is based on the degree of freedom
in the case of K'T' < oo, has a considerable effect.

4.2 Simulation

We check the finite sample properties from Theorems 3.1 to 3.3 with the follow-
ing settings.

Design 3.1 : In the case of Theorem 3.1,

M _ (1)

ﬁzlyff) =+ 5223/1(3) T Yl T QG Ui

yzt
yz(tQ) = 7T2lyz(t)1+7223/z(t)2+7(2)+’Ui(t2) ;
yz(f) = 7T311%(t)1 + 7T32yz(t)2 + 77(3) + Ui(f) )

where the numerical setting is the same as that in Design 2.3. However, z;; = yl(f )

is considered an endogenous variable in period ¢, and then, G5 = 2. Examine the
weak exogeniety of the K = 5 instrumental variables (yz(t1 bl), yl(t2 bl), yl(t2 bQ), yz(f’ bl), yl(t 2) ).
The degree of overidentification becomes Ky — G2 = 4 — 2. Figure 8 shows the
empirical cumulative distribution of nA, which follows the chi-square distribution
with two degrees of freedom.

The second step is the exogeneity test for x;; = yl(f ) using the nA; of (4.6). x;

is an exogenous variable in period ¢,

1 2 1
yi(t) = ﬁQlyz‘(t)"i_’Yllyz‘(tl

From the reduced form of (yl(tl ), yl(f )), the degree of overidentification Ky — Gay =

2 — 1 is obtained by the K = 4 instrumental variables (yl(t1 bl), yl(f bl), yz(f bQ), Ef))

If we know that (yzt)l, yl(t ,) does not appear in reduced form, the K, vari-

1+ V2T + o+ g

ables are reduced. From Figure 9, the statistic certainly follows the chi-square
distribution with one degree of freedom

Alternatively, by using the instrumental variables (yl(t1 bl), yz(f bl), yz(f bQ), Ef), yl(f bl), yz(f b2) )
in which z;; is simply added, null hypothesis can be tested by (4.6) where Ky —

Gop =4 — 1.

Design 3.2 : Let us examine the finite sample properties of Theorem 3.3 using
the just identification model:

2 1
yz(t) = 62yi(t) + VI?JZ'(tll + o + Ut

2
yz(t) = ’72%(;1 + pa; + vy

where Go — K5 = 1 — 1 = 0, and the numerical setting is the same as that in

Design 2.1.
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1.0

L [—— Over-identificationtest _© chi(2)] _

Fig. 8: Design 3.1 (N = 100,7T = 25)

1.0

| [— Exogeneity test  ©

Fig. 9: Design 3.1 (N = 100,T = 25)
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Notably, t. is numerically proportional to ¢, without finite sample correction of

dr = K(T - 2),

N

oo
te=t —
C °X(1—K/N)

Therefore, when N is large, the empirical distributions are almost the same and
overlap in Figure 10. When ¢ is applied the finite sample correction (t_0 adjusted
in the figure),

dr = K(T —2)— (G + K))
= 2T —-2)—2,

it is quite effective, and the approximation to the standard normal distribution is
more accurate. When making this finite sample correction to t., ¢; = K/N should
be replaced with [K(T — 2) — (G2 + K1)]/n, but the result is omitted because the
empirical distribution almost overlaps with t_0 adjusted.

1.0

0.9
0.8;
0.7;
0.6
05
0.4;
0.3;
02

0.1+

Fig. 10: Design 3.2 (N = 100,7 = 25)

4.3 Panel Information Criterion for the Reduced Form

Under the limited information method, the structural equaiton is formulated a

priori from an economic theory,

yz(tl) = ﬁ;yz(f) + ’7’/122(‘;:1) + o + Uy,
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but determining the K5 variables that do not appear in the first structural equation
is difficult. The problem can be reduced to the order selection for a panel VAR

model, which is the reduced form of y; = (ygtl), yl(t2 )/)/.

The implications of
the selection for the reduced form are the following. First, we are interested in
what are the true instrumental variables. Second, the number of instrumental
variables affects the efficiency of the estimation for the structural parameter 6.
In general, if few instrumental variables exist, then the efficiency is reduced. From
the discussion of large-K asymptotics, adding redundant instrumental variables
may also cause a large varicance.

Andrews and Lu (2001) considered the selection criteria that simultaneously
conduct the overidentification test and model selection in a dynamic panel model.
Morimune and Sawa (1980) considered the selection rule for the structural equation
that specifies the correct model with a high probability using an F' distribution. In
the following, we show the consistency of model selection based on the information
criterion developed by Akaike (1974). However, as the exact likelihood function in
fixed-effects estimation or the transformed maximum likelihood function is com-
plicated, we consider using the objective function of the D-LIML estimator.

To make the informaton critria, we first confirm multiple true espressions of a
reduced form.

Example 3.2 : Let x;; = w3241 —|—U§’ ) be the exogenous variable in period ¢. Then,
the reduced form has the following two expressions, which are observationally

equivalent,

u = mgyly + mygma + 7 + o)

= ngyz‘(tlzl + T3gLit—1 + ﬂ-lgg) + (U@(f) + UZ(?)) ) (g = 1a 2) :
As Varp?] < Var[p® + o], (4.9) is inferior in the explanatory power, so we
should select (4.8). Thus, we can consider selecting the expression with the smallest

tr(€2) among the true expressions, where €2 is the variance-covariance matrix of

the error terms.

For the reduced form consisting of G endogeous variables, let
Zit = {Zz[:,}}v Zz[f]v B Zz[tm} )

be the list of the instrumental variables that construct the true reduced form. The
conditions for the true representation are given as follows:

K
Z|7Tgk|7éoa (g:177G>
k=1
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That is, an instrumental variable zz[f} should be included in at least one of the G

reduced forms, and then, its coefficient is not 0.

Now we consider the difference from the usual order selection of the VAR(p)
model. In the case of the VAR model, the common order p can be selected for
all the G-dimensional variables. However, the reduced form is not necessarily in
the form of VAR(p) as shown in Example 2.5. Selecting a different order for each
variable is more practical, and the models are then non-nested, that is, K # G xp is
allowed. If a candidate of Ky instrumental variables is represented as z;{tl}(;é Zit),
then the cases can be divided into exclusion:

1 1
zitCzZ{t}, zithzl{t}.

Notably, even if variables that are included in z; and not included in z;{tl} rxist,

that is, the omitted variables, K13 > K is possible.
Following Schwarz (1978), we set the penalty term as the order of logn. K is
the number of instrumental variables of a candidate, and then, a panel information

criteria (PIC) is given as follows:

G
1
PIC; = Z(wgﬁf(%)
g=1

A 1
= tr(Q) + GK—="
n

To select the true model without being affected by individual effects, we estimate
2 from the residuals of the IV estimator of Theorem 1.5. Each candidate can be

easily estimated as follows:

A~

Q = ly(f)’Q’Qy(f) ’
n
Q = I,- Z(f)(z(b)’z(f))*lz(b)’ ’

where n = N(T — 2) and the IV estimator is IT,, = (Z®'Z()"1Z®"Y ) Then,
Q remains idempotent but becomes an asymmetric matrix. For instance, Z/) and
Z® become n x K matrices if generated by z;, and n x Ky, if generated by zz{tl}.
In the case of regression analysis we have G = 1, and G > 2 corresponds to a

reduced form of the structural analysis.

(A5) [i] All candidates of instrumental variables are a subset of z}, generated
by (3.10). The rank of n x K* matrix W = (w;;_1) is K*.
[ii] The rank of IT is G .

Assumption [i] means that we do not search for candidates in variables that are
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multicollinearity, where the constant term must not be included because of the
double filters. Assumption [ii] may be interpreted as not being the multicollinearity
among the endogenous variables.

From the following results, PIC; , based on the true instrumental variables z;
is asymptotically minimized. Therefore, we search for the list of instrumental
variables that minimize PIC;.

Theorem 3.4 : Supposing assumptions (A1), (A2), and (A5)-[i] hold, then as
T — o0, regardless of N is fized or tends to infinity, provided 0 < d < oo,

Pr( PIC,, < PIC, ) % 1,

for any PIC; based on zl{tl} #+ 7.

Moreover, we can consider the log-likelihood function of the T-LIML estimator
as an information criteria. From (6.37) of Lemma 2.2, the pseudo log-likelihood
function that approximates the transformation likelihood method has the following
relation:

L0 o —log((1+ )] . (4.10)

Minimizing the eigenvalue X is used for the specification of the structural equation
in the next section. Hence, depending only on the term of generalized variance
|| in the first step is appropriate for the reduced form. Thus, another PIC for
the reduced form is as follows:

. 1
PIC, = log(|Q]) + GK—2"

Y
n
that is, it is almost the same as the Schwarz information criterion for the usual
VAR model.
For PIC; based on the true instrumental variable z;,, the same result as PI1C,;
holds.

Theorem 3.5 : Supposing assumptions (A1), (A2), and (A5) hold, then as
T — o0, regardless of N is fized or tends to infinity, provided 0 < d < oo,

Pr( PICy, < PIC, ) 2 1.

for any PICy on the basis of zz{tl} #+ Zi;.

From the rank condition rank(Ilo.) = Gy < G in the next section, assumption
(A5)-[ii] implicitly requires K; > 1.
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The theorems implicitly assume that z; satisfies the orthogonality condition.
If a candidate mistakenly contains an endogenous variable, then the consistency
of model selection is generally not guaranteed. Thus, the overidentification test
in the previous section is important. However, the inverse problem that not all
instrumental variables are explanatory just because they satisfy the orthogonality
condition exists. Therefore, performing the overidentification test and the selection
of the reduced form would be better.

4.4 Simulation

We suppose the first structural equation of G = 2 under the limited information
method as follows:

1 2 1 2
u = B+ s + ey + o+
We assume that the following second reduced form and the form of the exogenous
variable are unknown to an econometrician,

yi(t2) = 7T21yi(t221 + 7T22yz(t222 + 3T + 771( T vff) ’
®3) ®3)

i T U

2)
Ty = T31Tj—1 + M32Tj—2 + +7

where B = 711 = 0.5, yi2 = M1 = T3 = w3 = 0.3, mp = 0.2, w3 = 0.1,
wgg =1 (g =1, 2, 3), and wy» = 0.3. The individual effect is w; ~ N(0,13). We

consider the case when the specified K variables (yl-(tlll, yl(fll) are included in all

candidates.

The next model-0 is the true reduced form and the number of instrumental
variables is K = 4, that is, two K, variables exist, (%(227 x;). The reduced forms
(9 =1, 2) are as follows:

(9 _ (1) 2) 2)

2 (9)
Yit Tg1Yip-1 T Tg2Yi 1 + Tg3Yj—o + Tgaliy + T;

+ Uff) )

The following five models are the incorrectly specified reduced form, and each of
them has a different candidate zl{tl}.
Model-1 is a smaller model than model-0, and the omitted variable is yz(22 (Kpy =

3):

u = )+ ey + e+ o)

Model-2 is also a smaller model with the omitted variable yi(sz. However, the

irrelevant variable yl-(tllQ (Kg1y = 4) exists:

(9) _ (1) (1) 2)

Yit Tg1Yip_1 T Tg2Yi o T Mg3Y—1 + Tgali + 7Tz‘(g)

+ Uff) )
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Model-3 is another expression of the true reduced form:

y@-(f) = ngyi(tlzl + 7T92yz‘(15221 + 7T93yz'(z€222 Tt TgaTit—1 + Tg5Tit—2 + ng) + Ui(tg) ;

where z;; is substituted (K3 = 5).
Model-4 is a larger model than model-0:

(9 _ (1) (1) (2) (2) (9) (9)

Yit Tg Y1 T Tg1Yir—o + Tg3¥j_1 + Tgalip o + MgsTix + T, + Uy,
where ygtlzz is added (K13 = 95).
Model-5 is also a larger model:
1 1 2 2 2
yz‘(tg) = ﬂ-glyi(tll + ﬂ-glyi(tEQ + 7T93yz‘(t21 + 7T94yz‘(t22 + 7T95yz‘(t23 + Tg6Lit + 7Tz‘(g) + Ui(tg) )

where yftl)Q and 1%(23 are added (Kyy = 6).
Table 1 summarizes the ratio that a model has the minimum value of information
criterion, where N = 50, and the number of repetitions R = 3000 times. PIC;

Table 1: Percentages of model selection

model-0 model-1 model-2 model-3 model-4 model-5
T =15 PIC, 69.9 4.47 0.07 0.00 22.7 2.87
PIC, 66.8 11.3 0.27 0.03 17.8 3.80
T =25 PIC, 87.4 0.00 0.00 0.00 12.2 0.40
PIC, 89.9 0.00 0.00 0.00 9.50 0.57
T =50 PIC, 97.4 0.00 0.00 0.00 2.60 0.00
PIC, 98.9 0.00 0.00 0.00 1.01 0.07

and PIC, show similar properties, and as 7T increases, the selection rate of model-0
increases. Thus, the consistency of model selection can be confirmed. The model-3
is another true expression of the reduced form, but as discussed in Example 3.2,
this model is the most difficult to be selected. There is a slight possibility that
a larger model would be selected. However, in the larger model, the coefficients
of irrelevant variables are consistently estimated to be zero, and the effect on
efficiency would be limited than selecting a smaller model. Therefore, choosing a
slightly larger model would not be too much of a problem.

4.5 Specification Test for a Structural Equation

In the last section, we discuss the specification of the structural model. The
identification problem for the structural parameter 8, = (8,, ~)) should be
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discussed first because it is the condition for consistent estimations and relating
hypotheses testing. However, this case is not often discussed in textbooks recently
and may be difficult to understand, so we consider it last. The panel structural
equations in the linear simultaneous equation model are given as follows:

GEGyz‘t = G];KZz't + giz'l + Uy . (4.11)
When represented as a linear model in this way, an economic model has many ex-
pressions in by multiplying it by an arbitrary regular G x G matrix T on the left.
However, the coefficient of the reduced form IT' = B~'T-'TT is uniquely deter-
mined as the solution, which can be estimated by the moments of data. Therefore,
the question is whether one can select a meaningful structural expression from the
reduced form. A condition familiar with the economic theory would be the tra-

ditional zero constraints (exclusion condition) since the Cowles Commission (cf.
Hsiao and Zhou (2015)).

Example 3.3 : Reconsider the production function in Example. 2.1. In the case

of G =3,
yz‘(tl) = 521%(3) + 5223/1‘(3) + a; + U,

where the endogenous variables are the logarithmic values of production, labor,
and capital. Usually, only the endogenous variables appear in the production
function so that the zero constraints are satisfied.

The following example is regarding the demand and supply functions,

v = Bayd +mzd +al) +uf)

v = Bty +emy) o )

(1)

2
y; and yi(t )

are the quantity and price of a good in some region i, respectively.
Which equation is the demand function is determined by the zero constraints. If
zl(tl ) is the consumption tax rate and zl(tz ) is the corporate tax rate, then zz(f ) does not
appear in the first equation. Therefore, the first equation can be regarded as the
demand function. Meanwhile, the equilibrium does not change even if multiplied
by a certain transformation T. However, a coefficient 5* = 51+ P29 of transformed

expression, which does not satisfy a zero constraint, has no economic meaning.

In this work, we call the dynamic structural panel model and do not refer to the
structural panel VAR model because the former uses zero constraints. Another
constraint is supposed in the structural VAR model, and there is also the position
that zero constraints are ad hoc (cf. Amisano and Giannini (1996)). Therefore,
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examining the zero constraint using the data is desirable; that is, a specification
for the structural model should be tested. In the linear model, the identification
condition is reduced to the simple rank condition.

First, we confirm the three concepts of normalization, zero constraints, and
identification. Notably, the normalization and zero constraints are neither neces-
sary nor sufficient conditions for identification. Generally, the formulation of the

limited information method can be expressed as follows:

By = Boy D + 412 vzl + s+ (4.12)

vii = Mpzy + Wz + 7 +vi)
This method has an advantage that only identifying the parameter of the first
structural equation needs to be considered. In the first structural equation (4.12),
1
yz(t)
so that some normalization for the coefficients is necessary.

has a coefficient 1, and thus, the scale of each coefficient is not determined

Example 3.4 : Express (3.1) of the utility function in Example 2.3 as follows:
Bivy) = By +ia + e +u”
If we divide both sides by 57, then

vy = Byl + iz + e ) (4.13)
where By = (35/5;7 and ugtl) = uitl)*/ﬂf However, if 8f = 0, then the expression
of (4.13) cannot exist. When the first good is not purchased, it is possible that
B3 = 0.

As 0% > 0, the natural normalization is known that (3/0) Q(8/0) = 1 (cf. Ander-
son and Rubin (1949)). Anderson and Kunitomo (1992, 1994) provided a general
discussion of the overidentification test and identification based on the natural
normalization in detail. However, in this work, we have derived the estimators
by the conventional normalization, which is often used in the applied analysis
(cf. Amemiya (1985)). Let us suppose the conventional normalization such that
1 # 0 in (4.12); that is, the following first element is 1,

B =1, —B) . (4.14)

Second, we consider the zero constraints on the coefficients of the exogenous
variables in the first structural equation (4.12). Let us confirm that the zero

constraints are not unique and a candidate of the structural expressions.
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Example 3.5 : Give the following structural equation a zero constraint,

yz(tl) = 52%(,:2) + ’7122(,51) + ’7221-(3) + oy + Uy

where the reduced form is as follows:

21 +m+
it — Z; ™5 Vit .
Yit 1 _9 t t

From the discussion of Lemma 3.1 below, we have §; = —0.5 and v; = 2.5 in
the case of the zero constraint 7, = 0. If another zero constraint is y; = 0, then
P2 = 2 and 5 = —3. When two structural equations exist as in Example 3.3, the
different zero constraints correspond to the change of sign of §y with the demand

and supply functions.

Finally, we consider the identification of the parameters in the first structural

equation. The zero constraints are expressed in the vector as follows:
HO P = 0 )

and an econometrician specifies them by (4.12). That is, suppose that zgf ) of K,
variables that does not appear in the first structural equation exists. We check

the following notation for the rank condition,

/
vie, = Wzy+mi+vy,

o - (H’ H’): T Ty |
b > H12 H22

(14+G2)x (K1+K2)

Hsiao (1983) investigated the identification of the dynamic structural model based
on the likelihood function. In a panel model, the question is whether the indi-
vidual effect does not affect the identification of the structural parameters. Bhar-
gava (1991) examined the identification condition for the dynamic panel structural
model under N — oo.

The next lemma is derived under the conventional normalization (4.14) and indi-
cates that the condition of identification is determined independently of individual

effects under the long panel data.

Lemma 3.1 : Suppose (A1) and (A2). If E[mivi] = O or T — oo in the case
of E[mivi] # O, then
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i| The following expressions are equivalent:

[ii] For some v, = 0, the necessary and sufficient condition that 6, = (B, v'1)

1s uniquely determined from I1 is as follows:

rank(ITy.) = rank(Ilyy) , rank(Ily) = G, .

In other words, the usual rank condition for identification is obtained even in the
dynamic structural panel model. In the previous sections, we introduced the esti-
mators using many instruments, but those instrumental variables do not contribute
to the identification; that is, the K5 variables in each period ¢ are important.

If B satisfies II,.,8 = 0, then the zero constraint is correct. This condition
means rank(ITy.) = rank(Ilsy). Then, we could suggest that the reduced form is
reduced from the structural equations that satisfy the zero constraint. Moreover,
some zero constraints can have multiple solutions (B, By, ---). Although the
multiple expressions in the structural equation are allowed, the unique expression
is desirable. Then, the condition becomes rank(Ily;) = G2, which are called the
rank conditions for the identification, and its necessary condition is called the order
condition:

Ky > Gy .

In empirical analyses, the discussion of identification is often completed by checking
only the order condition. Notably, the rank conditions of Lemma 3.1 have been
implicitly assumed in Parts IT and III. However, some hypotheses can be tested
from the panel data, so performing the rank test as discussed below would be
desirable.

One of the advantages of the LIML method is that the identification problem
is reduced to the eigenvalue problem using the objective function, where the rep-
resentation (4.2) of the D-LIML estimator is slightly changed. First, we use the
form that is concentrated to B3, instead of @, such as the original concentrated
log-likelihood function of Anderson and Rubin (1949) in Section 3.1.

,G_(fvb)
VRyy = E0
BH, "B
where 8 = (1, —3,)",
Qb _ Y(f)’(P(b) _ Pgb))y(f) :
HY — Lyora, - peyyo
n
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and Y) = (yz(tf )) is the n x G matrix consisting only of endogenous variables,
b b) () )\ " ()
Py 2 (202 2

where Z(lb) = (z;t1 ’b)) is the N x Kj matrix consisting of K; variables.
Second, H;};’b) is normalized by (1/n) in advance, and the representation of n\.

is changed to ). in the following theorem.’

)\.1 = min VRz.l
Ba

is equal to the minimum eigenvalue of the following eigenvalue equation,
fib Iib

We express the eigenvalues of this equation in ascending order as follows:
0< A1 <A<

If the eigenvalue is evaluated at the true value, then the eigenvector 3 corre-
sponding to the eigenvalue 0 satisfies Il,.3 = 0. However, if zeros of the eigenvalues
overlap, then multiple solutions (,6[1}, By - -) exist. On the contrary, if the min-
imum eigenvalue is positive, then no 3 satisfies Il,.3 = 0 or the zero constraints
are incorrectly specified. Therefore, the following theorem intuitively corresponds
to searching for the number of eigenvalues close to zero.

As the rank conditions are divided into two, we prepare another notation,

J1,GU0 3, — 03 HID g, =0

where J’2 = (0, Ig,) and express these eigenvalues as 0 < Ag; < Ay < -+ in
ascending order.
The following result is a rank test of the dynamic structure panel model in long

panel data.

Theorem 3.6 : Supposing assumptions (A1), (A2), and Ky > G5 hold, then
as T — oo, regardless of N is fized or tends to infinity,
[i] Under Hy : rank(Ily.) = G, < G,

G7G*

d
Yohe = Xo-aomec. -
g=1

The reason is that |G — ¢(1/n)H| = |G — £*H| = 0, where £ = n(*.
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Under Hy : rank(Ily.) < G, = Ga, there exists q such that Zf;lc* Ag = A <

q a.s., and
d 2 .2
9 7  X(G-G.)(Ky—G.) = X'Ky—Gy -
[ii] Under Hy : rank(Ilyy) = Goy < Go
G2—Gax
A d 2
Z 29 T 7 X(G2-G2.)(K2—Ga.)
g=1

Under Hy : rank(Ily) < Go. = Gy — 1, there exists qo such that ZQGZQIGQ* Ayg =
A1 < @2 a.s., and

d 2 .2
42 X (G2—Gox)(K2—Gax) = X Ko—Go+1 -

We notice that only the two panel AR test statistics A.; and Ag; are eventually
used, which are the minimum eigenvalues of two eigenvalue equations.
First, we consider the following procedure:

HO : rank(l_[zg) S G2 -1 wvs. Hl : rank(Hzg) = GQ .

This hypothesis test corresponds to the work of Koopmans and Hood (1953). If
the null hypothesis is true, then multiple solutions 3 exist. As ¢y follows the chi-
square distribution with Ky + Gy — 1 degree of freedom, this rank test becomes a
conservative test with an actual size smaller than the nominal size a%. Using the
critical values of a% and A9y, rejecting the null hypothesis is desirable.

Second, if the above null hypothesis is rejected, then we consider that rank(II,.)
is either G or G = GG + 1. Therefore,

Hp: rank(Ily.) = Gy  v.s. Hyp: rank(Ily) = Go + 1.

This hypothesis test corresponds to the study of Anderson and Rubin (1949). If
the alternative hypothesis is true, then 3 does not exist. Under the null hypothesis
the rank is reduced to GG5. Hence, 3 is unique. Then, A, follows the chi-square
distribution with Ky — G5 degrees of freedom, and accepting the null hypothesis
is desirable. The panel AR statistics A.; and nA of Theorem 3.1 bring the same
result. Therefore, the null hypothesis of the overidentification test is also accepted
if this rank test is accepted.
In sum, the rank conditions are expressed as follows:

rank(Ily.) = Gy = rank(IIy,) .

This condition is confirmed by the above procedure. Then, the specification is
justified in the sense that the zero constraints are correct as a structural expression,
and the unique parameter vector (35, v}, v, = 0') exists.
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4.6 Simulation

We confirm the finite sample properties of Theorem 3.6. The numbers of vari-
ables are G = 3, Gy = 2, and K; = 0. That is, the right-hand side is only
endogenous variables with the zero constraints such as

u = Barysy) + Baayly) + i + i
where (f21, f22) = (0.7, 0.3). The reduced form has K = 4 exogenous variables,
for g = 2, 3,

(9) _ (2) (2) 3) ®3) (9)

Yie: = Tg1Ys 1 T Tg2Yip "o + Tg3¥p 1 + TgalYjy—o + T, W

+ v,
As for the error term wg, = 1, wy, = 0.3 (¢ # h), the individual effect is
m; ~ N (0, I3). II = IT,. holds because K = K5 .

Design 3.3 : This design considers the case when the rank condition of Theorem

3.6 [i] is satisfied. The coefficients of reduced form for ygtl) are as follows:

7y, = (0.27, 0.07, 0.23, 0.03) ,
as for g = 2, 3,
' 0.3 0.1 0.2 0.0
Iy, = ’
0.2 0.0 0.3 0.1
and then, rank(Ils;) = 2. Hence, 7ry; is a linear combination by Ilsy, and the
null hypothesis rank(Ily.) = Gy = 2 is satisfied; that is, (821, B22) = (0.7, 0.3) is
identified.

Figure 11 shows the empirical distribution of A.; under the null hypothesis, which
follows the chi-square distribution with Ky — Gy = 4 — 2 degree of freedom.

Design 3.4 : In this setting, we check the finite sample properties of Theorem
3.6 [ii], and the null hypothesis is that the rank of Iy is reduced. In the case of
rank(ITy,) = 1, we set the values as follows:

/ 0.3 0.1 0.2 0.0
H22 — .
0.15 0.05 0.1 0.0
Figure 12 shows the empirical distribution of gy, which follows the chi-square

distribution with (Go — Ga.)(Ky — Ga2.) = 1 x 3 degree of freedom. In the case of
rank(IIy;) = 0, we have the following:

I, = 0.
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1.0

L [——ranktest o chi(2)]

Fig. 11: Design 3.3 (G, =2, N =100, T = 25)

Figure 13 shows the empirical distribution of the sum (Ag; + Ag2), which follows
the chi-square distribution with (Ga — Ga.) (K — Ga.) = 2 x 4 degrees of freedom.

Although Figures 12 and 13 show the cases when the null hypothesis is the
equality, in the empirical analysis, we should suppose the inequality rank(ITsy) < 1;
that is, rank(ITys) is 0 or 1. Then, the conservative test using only the minimum
eigenvalue \o; is performed. Figure 14 shows the empirical distribution of A9 in
the case of rank(Ily) = 0 again with ¢o. The empirical distribution is actually
on the left side of the chi-square distribution with (K3 — Go + 1) = 3 degree of
freedom. Thus, the experiment suggests that Ay < g2 ~ X2 as shown in Theorem
3.6 [ii].

In Part III, we discussed the tests and specifications of the structural panel
model, which are conducted by the panel AR test statistics based on the D-LIML
estimator in Theorem 2.9. The overidentification and exogeneity tests, model se-
lection by the information criterion, and rank tests can be constructed without
being affected by individual effects or long panels. Thus, these procedures could
provide a profound structural analysis. In addition, the GMM method has difficul-
ties in performing the overidentification test in the case of the just identified case,
whereas the LIML method can conduct the test even under the many instruments

and the identification test using the eigenvalues.
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Fig. 12: Design 3.4 (G2, =1, N =100, T = 25)
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Fig. 13: Design 3.4 (Ga. =0, N =100, T = 25)
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Fig. 14: Design 3.4 (G2, =0, N =100, T = 25)

5 Conclusions

As existing estimation methods may not work in long panel data, this study
aims to discuss the estimators that can be used in the dynamic structural panel
model. Although many simple models exist in the theoretical analyses, this work
considered the general models for empirical analyses. We have summarized the
results of previous studies and proposed the estimation and testing procedures,
focusing on the usefulness of the LIML methods such as the T-LIML and D-LIML
estimators.

We showed that T-LIML estimation is robust to the incidental parameters prob-
lem of the initial values indicated by Anderson and Hsiao (1981). Although the
T-LIML estimator is the best finite sample property, the calculation is compli-
cated in the general model. Therefore, we proposed the asymptotically equivalent
D-LIML estimator. This estimator is based on the doubly filters and the variance
ratio in the study of Anderson and Rubin (1949), which is originally the concen-
trated log-likelihood function. D-LIML estimation is practical in estimation and
hypothesis test and robust in the dynamic panel model under the large-K asymp-
totics, which is developed by Kunitomo (1980). We hope that the results of the
LIML methods would contribute to structural panel analysis.
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6 Appendix: Proofs

Proof of Theorem 2.6 : We first show the following:

1 aQ»C'O 1 62,60
lim & |—= =0 lim & =0. 6.1
L {NT aﬁaw} S [NT awan (6.1)
We use the following relations,
yz(g) 1= W; — W5, VZ(‘E) = Ez + v, (62)

where w; = (wjo, ..., wir—_1)', Wi = wiot, €, = &it, and ¢ is the T x 1 vector whose

elements are unity.

1

Aibb)loAl_ 1
(A +bb) 11 bA-1b

A 'bb'AT! (6.3)

using this formula, it follows that

ngl = (u)gLL,—f-a)IT)il

1

= 3 (Ir — et
where 97 is defined by
Ur = # : (6.4)
The derivative for w evaluated at the true value is given by
o]
NT OmOw
. l@(yz)lﬂ v )
T ow
- —eltog]
Tw 2
+Tw(Tw§ n w)28 (Wit v, + wid'€, — wiged'v, — wiged'€;] . (6.5)
where the second equality is from (6.2) and the following:
-1
8;25) = —éﬂgq} + m“’ : (6.6)

The fact that for any 7' the first term of (6.5) becomes zero is shown by (6.7)
below. The second term of (6.5) is shown as O(T?/T?) and converges to zero. The
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derivative for wy is

0y
[ L 2L _ o la(yz 419, Vi )
NT OmOw a T Owe

1 (Tw§ + w) — ng ©y
Tw  (Twe +w)? Yioit've

1 w ()

/
= ——— w've .
Tw (Twe + w)Qyt*l Ve

This term also converges to zero because it is proportional to the second term of
(6.6). Therefore, (6.1) is obtained. As the Hessian of (A3)-[i] is the block diagonal
matrix, we have that

N

. 1 Z
where

hﬂ'ﬂ' =

i & 1 0L
N, Thoo " | NT 0nom
We confirm the following:

1
e [ttt

= e [y Ll — vrwlude) - Swig, - orwiae)
~ 0. (6.7)

The sum of the terms whose expectations are nonzero becomes zero. For the sum
of the second and third terms, using &, = —(1 — m)w;o,

]‘ / / / 1 / / /
& |:_(Wz'€i —Yrwiel'§;) — ;(Wz'ogi — YWyt 51)}
1l—7 1—xT
- - ()
. T
_ _1 T w 1—m )
l-m?w4wT \1-—7

The expectation of the first term of (6.7) is given by

wT ’o wT -t
El-=wuv,| = — T_-1)—
[ WitL'v T ( )— T
1l—m7 w 1— Tt
= - T—1) g
1 —mw+wT (( )= l1—m >’
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where the second equality is from the following by assumption (a2),

we = Var[—(1 — m)w;)
e
1—m2

Thus, from the following relation,

(11__7T7TT —T> = ((T_l)_ﬂ%wzl> |

the sum of (6.7) becomes zero.

Regarding the generalized Lindeberg-Feller condition (cf. Phillips and Moon
(1999), Hahn and Kuersteiner (2002)), for any ¢ and T the following sufficient
condition holds by assumption (al),

Ly ( !
Ql < 0.
(\/Tyz 1 )]

Therefore, the asymptotic normality holds,

&

where

h.» and g, are as follows:

hew = — lim & [ @;Qvlyg);]
T—o00
= - lim Tg (Wi, Wi — 2w Wi + WipQ wo | (6.8)

For the first term,

2
1 _ 1 Yr (1 ZT
?5 [W;Q&}WZ} = & EW;WZ - UT <—T wit—l)

1 w
_>

wl—m?

As p = O(1)T) and (3}, wir_1/VT)? = O,(1), this second term converges in
probability to zero. As for the third term of (6.8),

1., 1
?5 {Wioﬂgvlwio} = fg[Twz‘Zo - wT(Tin)Z]
= (1 —¢rT)E[w)]
— 0,
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where the second equality is from that

w 1

1—YT = —— =0(=) .
vr Twe +w O(T)

Therefore, the second term of (6.8) also converges to zero by repeatedly using the
Cauchy-Schwarz inequality (hereinafter, abbreviated as CS),

1
1 271 2
(gwigiw)" (zvigiv)

1 / _ 1 / —
(8 {Twiﬂgvlwl} E {Twioﬂgl}wio})

e |logtwy g < ¢

I
(][ E— |

IN

g is given by

gr = lim & {% (yl)lﬂ ! (€)> }

T—00
. 1,(02 (ty 1,(02
= jlggofg[( Wi, Vi ) — 2w, Q V V ngwl (Wi, Vi )]
(6.9)

For the first term,

1 4 1 _ _ _ _
=& |(WiQgVO)?| = Z€ [(Wig!vi)? + 2wl vl wi + (W€
(6.10)

This first term converges to the following:

1 _

TE (Wi, vi)?] = Tw25 [(Wiv)? = 20rwiviwie'vi + o7 (Wied'v;)?]

1 1

- Eg[w?t—ﬂft] = 1_

because the third term (1/T)¢2E[(wi'v;)?] = O(1/T*)O(T?) — 0 by ¢r =

O(1/T), and the second term also converges to zero by the CS inequality. As for
the third term of (6.10),

2
%5 [(Wéﬂg}léﬂ = TLwa; <§z‘zwit—1—¢T§z‘Tsz‘t—1>

112



where (1 —¢7T)? = O(1/T?). From the above, the first term of (6.9) converges to
Ewf,_yvj).

Finally, we evaluate the third term of (6.9),
1 1 1 _ _ _ -
Tg (Wgoﬂgvlvz( ))2] = Tg [(Wgoﬂgq}vi)Q + QWQOQ@le‘&;QgUlWiO + (Wgoﬂgq}&i)ﬂ .

This first term is O(1/T) under similar arguments. Regarding the third term,

ZE[(WoRE] = (T — 6rTPE [l
1

the second term converges to zero by the CS inequality, and thus, the third term
of (6.9) converges to zero. Using similar arguments, the second term of (6.9) also
converges to zero. Therefore, (g,/h% ) becomes 1 — 72. O

Proof of Theorem 2.7 : We first consider the case when N < oo. From the
result of Lemma 2.2-[ii],

\/ﬁ(é’)TL - d)) = \/ﬁ(ﬁ%m - ¢) + Op(l) .

Therefore, the T-LIML estimator is asymptotically equivalent to the pseudo T-
LIML estimator and the result of d = 0 holds for Theorem 2.10.

Next, consider the case when N — oco. As )¢ is consistently estimated, the
Hessian can be evaluated at the true value. We show the following;:

1 0%L,
} o 394 ’

lim & |— L &L
N,T—oco | NT 0¢pOw’

NT 0O,

lim
N, T—o0

-0, (611)

3x4

where ¢ = (52,71, T2), w = vec(§2), and we = vec({)¢). Following Hsiao and
Zhou (2015) we have the following expression:

Q, = Qe +Q0Iy)"!

2T'x2T

= Q'eQr+¥' @I,
where

1
lI’T:Q+TQ§, JT :—LL,,
2%2 st T

and we express the elements of the inverse matrix as follows:

11 12 11 12

ol — w w ol — T T
I S > ) T — W2 22 :

T T
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Regarding the score function of the reduced form,
11,(1,0’

sy = woy 4 Qr VZ( + wlzyz(l_gl) Qr VZ( + Y7 yl Bt JTV(M) + @DleZ 1) Jrv (2 2 ,
S12i = w11y2(212 Qr Vz( + w12y2(2_£1 Qr Vz( + Ur yz 1 J V(M + Y7 yz 1 J V(2 Z)
Spi = w21yl(212 Qr VZ( +w22yl(27€1 Qr VZ( wT yz 1 J V(l(i +wT yz 1 J V(2 Z)
where y(g o = (0, yl(g o ,yz(%g)l) and VZ(M) = 559) + Vz(g) (9 =1, 2). Meanwhile,

for the structural equation,

0Ly 0Ly oL,

= — TooS i - = S q S 4 ‘l‘ S AR

9, ~ 2 T 2 %miz@w :
We show the following as an example:

2
lim & L& =0.
N, T—oco NT 662&011

It follows that

< L 0°Ly
NT 8528w11
71 ’
. T @0y o) P < L @0
N T & <yi’71 ’0> &un Vi » Vi >

-1 —1 /

929 (2,0) o2 a\IIT (1,0) (2,0)

_ e [(yen0) ) (60, Y]
T |: YZ, 1 (awll ® QT + awll ® T Vz VZ

For the derivative with respect to 7',

ot
_ emga, 1 (00
&un ‘Q| ‘Q| 0 1

Wil Wiz
= < . . ) (Say7> :
W21 Wa2
As for the derivative with respect to W', put the following:

1 /1 -1

= —(Qp) L. 6.12
(%) (6.12)
Then,
ow ! 1| wra 1 1 0 0
8w11 T|QT| T |QT| O %

T
.%1 .%2
= 21 i929 (say,)
T T



where |Q7| > 0 because €27 is the sum of the positive definite matrices. In fact,
Qe = (I, — I E[wiow,) (I, — TT) > O .

From the above,

RIS
NT 862&011

P NGV, PNV B WA
= mu (€ Qe + e Y )

@/}11 2,0 1 (14 @/) ey
+1T99 T—I;E [yl(_l) L VZ(~ ’ )} L 6' [yl Tl V( )}

o(3) ()

because ¥+ and )32 are O(1/T?), and the following elements are O(1),

(L0
£ [( i:(?gl)/ ) QT( Z(l , Z@))]
- - (12 —H’)_2 K1 - %) L —1II + %(H')T} Q.

By using similar aruguments for the other elements, the former of (6.11) is verified.
For the latter of (6.11), we show that

1 0*Ls
I A —| =0
N, lTrEoog {NT aﬂgawg,n} 0

It follows that
1 0L, T2 (2,0) AL ' Lo 2o\
El——"—| = =€ 70 J ; ;7
[NT 862&05,11} T |:<yz’_1 ) aa}§ 11 ©dr ( ! » Vi )

T2
- o(w)
_ Wr22 1 00
oot ,
Q7" Q] ( )]

because each element is O(1/T"). Other elements of the latter in (6.11) are also
O(1/T) under similar aruguments. Thus, when N and T go to infinity,

For the derivative,

0w 1

&%11 n T

v NT((%TL - ¢) = —H¢; \/— Z Sz('e) + 0p<1) )
=1
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O

!
where s, = (m92512,4, S11,4, P2512, + S22,) and

i e[ L 0L
N 1o | NT 0pdd’

2,0
| 7T2Y§,_/1) o’ my®) g0 gy
= — lim &|= y L 0’ Qg_v1< }8_1 y101 y(z_)1>
i1

Hyy =

Z7
N.Tooo | T @0 @
Byz’,fl i,—1

The expectation of the score function vanishes:
els”] <o,
because Hsiao and Zhou (2015) show that for any 7',
5[311,i] = 8[312,1'] = 5[322,i] =0.

As for the score function such as €2¢, the proof is the same as that of Theorem
2.13.
Consider the (1,1) element of Hy, as an example,

[yz( 1),0’}9* "o

’U

(2,0)
yzbll _ [(WZ@)_ w2y, o’] o)

e

= (w - w) («"Qr +w2#;r ) (w] >—w§§>>

— w0l ow il il il
(6.13)

where
Qg ="' Qr + 9 I

First, we show that the third term of (6.13) converges in probability to zero.

1 / 1 /

=& [wianwld| = Z& Wi @' - @ - o)W
= w'Ew”] — (@ — el
= ¢ e’

where 11 = O(1/T) is negligible due to (6.4). Regarding the first term of (6.13),

2
e lw@aiiw®] — g |9 @ y® wn Z
W, oW = T W, W, — zt 1

— wllg[ zt 21] :

N| =



Therefore, the (1,1) element converges to w''m2,E [wz(fﬁ] Then, we obtain that

Wiy 0 m®, w® Buw®
H,y = & w0 |t el Tl PR L) (6.14)

2 2
52“’@(1511 wz(tfl

Second, we clarify the limit of the sum of squares Gy,

Gy= lim NTZ&’[ ] . (6.15)

For instance, the (1,1) element is given by

1 1 /
7€ (e ) = 1 | (v 0t 4y o)

where another expression of Q%}) is as follows:

Qg} = i <IT — golTlu,l> ,

11 11
W~ 9T

11
YT Twll

Then, ¥ = O(1/T) and

" 11 1
1-— @ T = wll =0 (T) s
that is, the order is the same as that in (6.4). Then, under the similar arguments
of Theorem 2.6,

1 o w®
7€ [(m22s12:)°] — 73,E [(wz(f)h 0) Q' (viv, ) < 6 ! )]

= w117T§25[w(2)2] .
Using similar arguments for other elements, we have

O Moreover, from the results of (6.14) and (6.15), the terms related to the long-
difference can be asymptotically ignored as the remainder terms,

N

T
VT (G, = 6) = L2 303 s+ 0,(1)
=1 t=1
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where

(mazwiy), 0)
Sit = (wl(tlll, O) Qilvz‘t .

2 2
(ﬁsz‘(tzl’ wz(tzl)

If the fourth moment of the error term exists, then the generalized Lindeberg-Feller

condition holds. Therefore,
VNT (¢ —¢) 5 N(0, HJGH) ).

The variance-covariance matrix for the structural parameter 6, = (/3s, 71)/ is
obtained as the 2 x 2 submatrix of the upper left of the 3 x 3 matrix —H;{; After
some calculation,

1 -1 w22 — 12,21 -1
ECI) T\ Bl + 28w + W ® ’ (6.16)

2X2
I wy W wl 0 1
¢ = € @ (1) (2)2 :
10 Wiy~ Wi~ q Wiz~ T2 0

where the first equality holds because 02 = ,B/Q,B and

1 w2 2
Q:|Q—1| B B :

Thus, we obtain the desired result. 0

Proof of Theorem 2.8 : For the companion reduced form of (3.30), we put
®3)

3
Zit+1 = Yir s
*
I = (771, o, 773) P

3x3

and

Q w
39* B < . ) ’ 5[VitU§t3)] = Wis, 5[(1’@(?))2] = Ws3 -
X

’

Then, the log-likelihood function is given by

N 1
_ (0 =1 . (0)
Lo=— 5 log |Qe0| — 5 ;:1 v, Qv

*€v V1
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where

yi" Ygll (711 + Bamar, Bamaz, 12 + Pammas)

v = v =y
3Tx1 ygg,e) B Yf,lm

As the two-dimensional panel VAR of Theorem 2.7 is just replaced by the three-
dimensional panel VAR, the following holds as 7" — oo from the discussion of
Theorem 2.7 and Theorem 2.12,

VNT ($—8) —5 N(0.-H).

where
— <0/1’ 7T,2’ 7T,3> b
9x1
01 - (BQa Y11, ’712)/ P
and
W 0 W/ O/
_H¢¢ = £ 12 Q*_l /12 ’ )
9x9 O wi 0 Wit—1
Tnwly)y + mawl) ) + mwl, 0
wV 0
Wy, = &' :
6x2 Wi 1 0
BaWit_1 Wit—1
1 2 3\
Wit—1 = <w§t11, w£t21> w§t11> :
3x1

For the asymptotic normality:
VNT (@)TL — 01> 1 N(0, 02871,

we show that the asymptotic variance-covariance matrix of the structural param-
eters becomes

(I5,0) (—Hy) ' (I3, 0) = 2@ ",

and that this expression satisfies the following using the notations of (3.16) and
(3.17),

' 3 3
' = €& [Wit—lwit—l] , wz(tzl = 2yt — ,ug )
3x3

o1, T T
H; _ ( 21 23) 22 )
(142)x3 I, 0
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That is, 02 = ,6/9,3 is invariant, if only the exogenous variable wz(tgzl is added

compared with Theorem 2.7. Consider the variance-covariance matrix —Hj; when
)

the recued form of yz(t?’ is not estimated,

—Hip, = £ [WiQ ™ W .
6x6
From the proof of Theorem 2.12, it follows that
(I3,0) (~Hy,) ' (I;,0) = 0?7 " .
Therefore, if the following holds, then the theorem is verified,
(Is,0) H;, (I, 0) = Hy; . (6.17)
We show this euqlity in the following. Put

Q—l Qll w13
= , .
* w13 w33

The formula of the inverse matrix for a symmetric partitioned matrix is

-1 ’ ’
A B ([ (A-BC'B')"! —(A-BC'B)"'BC! (6.18)
B C B ooo0 (C-B'A'B)! B

For the left-hand side of (6.17), we have the following expression:
(I, 0) H, (I, O)
£ [WuQIW),] € [Waww), ] | ,
— (IGa O) " 1/2 . z/t—l (167 O)
E [Wit,lw W12] E [Wl-t,lw Wit_l}

-1

’ / ’ -1 ’ /
= (S[WHQHWH] - 8[W12w13wit—1] <E[Wit*1w33wz‘t—1]> 5[Wz‘t71w13 W12])

As for the right-hand side of (6.17), Q is represented by the element of ' using

(6.18),
1 -1
H1721 — ((C/‘ |:‘Af12 <Qll . Ewlé}wli’:) W12:|) )

Hence, it is sufficient to show that

& [ngwlgwgt_l} <5[W¢tlw;t_1]>15 [witflwl“*’wb} =& [ngwlgwlg/wlm] .
(6.19)
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Note the following relations:

Wpw' = O,wi )
6x1
w%37T21 w%37T22 w%37r23

13 0 0
e, = “ 13 )
6x3 0 0 wi

(wi*Ba + w315
where w'® = (wi3, wl?)'. Therefore, the equality of (6.19) holds. O

Proof of Theorem 2.9 : We first show that

1 /
NTG ) 2 Gy =0,9%0,, >0, (6.20)
and
Q O
H(fb Ly H, = 6.21
NT 0 OO0 ) ( )
where
@I = (07 IG2+K1) ]
(G2+K1)X(G+K1)
(yBD, Y @H Z20H) = (y©) X)) and XU is the N(T — 1) x (G + K) matrix.
Fork=1,---, Kandg=1, ---, (14 Gy + K;), we have that
1
| NI
f f ! ’
= N—ZZ yz(t )7 ) Jeyz Et)lek
i=1 t=1
| N
k Ko~ k
- NT Z Z wz[f]wz[tll —(1=f )wz[t w ftw sz[g] wz[t} 1wz[t}T + wz[t] 1 sz[f]T ,
i=1 t=1
(6.22)
where e, = (0, ---, 1, ---,0)" whose k-th element is only unity,
[k Lok k
wz[t]—l,O = t( z[t] gt wz[—]1) )
N i
Oy = = t(wifil o) (6.23)
and for g =1, -+, (1+ Gy),

w[g] =e (HJ Wi_1 + Vi)
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but for g =1, ---, K;, we set w[t} = wl[f] 1-

Regarding the last term of (6.22),

LN T
WZ|Z zt1owz[f]T] =

=1 t=1

=

T
T| Z wz[t]l,sz[?,}Tq

(k]2 _[g]2
\/5 zt] 10l \/5 [wz[f,}T]

IN

where the second and fourth inequalities are based on the CS inequality. That is,
this term converges in the 1th mean to zero as T' — oco. From similar arguments,
the third and fourth terms of (6.22) are O(vT/T). The second term is also
evaluated as O(v/T/T) using the relation that (1 —c¢;)> < 1/(T —t+1). Therefore,
we obtain

]. ! I ! ! I
ﬁ(y(l’f) aX(f) )Z(b) L) QIHIJ g[wit—lwgtfl] ’

oo m ) _(m, m,
(G2+K1)><K I, O Iy, O ’

because E[v;w!,_,] = O. Note that for the rank of IT,,

where

rank(IT) = Gy + K .

If there is a (G 4+ K1) x 1 non-zero vector (a,,a;) such that

Il
H282+< g >a1:0,

then Ilypa, = 0. Considering the rank condition of identification, a; must be 0,
and thus, Ix,a; = 0. But it contradicts (ay,a}) # 0. Therefore,

®=I1J¢ [wy_ 1w, ] JIL > 0.

Moreover, using the similar arguments of (6.22),

1 ' !
WZ(b) ZO s T Ewiywl,_4]T .
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From the above results, the convergence of (6.20) is shown.

Next, we show the convergence of HY. For g, h=1 - (1+Gs+ Ky),
L (0 XU (0D X (D)e, = LiwaTWV‘]
NT 9 ’ ’ NT ¢4 ’ ’
f LS~ ol
= N ;tzlwztht N;wl ;

where wi' = (W, w9y and @ = (1/T) 3, w!¥). Therefore, (6.21) is obtained
by using the result of convergence for G,
Solving the first-order condition of the minimization for (4.2), the sampling error

of the D-LIML estimator is given by

-~ ]. ’ A / / 71
VNT(0 — (L xwrpbx) _ A (1 _ p®yxX )
NT(6 = 6,) (NT N )

« [ xrpog — YT Ay _peryyo |
VNT NT

where
A = min VR,
01
o — W 'y
%Xl (ul ) ) 7uN ) .

Consider the convergence of A. From the continuity of the minimum eigenvalue A,

we have the following determinant:

' Q
©,$0, — plim A ( 0 0 ) ' =0, (6.24)

T—o0 O

where zero is a solution due to nonsingularity of ®;<I>®I. If there is a solution such
that plim A < 0, then

T—o0

> 0.

/ ) Q 0
o (39)

This is because that for any (1 + Gy + K;) non-zero vector (a,,a;)" we have
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a;Qag > 0. In the case when a, = 0 and a; # 0, we also have

(0’,a’1)®;¢-@l< 0 ) = (0’,a’1)<1>< 0 )
aj a

’ ’ / I
= a,(Ig,,0)J Ewy1w, 4] ( 81 )al

> 0.

This violates (6.24), and thus, plim A = 0. Furthermore, from the definition of A,

T—o0

— YNTO' G
0 H o

For the numerator,

’/—NTQ’GWG _ (uW'ZON (Z0'Z® L 70 4
NT " B VNT NT NT
= Op(l XOP(]')’

that is, y/nA converges in probability to zero. From the above, the sampling

error of the D-LIML estimator is asymptotically equivalent to that of the D-GMM
estimator of Corollary 2.1,

. 1 oy B ,
VNT(0 - 6,) = (W)df) P(b)X(f)) WX(f) POu® L 0,(1)
P (%X(f)’;)(b)u(f)) +o,(1)

As the dimension K is finite, each term converges as follows:

1 , 1 , 1 oy o ,
L xrpoigh — xW'go [ L_gorze)  _L_zer,m
JNT NT NT VNT
1 ’ I
= —F WHIZ(b) ll(f) + Op(]-) .

We consider the effects of the forward filter and the convergence in distribution as
follows:

1 e;Z(b)/u(f) — 1 - :§ Z(f)/leku({)’
VNT NT =3
;| N
k k Ko~ [k
= NT Z (wz[tlluit - (1= ft)wz[tlluit - wz[t}fluit,T - wz[tll,ouggt)) )
i=1 t=1
(6.25)
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where

_ i
uz’t,T—T—

_t(uitJrl + )

First, it holds that £[Z® u)] = 0. For the second term of (6.25),

N T-1
ZZ(l—ft)wZ[f]_luit] = YVar

T-1

~

1
INT (1— fowly! 1Uzt]

i=1 t=1
1<
= ? VY Var[w Zt 1ult]
logT
= 0 )
( : )
As for the third term,
= T-17-1
(k] ~ (%]
—= D Wiy | = ZZS wish Eo [ i )]
vT t=1 ] T s=1 t=1
T-1T-1
g fsft K] k
= TZZ z[s 1wz[t}1]
s=1 t=1
log T’
= 0 )
()

Finally, regarding the fourth term,
T— 9 T—
T Z it—1 Ouzt ] = % Z zl:]21 ol
_ ()
T .

-1

O

Therefore, we obtain the following:

~

N
1 ’ ’
—le(b) u(f) = Z Wit—1Uit + Op(l)

VNT

IIM

d

— N(0,0'(I)),

where the asymptotic normality is based on the standard central limit theorem for
autoregressive processes (cf. Anderson (1978)). O

Proof of Lemma 2.2 : [i] We first show that the pseudo log-likelihood function
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Lo.o can be also expressed by using the forward filter. Put Av,; = (Av(l.)/ cee AV(G)/)/,

x5

where

AVS) = (A/Ui(Qg)a T sz'(g“)>

(T—1)x1

Let jT,l be the matrix such that j/TflAv*i = Av;; that is, leq sorts Av,;. Then,
N —1
£2'0 = 5 1Og |g V*ZV Z Vi ( V*zv ) Av*i )

because J. /T_l has the following properties:
Jr_) =T, [Jra|=1.
From Dy of (2.8),
(DrDy) AV = v
Hence, using the following transformation:

’ 1
T =1 DrD,)" 2
Gr-DxGT-1)  C @ (DrDy)™2

we obtain
N 1 N ’ —1
Loy = —Elog\S[Av*iAv*iH—§Z(TAv*i) (TS [Av*iAv;Z} T/> TAv,;
=1
N o 1~y OOy
= NlogT| - Fogle [ ]| -5 2owil (¢ [WDVD]) v

If we use j/T_l again, then

CQ.O = Nlog |T| + ,Cf s

where
N v
Ly = —Slogllr © Q|- Zv (I, 0Q)"
1
- —g log |2 — Str (YY) — 2011y (YY) - zVme )
and
v () @\
U <Vi1 y T Vz‘(T—l)) )
G(T 1)x1
v o = (L) y(@f)
N(T—1)xG (y ’ ) ’
7.(f) — (Z(Lf), Z(Zf)) )

N(T—1)x (K1+K>)
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Therefore, considering L is sufficient for maximizing Lo9. We show that the
concentrated likelihood function of L9, becomes VR4.g based on the following:

1,1)
aUh  — ( y' (’; )) ) PO (yH) X1)
n X / 9 9
5 — y M (v &)
Hn - X(f)/ [In -P ] (y ,X ) : (6'26)

We maximize £; with respect to {3,, Ilso, IT;., Q} and consider the concentrated
log-likelihood function for 3,, where

II _ I _ T IT,, _ IT,.
(K1+K2)x(1+G2) o1 Hgg Hggﬁz Hgg Hg.

From the exclusion restrictions, the structural coefficient v, becomes

v, = w1 — 18, , (6.27)

but this is not a constraint in maximization.

The following proof is almost the same as that of Morimune (1984, Appen.)
up to the derivation of (6.37). Although z;{ ) is not a valid instrumental variable,
it does not affect the derivation of the concentrated log-likelihood function. By

solving the first-order condition for €2, we have

1
Q=—(YV —zO1my(y¥ -z . (6.28)
n

If we substitute the above equation into the log-likelihood function, then maxi-
mizing the log-likelihood is equivalent to minimizing the following with respect to

(162’ H22a Hl-)a

1
Q= |2 (YD — 201y (y® - z<f>n)] . (6.29)
n
The derivative of determinant for a nonsingular matrix A is as follows (cf.

Abadir and Mangus, 2005),

DA| . OA

Then, from the derivative |€2| of (6.29) with respect to II;., the first-order condition

becomes

I, = (Z(Lf)’z(lvf))*lz(lvf)’(Y(f) —72)11,.) . (6.30)
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Similarly, for Il we obtain the first-order condition,

/
Z(Zf)’(y(f) _ Z(f)H)Qfl ( 52 ) =0.
G2

ZNTI included in the above equation can be decomposed into Z(l’f)l'[l.—i—Z(Q’f)ng(BQ, Ig,).
By substituting (6.30),

/
I, = (2§02 ) 12 Y e ( % ) (=), (6.31)
G2

where PV = 7.z zam-1z0n z&0D — 1, - PYZY and =2 =
(By,16,)2 1By, 1¢,)" is the submatrix of the following:

mn 12
-1 o o
> - < o2l B2 )
_ 1 0 O-! 1 3,
By I, 0 Ig,
Conversely, from the inverse matrix on the right-hand side, 3 can be also expressed
s o’ ol
o2 Yo
. 1 —ﬁlz W11 w’12 1 0/
0 Ig, wyr By I, |’

where 02 = E[uZ] corresponds to the error term of the first structural equation. We
rewrite the residual by (6.30) and (6.31). For P(()f) = ZéQ’f)(ZEJQ’f) Zé2’f))_1Z(()2’f) :

as follows:

YOz = v — Z(f’l)Hl. — Z(f’Q)H22(,32>IG2)
= (1, - PY)YYV - PYYVIQ1(22)71(8,,14,)
/
IG — Qil ( Iﬂ2 ) (Eﬂ)_l(ﬂ%IGQ)] )

G2

— (In—P(f))Y(f)—l—ng)Y(f)

the third equality is based on the following orthogonal decomposition,
P — Z(f)(z(f)’z(f))*lz(f)’

Z(f)C(f)[(Z(f)C(f))’Z(f)C(f)]’l(Z(f)C(f))’
_ ng)_i_P(()f)

?
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where CY) = (ZU) ZUN) 1z (20D Zé2’f)). To simplify the second term, we use
the relation that

Io - Q' ( s ) (22)7 (85, 1c)
L G2

= 1 u 1 0’ e ! ﬁ/2 29\ —

N B2 I, ) <162 Ig, ) lo =8 <102 ) (=) 1<ﬁ2’IG2)]

_ 1 0 ) < (1,0 _012/(222)_1(ﬁ2,16‘2) )

_162 IGQ O
_ _;2 ) <(1,0’) - 012’(222)*1(6271@))

1
= B ((1, 0) + EU’H(BQ, IGQ))
1
- B;<U2 + wiyBy — B5022203,,0" + Wiy — B,0s,)

1
= 5B — Wiy, Wi — Bal)
pBQ
/BIQ/B )
where B = (1, —85)" and the fourth equality is from —o'? (2*)7! = (1/0?)01,.
This is because that

1

oll — 0.12/<222)710.12

o1 = — 0_12’<222)71 _ _0,20_12’<222)71 )

Then, the residual is simplified as follows:

1
Y —zO11 = (I, — P(f))y(f) + E(P(f) _ ng))Y(f)Bﬁ/Q .

Using this result, the LIML estimator of €2 satisfies the following:

_a. YW PN Py

Q - QB3 , (6.32)

no

where
= 1y
Q=-YV1, -PYYYD (6.33)
n

This is a fixed-effects estimator for €. In addition, from the relation of (6.32) the
following should be satisfied,

o = BB

_ 408+ gY@ Py |

n
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Since (6.29) is minimized for 3,, consider the determinant of (6.32).
|A + abb’| = |A|(1 + ab’A"'b) ,
From this formula, we obtain

O (P _ pDyy ) N,
pYI 1 Y8500 03 . (6.34)

2] = | <1+

no

2 is still included in the right-hand side. To remove this term we multiply 3 on
the right of (6.32),

vy (PG — phyy )
BYW (P - POV OB,

Q8 =08+

no

then,
QB8 =(1+ )08, (6.35)
i.e., Q3 is solved. From the relation of (6.33),

_AYW (P - PYYH3
T BYW (I, - PO)YDS

(6.36)

Substituting (6.35) into (6.34), we obtain the following by using 8'Q8 = ¢2/(1+)),
Q= (1+))|9Q]. (6.37)

Since the unknown parameter included in (6.37) is 3, this is the concentrated log-
likelihood function, and the minimization of (6.29) can be achieved by minimizing
A. Therefore, BQ minimizing (6.36) is the maximum likelihood estimator.

Finally, we consider the maximum likelihood estimator of the structural coeffi-
cient ;. From (6.27), the estimator must satisfy the following:

Y3 — I1,.8
(2O ZWN) g8 (y 1 _y@Hg,) (6.38)

where the second equality is from that II,.8 = II58, — I3, = 0.
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Using GY, HY) | and v of (6.27), we rewrite A of (6.36) as follows:

A8, = YW PN —pYYWh3
(8. —vag)H%f’”< 5 )

Y18
YW PNYN3 — B'Y(f)/Z(l’f)'ym
, B
(ﬁ/, _7/16 ) H%ff) (
—Y1s
YN PHYWN3— Qﬂ/Y(f)/Z(l’f)’)’m + 7/1ﬁz(17f)/z(17f)715

(e (2 )

—Y1s
(et (2 )

B —Y1B
ol B\
(8= ) i (
~Y18

where the first equality is from that (I, — PY)Z1/) = O. The second and third
equalities are due to Z(l’f)'ym = ng)Y(f),B and ng)Z(l’f) = ZWD) | respectively.
Consider the minimization problem with respect to 3, and =,

(8.—7) G < 5 )
—TN

. (6.39)
(8.~ ( ; )

AMBa2, 71) =
—N1
The first-order condition of -+, is given by
_Z(Lf)’Y(f)ﬁ2 + (Z(l’f)/Z(l’f))'yl —-0.

This is the same as (6.38), and thus, the maximum likelihood estimator (3,, Y13)
can be obtained by this minimization problem. Therefore, (6.39) is the concen-
trated log-likelihood function for (3, ;).

[it] We first confirm that Lemma 2.1 holds even for a multivariate model. For
gzla ) G)I)Ut

AV = (Dgif), Aol o Al

Tx1
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then, for L of (3.21) we have

LAvVY — 5(9)L +v9

i

Therefore, if the transformation is given by T = Io®L for Av,; = (AVS)/, cee Avff)/
then
N S VR i : T\
Ly = 5 log | TE [AV*iAV*Z} T| - 5 Z (TAv,,;) <T5 [Av*iAv*i] T) TAv,;
i=1

N
N i 1 / ’ -1
= —Nlog|T| - 5 log |€ [AV*ZAV*Z} | — 5 E Av,; <5 [AV*Z'AVM]> Av,; .
i=1

For j/TV*z = V?’
v L N -1
Lon — -5 log|€ [AV*iAV;Z} | — 3 Z Av,, (8 [AVHAV;@‘D Av,;
i=1

N 1
= 5108; [Qon| — B ZAVf QopAV]

)

i=1
where
Q -9 O --- 0
- 20 —-Q --- 0O
Qop = 0O —-Q 20 O ,
O -+ .. —O 20
Q, = 5[AYZ‘1AY;1]
= (I — I,y 4 Dy(I, — IIy) |
and
GTx1 I Avy
_ Ay
i Ay — HGAyitfl ’
I — ’)’,1+,3/2H,12 ,3/21_[,22
9 —_— ! !
I, IL,,

/

= II (say,).
Moreover, for L,

Qe = (I, — TI,)Ty (I, — TIy) .
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Therefore, the parameters of £, have a one-to-one correspondence with those of

ﬁgAi
{Ola Ht/% Qa QE} = {Ola H;a Q) Ql} .

Then, it is sufficient to consider the maximum likelihood estimator éTL in Loa.
Next, we decompose L4 into the pseudo log-likelihood Ls.9 and R, which is

the remaining term related to initial values:
Lon = Loo+Ryo .
For Q;A, we use another expression of (6.18) (cf. Rao (1965)),
(C-BA'B'=C'!'+C'B(A-BC'B)!'BC!,
then,

11 21/
Q_l _ Q2A Q2A )
2A T

<9% Q'+ Q3 (250) 'L

o O
O Qzl > +QO (Saya) .

Therefore, we obtain
N
N 1 Z w; «
RO = 5 log |Q;1A| — 5 2 AVZ QOAVZ .

Consider the order of Ry/n, where n = NT. The following submatrix consists of
the 1st to G-th rows of €2,

11 21/
( QQA QQA ) )
GxT

and let Qg be the (1, ¢) block matrix of the above submatrix. Then, Binder et
al. (2005) show that

Qu = (T+1-)[TQ —(T-1)Q]"
GxG
T+1—t

= TQOT (say, ),
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i.e., QOt = O((T —

~—

/T). For the leading term of Ry/n, put

" "2l (o1l \ =12l
Av; Q55 (257) QoA AV

NE
]~

~
I
—_
»
~
I
[\o}

AV;S Qz)s (901 ) - QOt Avit

Il
—
il
Il
I\

% ,t

I

- g -
o
[M] =

= Z Z Ay;S(I'lstAYit + Ay;sflcﬁQstAyit + Ay;sq@:«;stAyz‘tfl )

NT <
=1 s,t=2
(6.40)
where
T + 1-— S T + 1— t / -
P = ( %g )QOT(Qm) "Qor
Dy = —2IIpPyy )
By = IIydy, I, . (6.41)
Regarding the first term of (6.40), when N is fixed, it follows that
N T
1 ’ (log T)2
N2> € 18y, @1yl = 0 ( ) (6.42)

i=1 s,t=2

Therefore, this term converges in 1th mean to zero. Since the third term of (6.40)
is the same order, we have that

1
_RO L> 0.
n
Therefore,
1

1
“Lon 25 Lo .
n n

Thus, the maximization point éTL of Loa converges in probability to that of Lo..
From the results of Theorems 2.9 and 2.10, the limit of the maximization point is
0,.

Finally, we show that the asymptotic distributions are the same. The log-
likelihood function has the following parameters:

£2A(¢) = 52-0(¢2) + R0(¢) )

where

/ /

¢, = <0/1, vec(ITys), vec(IIy), VGC(Q)/) , ¢ = <¢/2, Vec(Ql)/>

134



Note that £5.9 depends only on ¢,. The maximum likelihood estimator & satisfies
the following:

0= S2(a)2> + SO((}) ’

where
0Ls O
o, = ' 0

From the Taylor series for only s,,

So =

. L1
\/ﬁ(¢2_¢2) = _H_g\/— (¢2)+H¢>2\/— ( )+Op(1)>

Then, the leading term of the second term (1/y/n)so(¢) is given by

N T -~
1 / a¢lst aq)Qst a¢35t
zs A ? A 18— A 1 _'_A 15— A 7
*NT;; Fo Vit T AYi 50 = AVa + AYis 15 =AY
(1ogT)2)
- 0 ,
p( VT

where 0®1,, /¢, stands for the derivative of (6.41) for each element of ¢ evaluated
at (Ab Then,

Ve, —¢y) = —H! fs2<¢2>+op<1>

= \/_(¢2—¢2)-

Therefore, they have the same asymptotic distribution.
When N is fixed, the distribution of v/72(0p, — 61) and /n(0,, — ;) are also
asymptotically equivalent from Theorems 2.9 and 2.10. 0

Proof of Theorem 2.10 : [i] The sampling error is given by
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where A = min VRyo. From the smilar arguments of Theorem 2.9, vV N TX con-
verges in probability to zero. Therefore,

; 1 : B :
VNT (0, — ) = DpOX ) X' POy 1). (6.44
(Op, — 0) (NTX X( \/WX u’’ +o0,(1). (6.44)

Similar to the proof of Theorem 2.9, the first term follows that

v

1 /
$ - L xrpnx®
NT
/ / ' -1 /
N (J I‘OJ) <J I‘OJ) (J I‘OJ> I,
= &.
The second term of (6.44) becomes

1 , 1 : 1 : o :
—— XO'phuyl) = —xW)'z() [ 7z 7)) N AC)N O R
VNT NT NT \/

For this last term,

N
1, e 1 ,
(NyH — = (%] A
SWARR = Zwi(,l)QTuz
VNT NT —
, NT TN
K -
= == 2 Z; wl g, — ‘/N Z} @y, (6.45)
=1 t= =
where Wl[lgl—l) = (wl[lg}, ...,wl[i}}_l)’, w; = (U, ..., uir)’, and

. 1l¢
z(l_Tz ztl’ Uz‘:ftzluz‘t-

The first term of (6.45) converges in distribution to A (0, 0?®) when T — oo, s0
that the first term of (6.44) converges to N (0,0%®'). The expectation of the
second term of (6.45) is given by

N
T ,
Ve wg(}l)ui] Ve [JWZ( herw) (6.46)
i=1

where W;(_l) = (Wio, -+, Wyp_1) is the K* x T' matrix. From the result of Akashi
and Kunitomo (2015), we have that

—1T—1-h
S[W;(_l)u/ui] = (IT" Y E [viu)
=0

J

~

>

/N =

A 1
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For its variance,

Var

Fetn] - qro (L) (7o)

-o(s)

Therefore, this term converges in 2th mean to the expectation of (6.46) when
T — oo.

1 ’ -1 ’ ’ -1 T N
— [ —xWO'pHx) X'z () (7 7 _§ : nWE
(NT i > 4 <Z 5 ) Vv L Mient
i=1

From the above results, this second term of (6.45) converges in probability to the
following;:

bd = —\/gp*
’or ’ -1
= VA 'ILJ <IK* —H*) Q1.8 (6.47)

under N/T — 0 < d < oo, where regarding the representation of (6.47) it holds
that

I, = <Z(f)’z(f)>1X(f)’Z(f) RN
In addtion, we notice that

& [V;tuit] = & [V;tvgt] B

— * IG

since v;; is defined to be included as the first G elements of v};. Therefore, from

Slutsky’s theorem, (6.43) converges in distribution to

N(O,O’2‘I)71) + bd .

[i7] For the sampling error of the corrected estimator, we have

VNT 6y, —0) = VNT (B, —6) + \/gb* +o,(1) .

Then, it is sufficient to show that

1o’ , o sl —lu* o
pro= & 1] (IK*—H> Q1.3
= p,
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where 8 = (1, —BQPL)' is the consistent estimator for 3. Regarding I and Q*, it
is necessary to estimate the companion reduced form separately:

¥ *(f) Y * *
J = (z0z0) 2Pz 2 om
Q= 7z (Tg- — P*(f)) zxf) Py QF
K*xK*
where
Zi({) - (ZT(()f)7 e ’Zﬁfzw e 72%5)? T 7Z*N(§’)*2> )
K*xN(T—-1)
K*%N((f?)“—l) - (Zlg )’ o ’Zlg“zl’ e 7Z]\§1)a T 7ZJ\§T)*1) ’
’ * ’ * 71 * !
pH = 7' <Z () Z_({)) AL
Thus, we obtain the desired result. From the relation of (3.11), for k =1, --- |, K*,

the estimation equation of the companion reduced form becomes
rox(f) " () ")
ez, = e I17z,7) + evii) .

However, when the identiy e}CH*/ =e, (=1, ---, K*) or Z*(Ve, = Z*_({)eg
holds, there exists no error in estimation:

K *(f) g% -1 *(f) rpx
e, = (z20'z0) (202 e

= €y.

Proof of Theorem 2.11 : Following Hahn (2002), we consider the second formu-
lation of (3.24) and use the relations that a; + u; = B'(m; + vi;) and

11
I — ™11 12 _ (71'1, H2) '
I8, Iy K x(14Go)

Then, the log-likelihood function is proportional to the following under the limited
information method,

N T
NT 1
L(g) = 710g|‘1’| 5 DD iy,

i=1 t=1

where ¥ = Q71
@' = (vec(P), Oﬁ,vec(l'[é)',ﬂil), 71'52)/, e ,W](\}), 71'5\2,)/) ,
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and the error term of the reduced form is as follows:

vie = ( z(tl) — BoILyzi 1 — ’712521 - 7Ti(1)7 yz(f) — 2z, 11 — 7"'2(‘2) ) -
From the discussions of the technical lemmas of Hahn and Kuersteiner (2000), the
likelihood ratio process of the VAR model is asymptotically shift normal even if
it includes the incidental parameters. Under assumption (A4), for the localized
parameter ¢ + 6 /v NT around the true value ¢, we have

6 ! 1 !
—_—) — =A §— - A §)? 1
where
As —L N, lim E[(A'8)),
N, T—o0
and the elements are as follows,
A, = (Ay, AL ALAL AL AL

If the error term follows a normal distribution, then

!/ v NT / ]' /
Ay = 5 vec(2)" — ZZ(Vit®Vit) )

A/ — 1 i ivl ‘I’ Wz(tllll + (Jll(ll"l'l)/
VNT =3 ’ i 0 0
= Aiv'y + A,/u'y (SCLy,) )
1 N T BZW;tfl 502“’;1‘,71
Ay, = WZZV;\P Wit—1 7 0
i=1 t=1 0 W;tfl
1 K& | 52(J/Mi)/ Ba, (J/l'l’i>/
Ly~ DD IN7A 2 N ICU (N IR B
0 ')
= AiuH + A:LH (say, ),
T
1
Al = —> vjWlg, (i=1,---,N),

where J/K1 is a matrix such that WZ(-tlzl = J/Klwit_l. From (3.12), the term includ-

ing the individual effect p, is expressed separately. To derive the lower bound
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!/

for the structural parameter 8; = (3,,~})" of the first structural equation, it is

easier to derive the lower bound for 8, and Ily first. The lower bound of the
regular estimators is obtained by the following minimization problem. For each
j=1- (Gy+ Ki + G3K),

min & [(e;Al)ﬂ _¢ [(e;.Al — ALY — A8l

Minimizing with respect to 5@ and 6%], the lower bound can be evaluated by the

inverse matrix of £[A, All], where

Al = (AL ALAL,), AL=(A%, -, AL).

Ty

Therefore, the optimal solution as the linear projection is as follows:
. - , -1
Y AyA, AyA Ay \
( 8! AN, AA A, )T
— , _1
_ s AgAy @) < 0 / 7
Aﬂ-Alej

0O AA,
where the second equality is from that a third-order moment of normal distribution

IS

is zero. Therefore, for each j the optimum solution becomes 6@ = 0. For 57@,

ol = (E[A AL T E[AAle]

Ur

is the optimal solution. Therefore, the variance-covariance matrix of the residuals
is given by
EIAA] = E[AIA] -~ E[AA(E[AAL])E[ALA]
= E[ALuAL, + AN ] - E[AAT](E[AAT])TTE[ATA],

(6.48)
where
AL, = (AL AL AL, AL = (A AL A .
In the first term of the second equality of (6.48), we use the following:
E[A1,A =0, (6.49)

this is because that
Al = A1~w + AM s g[lIIVz‘tV;tlIl(wit—ly O)/] =0.
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For the second term of the second equality of (6.48), using A, = (1/VNT) >, >, A,,,
we have that
E[ALAT(E[ARAL]) E[ALA]
= S[AMA;](g[AwA;])ilg[A;Au]

NQ O - O .
Z=WA

1 O NQ O - T S

= NT(TAM\II"">TAMN‘I’) o : /
T A

O - O N@) \NTTCu

1 & ,
- ﬁ Z AW‘I’AM

= £lAA)].
Therefore, we obtain the lower bound of asymptotic efficiency for 8, and Il, as
follows:
N
Von, = lim <8[A1A/1]>
N, T—o0

= lim (E[Ap,ALD""

N, T—o0

Thus, this does not depend on the individual effects.

The lower bound for the structural parameter 0 is the upper left (Go + K;) x
(Gy + K7) matrix of V. It is difficult to directly evaluate this submatrix when
G5 > 2, so that we consider the concentrated log-likelihood function of 8. If w;
could be observed without individual effects, the log-likelihood function would be

given by
N T
NT 1
L= —log|\If = 522621‘,‘1’6@% ,
i=1 t=1
where
. 0 w? _w'  TII,) 06.50
€t = ( /62 22Wzt 1 /62 12Wzt 1 71Wzt 1) Wi w1 11o) [06.50)

1 2
= ( /62 22Wn 1 Wllwz(t)law() _Witfll_[?)' (6.51)

The formulation of (6.50) is the parametarization of Hahn (2002), and under the
log-likelihood function £*, the lower bound is also the same as Vyp,. Although
(6.51) is the parametarization of Lemma 2.2, the LIML estimators of the struc-
tural parameter 6; obtained by (6.50) and (6.50) are numerically equal under the
constraint v, = 7y, — II153,. Therefore, the concentrated log-likelihood function
is also the same. From Lemma 2.2, the function is given by

0'G*6
6'H*6

A (61) =



where

* Y*/ * * *
G* = ( 701 )P (Y*,z0) (6.52)

is the (1+Gy+ K1) x (1+Gy+ K) matrix and P* = Z*(Z*Z*)"'Z*. The matrices
that construct (6.52) are Y* = (Y, Z*' = (Zgl)*,), and Z*' = (Z!"), which are
(1+Gs) x NT, K1 x NT, and K x NT matrices, respectively:

*/ ! !
Yi = (leih o 7J1WiT> 5
(1% _ ! !
ZZ- = JK1W1‘0,"' >JK1WZ'T—1 )
*/ ! !
ZZ- = Jwig, - Iwip_y ) .

H* is also defined in the same way as (6.52).

From the concentrated log-likelihood function A*(6;), the asymptotic variance
matrix of vV NT(0—8,) is derived as 02® ! under the condtion that (1/n)tr(P*) =
K /n — 0. Therefore, we obtain the relation that

/ _ 2mx/-1
G2+K1V9H2JG2+K1 =o°P )

where J¢, . = (Igo4k,, 0). 00 O

Proof of Theorem 2.12 : Following Anderson et al.(2010), we denote a consistent

estimator as follows:

N 1
Bgzqﬁg(_Gq(zb’f)) , g=2,--,1+Gy.

n

For any 3, and ®, the following identities holds in the probability limit because

of its consistency,

By = ¢g(®)

(2

where ® = (p,() (9,0 =2,---,1+ Gy) is the G5 x Gy matrix, which is defined by
the VAR process in dynamic panel models. Since 2* = € in the case of VAR(1)
model, it holds that

Q[ﬁ% IGQ]) ) 9:2,"',1—0—G2, (653)

® = II, <i(1‘[/)sﬂﬂs> II, .

s=0
Although we would like to partially differentiate the identity of (6.53) with respect
to B, and p, e, To = 3200 (IT)*QII* is the function of II, and I = TI(3,) is also

S
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the function of the structural parameter; i.e., I'y depends on B,. Then, the partial
differentiation can be defined by the following lemma.

Lemma 2.4 : [i] For g, put §, + h and take
vee(Q) = (Ig2 — ID, ® II, )vec (T + Dyy)
Dy, = Iy, (IL, Iy,) " (IL,TII, — IT,, T Iy, ) (I, Iy, ) ' IL,, .(6.54)

Then, there exists an expression equivalent to the following as h — 0,

99,
o5

where 5;9) =1 and 5{5;,) =0(g#Y0).
[ii] Take €2, as follows:

5}?) ,

vee(€2) = (Iee — IT' @ IT )vec (FO ¥ HQ(H;HQ)_ngh(H;HQ)_ll'I;) ,

where the (¢, m) and (m, ¢) elements of Dy, are h, and the other elements are zero.
Then, for ¢,m = 2,---,1 + (G, there exists an expression equivalent to the
following as h — 0,

0oy
s 9,
apﬁm

Proof : H;h and H;1 in (6.54) denote the coeflicients of the reduced form corre-
sponding to 8, 4+ h. rank(IL,,) = Gy because of consistency, so that (TT,,TTy;) is

nonsingular. For 8, + h, I';, and ®;, are expressed as follows:

®), = II,T,I0y,
vee(Ty) = (Ige —IT, @ I, ) " tvec(92) |

where I'j, stands for the variance-covariance matrix of the VAR process and the

second equality is from that
vec(ADC) = (C' @ A)vec(D) .

Since Q@ = B'X(B!)’, Q is the free parameter for B3,, where B is the coefficient
matrix of (4.11) and & = E[u,u;,].
Therefore, we can take vec(§2) = vec(€2;,). Then,
vee(Tpn) = (Ige —II, @ I, ) " Lvec(£2;)
= vecC (FO + Dlh) .
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T}y, is the symmetric matrix, and it follows that limj o [Ty + Dy,| = |To| > 0,
where I'y is positive definite because 2 > O. Therefore, considering all leading
principal minors, we can take a positive definite matrix in a neighbourhood of T'y.
Similarly,

Q) = Ty — I, T, 10,

is also the symmetric matrix such that limy,_, || = [€2] > 0 and belongs to a
parameter space of variace-covariance matrices. Then, the corresponding ®, is

given by

@y, = I, T5I0y,
= H;h (o + Dyp,) Iy,
= ILT,II,
= .

Thus, ®j;, becomes invariant. Consider the difference in the following identities:

0g(By + €gh, ®rn) — dg(Ba, @) = (B, + h) — By
= Dg(By + €gh, @) — ¢y(B,, @) = I . (6.55)

Therefore, the limit of (6.55) divided by & is the same as the partial derivative
with respect to ;. For ¢ # g, it also holds that d¢,/05, = 0.
Next, we consider the case of [ii]. Take vec(§2) = vec(§2,), then,

vee(T',) = vee (T + TI5(TT,T,) " T, Dy I (T, TT,) T, )
Therefore,

®, — II, (1“0 4 HQ(H;HQ)*lDQh(H;HQWH;) I,
= @ —+ D2h .

For fixed 3,, the difference in the identities becomes

Cbg(ﬁza (I)h) - ¢g(ﬁ2’ ‘I)) = 69 - Bg
= $g(Ba: @ + Dan) — ¢4(B,, @) = 0. (6.56)

The limit of (6.56) divided by h is the same as the partial derivative with respect
0 Py = pry- U

We prepare the lemma for the order of (1/n)G7).
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Lemma 2.5 : Suppose (Al), (A2), and (A4’). For T'— oo and any N,

1 '
G@:V%(E%WW”—G%)=OAU’
where
1 1 T-1
b
Gl — 5[ Z Y(f)} w7 2 Ele vl
t=1

Proof : We show that the variance of each (k, g) element is O(1).

Var ekG eg]

T
= Var |—= yZ z
L

(6.57)

T—1
1 k k k Ko~ k
= Var | —=3 wilwl = (1= e)wiugly — el g —wil ol + ol ol |
L t=1
where the first equality is from the assumption of 7.i.d. for i = 1,--- | N, and the

second equality is due to (6.23). It is sufficient to show that the variances of the
first to fifth terms are bounded.

First, the variance of the first term is O(1) from the result of Akashi and Ku-
nitomo (2012). For the fifth term,

& (wz[ltﬂlowz[i]]T)} = ¢ % (\[Z Wiy, 1) <\/—Z zh+1>

then
iT 1w[k] IJJ[] _T T-1
Var \/thl it—1,0 th] < TZ \/l_f\/i—t ;O \/gm)
_ oW
- T
= 0(1),

where the first and second inequalities are due to the CS inequality. For the fourth
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term of (6.57), we obtain that

VCLT [ zf} 1wz[t}Ti|

2
= & |l alf)?] - EnlB e + eiPlerah) - (el i)

< \Varlul By Varlalf) + el eal)
1
= O ({) + O (;) .
Therefore,

19 RS L,
szt 1wth] < 210 W O( %)
)

Similarly, the variances of the second and third terms of (6.57) are evaluated as
O(1). Since & [G(lb)] = O by definition, we obtain the desired result. O

Return to the proof of theorem. We represent the partial derivatives by the fol-
lowing (1 + G2) x (1 + G2) partitioned matrix. For @ = (6;),

0p .
Tw@ — (=29 =92 ... choi=1 ..
(aeh]) (g ) ’G’ ’j Y 7G)

(Y
P Ty
The partial derivatives with respect to 3, and pg,, become
)00
tr (T = 9 ,
(75] J

tr(T<9 a@> = 0,
Opn;

then, the following conditions are obtained by the result of Anderson et al.(2010),

279) @ﬁ + 207 = e, ,
7-11 6262 =+ 7'2 62 + 62 (g) = 0. (6.58)
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Consider a linear approximation to ¢, in the following. Put

1 e
g \/ﬁ(ﬁG;b,f)_G(l%) @) 1G§%>)

(s
- b b ’
sl
1oy
GY = \/ﬁ<ﬁz<”> z<b>—G§;}),

where
() _ 1 ®)'7®d) | —
Gy = €& { YA/ T 1 E Elz

Smilar to Lemma 2.5, we have that G(zb) = O,(1). Then, using the Taylor series
for S® around (Gg%), Gg%)),
S® =0,(1). (6.59)

From the mean-value theorem, we have that

Vvn (¢g (%G%b’f)) — &g <G§%) (GQO) 1G10)>

= Vi (s, (yee0) - 5)

= A or s o (T50)
= D 2 1 (TRSE) 40

where the first equality is from [iii] of assumption (A4), and in the secon equality,

(7'1(11, ’T;*) ,VeC(ng*) ) denote the derivatives evaluated at some mean-values. For

the remaining term, when 7" — oo,
b ' (b b
1 = (= s+ 2l - Y o (1 - TR)SY)
= 0p(1) X Op(1),
this is based on [i], [ii] of (A4), and (6.59). Using (6.58), we obtain the following

expression:

Vi (B, = 8) = [ru + (0. )] 898+ 0,(1).

where

2
7'1(1)

Tl = : )

(1+G2)
T
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The asymptotic distribution is as follows:
Vi (B:—8) = (BSUB)T+ (0, @7)SVB + 0,(1)
= &0, IG2)H'%Z(”)/u(f) + 0,(1)
4 N(0,0%®7 1) |

where the second equality is from that Gg?,@ = (1/(T — 1)) Ztg[zgf)_lug)] =0
and that under rank(P®) = K < oo,

-1
gstg — (Lawzo) (lzoze Loy,
i " "

L0,

The asymptotic normality is due to Theorem 2.9. U

Proof of Theorem 2.13 : Suppose that [€2¢] > 0. For ¢t > 1,

y(l,é) y(l,é)
G = II Z(%Tel) + & + Vit
Yit Yit—1

t—1

= (LTI -1+ vy,
h=0

since yl-(g’g) =0(g9=1, 2). Then, for t > 1,
Y10
€ [( Z(t27£1) ) Ez] = (12 —1I )_1(12 —1I til)ﬁiﬁz‘ )
it—1
this is because that &, is also a constant by the following:

Ei = _(]:2 — H/)WZ‘O .

Fort > 2,

(1,6)
( Y ) v;th] =II"'Q, 1<h<t-1),
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After some calculation, we have that

y(u), 1 2
¢ [( o )JT< O >>]
yz —1

The following relation exists by the definition of Qr:

y(l,é)/ y(l,e)'

7,— 1 2 i.— 1 2

N Vud | Qe v == || T | I, V)|
Yi—1 Yi-1

Put
1y _(12)
1 N ’ ’ T T
o) - (1] 1)
mr mr

then, each element is O(1).
Using the result of Hsiao and Zhou (2015), the score function s1;, is evaluated
as follows:

N

1 1,0/ 1 1,0/ 2 N @

N Zé’ [wllygﬁl) QTVZ(- ) + w12y§771) QTVE )] = —NW(T )
=1

We evaluate €2¢ at Qy, then,
U, =Q+TQy .

Therefore,

N

1

7 2 [ Iy )

X v

5 o [0 + TE™) + 0w + TE )]
i=1

+ it [ @iz + TEVE®) + 9f (wn + TED?)|

N
) W(Tm[ ' (w“”N > )W%Q <w21+T%Z£§2’£§1)>]
+7T(12) [ 11 <w12+T Zg ) Mt <w22+T 25(2 )]

== 71',5,,11)7
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since

0 @/)(TH)@/)T,H + w(Tm)@/)T,m =1, w(TH)@/)T,m + @/)(TlQ)wT,zg =0,

because \IIT\IIE1 = I,. Therefore, for any N and 7', we obtain

1 N
~ 25[811,i] =0,
N i=1

and thus, this is also 0 under N, 7' — oco. The same is true for (s12,, s22,). For
the score function of £2¢, we use the following:

N N(T - 1) N
) log ‘Q§v| I — log |Q‘ -3 log |\IIT| ,
00! Tormg ., 1 (00
Owe 11 EZ L Z R A
..%1 ..%2
o1 7an | (say,). (6.60)
T Yr
We evaluate ¢ at Quy,
1
1 0L
N 8@05 11
1T
= -3 &;TTT o ZE [wn (1,6) JTV(“] +w12 (1,0 JTV(Q e)]
ZE [wm (20 g (1@ +¢22 2.0/ JTVZ(M)]
1T 1 /- . . .
- 79 &,T 2|2 ) ( %le,u + @/)%2¢T,12 + @/)%WJT,% + +w:2p2@/)T722>
T
1T 1 T
D) ‘éTTQf 9 {(_ ‘éTTZ‘2> ( %17?T,11 + i/fész,lz + 1/1%11/1121 + w%Q’l/}T722) — 1]

= 0 ,
since

(Vrra1 + U Yrae) + (Vi re + 0P Yre) =2,

which is due to W;W,' = I,. Similarly, the expectations of score functions for
other elements of €2, and €2 are zero. Therefore, the estimators are consistent from
the assumptions. Then,

Qe — (R +0(1)) = 0,(1)
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since Q¢ — Qy = 0,(1). That is, Q¢ is the limit of €.
We consider consistency under [€2¢| = 0.

|Wr| = Q| + T [(we 20011 + We 11W22) — (We 2112 + We 19wa1)]

where T?|Q¢| = 0 does not appear. For some ¢¢ it holds that Q¢ = L§L/£ by the
assumption |Q¢| > 0, and thus,

W] = |0 (1 + TL;Q*L&) > 0.

Therefore,

3\11;1 _ _TUJQQ lIl;l n 1 0 0 ’

8@05,11 |‘I’T| |‘I’T| 0T

where each element becomes O(1). This is the same as (6.60), and thus, the
consistency is obtained.

In the following, |€¢| > 0 is assumed again. Then, for the Hessian, we have
the same result as that of Theorem 2.7. Under the assumption ||§;|| < oo, (6.11)

holds. In addition, for w; = (wft1 ), wl(f )Y/, we have the following state-space
representation:
Elwul = H/tha
t—1
& [witw;f] = Z QI + 11! (me;0> I’ .
h=0

Using these relations, Hy, becomes the same under 7" — oo. Therefore,
;N
g - ¢
VNT (¢, — ) = —Hyj——=> s/ +0,(1) .

Consider the asymptotic normality. Although for each i, £ [SZ@] is not zero, the
sum becomes 0:

R R -
Al - A - e[
s, = S, S
NT <= NT = NT =
T
_ Z ( © _ [ (é)])
= S; Els
NT ‘=
For the variance-covariance matrix,
T
NT <5 [SEZ)SEZ)] - H@(-Z)HEZ)> = —Hgy (6.61)



where p,gg) =& [sgg)]. This is because that the first term converges to G, from the
proof of Theorem 2.7. Regarding the second term of (6.61), using the fact that

p,lw is O(1) by W' = O(1/T) of (6.12), we have

11 & 1

L1~ o0 _ (L

F omm =07
For non-zero vector a, there exists the fourth moment of

1 DOMOS ), @
a (& [sg S; } TR ) . 6.62
vT ( (6.62)

Thus, the generalized Lindeberg-Feller condition holds. Therefore, the asymptotic
variance-covariance matrix of v NV T(gAbTL — @) is —Hd_);, so we obtain the desired
result. O

Proof of Theorem 2.14 : Gflf ) i decomposed as follows:

G =gl + e’ 6l +al (6.63)
3x3

where

g = eI, zVpPhzi,e,,

nl

Gg};’b) — @;H;nz(f)/P(b) (V(f), 0)’
GYY = (VO 0)’P<b> (V¥ 0)

H;n _ 0 292 7Tl2/n
2% (24 Kon) 10 0

= (H,h? H/1n> (Say7)>

2x2

’ ( T2 9
Ton = T/ "y T .
1xKop V KQn \% KZn

We prepare the notations as follows:

£\/ f/ f/
K:x)n < g)’.“’ gzl)’
7 ! Zb/ Zb/
Kn(i)n <(1)” ()1)’

where K,, = 2 + Ks,. From the definition of the forward filter,

ng) = W;_V;T

KnxN



where

f T—t N
=/ t */ !
W2,t = T _¢ o <Hn> W,
o — (T IL,,
KnxT}(n @) 7T33IK2n ’
o, — T11 52722
1 0 T 9
m, — (” 727”2”) ,
2n
f T—t
vV, = — ®, Vi, , VIi=(),
h—1
&, = » (I
s=0

For large K,,, we present the following lemma.

Lemma 2.6 : Suppose the assumption (Al’) and (A2). For N, T, Ky, — oo,
L1
[i] n

[é4]

1

1 A P

[iti] —IL, W W,Il,, — O,
n

I, W,W,II,, % &*

o2x2’

!/ jay e p
—II W, W,II,, — O
n m 2 244 2><2’

1 ! ~_
] I,V VoL, 25 0,
(0] lv(f)’P(b)V(f) Ly 0O .

n 2x2

Proof : [i] W) = (V~V/1t) is the K, x n matrix and the sum of periods is given by

1 T-1

1 / oy A ad / !’
IL, W Wi, = n Z fL, W, W IT,
t=1

n
T-1 N

- % DO Wi aw, (T,

t=1 i=1
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We first show that the following is covariance stationary (¢ =1, ---, T — 1) even
when K5, — o0,

!
Witn = Hm Wit—1 -
2x1 2x K Kpx1

For all ¢, it holds that E[w;,,] = 0.

E |:Wi(t+h),nw;’n] = H;né} [Wz‘(t—l—h—l)w;‘t—l] 11,

= II,(IT)"To, I, (6.64)
where
Lo, = 5[Wz‘t—1W;t_1}
_ (1T,
'y, U§IK2n ’
2 w3
7 1 -3’
(H*/)h _ Hlf thH;n
" O 7T§L3IK27L ’
h—1
By = Y mpILT0
s=0
Therefore,

3 Wi(t+h),nW;t,ni| = H/ll (H?I‘l + (I)th;nI‘ln) Iy, + 7T:;L:Sl_l:/lnI‘lnl_Ill
T, (H{T;nnln + ag«bth;nHln> + o2l X1, 0, O
We show that H;nﬂln, H;nﬂln, HllnI‘ln, H;nI‘ln, and I'y converge to a constant

under K5, — 0o. Since

Kon

/ 1 9 9
2n k

=1

the following do not depend on Kj,,

2 2
H/lnHIn = ( 77(-]2 8 ) ; H/2nH1n = < 627;2 8 ) 0
T
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We derive the 2 x K5, matrix I‘/ln. For k=3, ---, 2+ Ky,,

EfuPu] = TS ns s
K2n s=0

1 To02

Vv Koy, 1 — moomss

V K2n

where the first equality is from that 5[ wg; 1wl(t )1] =0 and 5[ W, 1'U§ )] = 0. Simi-

larly, E[w; )w(t)l] is derived. Then,

1 B212 . 1 B2v12
I‘/ — VKan 1—m11733 VKon 1-m11733
In 72 . 712 :
VKQn \Y% K2n

Thus, II,, Ty, and IT,, T';,, do not depend on K5,. From the independence between
the K5, variables,

2+K2n

00
2 N~ >
22 zt 1-s)
— K2n (
z :7T22wz(t 1—s)

Var [wz(tz)} = Var + Var

5 ea]

Wa2
1 — 735

(1)
r-e (1) (o )]
Wiy

does not depend on Kj,. From the above, the elements of autocovariance matrix
(6.64) are finite and depend only on the difference h. Let

= Var

Similarly,

T’(h)g - e 5 |:WZ t+h), nwzt ni| €y

be the autocovariance, where e; =(0, ---, 1, ---,0) whose g-th element is only

unity (¢ =1, 2). Under h — oo, Hlf, ®,;,, and 7& converge to zero, so that

> [r(h)g)* < oo

When wy;,, follows a normal distribution, the Lindgren et al. (2014, Ch. 2) show
that

T—o0

1 /
? Z Witvnwit,n & |:Wlt lezt n] = @ )
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where
®* = II, T\ 11y, + IT,, Ty, 1T, + IT, T, ITy,, + o210, I14,, .

From the 7.7.d. assumption,

T-1 N

1 ! =/ jad p * 1 !
~IL, W, WiIL, 5 @ — E;Z‘(l — Wit n Wi
For the second term,
T-1 N
1 log T
[EZ | ft € Wztnwztneg| ( ) )
t=1 i=1

since (1 — f2) = O(1/T —t). Therefore, this term converges in probability to zero.

1] W), = (V~V/2t) is the K, X n matrix and it follows that

| = 9 T—t N
P . t / & £\ S
£ {EHMWQWQHM} = ; T 22:1 I, (TL; ) Ty, (IT;,)° T,

/ / h
Similar to the result of [i], for any (h, s), IT, (H;) Ty, (IT})° I, does not
depend on Ky,. In addtion, |m1|, |me|, and |mss| are less than 1, so that for any
t,

! — / I h S
e, Y I, (H;;) Lo, (IT5)° e, = O(1) .

h,s=1

Then,

since >, O(t72?) = O(1).

[ii]) W, = (Wi_1,0) is the K, x n matrix whose elements consist of (6.69).

1 ! iy A ad
£ {ne T WOWOHmeg} _
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where f? < 1. Define

~+
|
—_

Wit,n =
2x1

Wihn
0

~ | =

i

it follows that \/z_fe;v’vl-t,n = Op(1). Therefore, we obtain the desired result.
[iv] Vi = (V) is the K, x n matrix. Using the fact that E[vivy] = O (s #t),

1 1 T—-1 f2 T—t
£|-e HmVTVTHmeg} — Z et Ze I, &,Q:®,II,e, .
t=1

T
From the following relation,

) Q: O
Qn = 1 5
O w32 IKQn

we obtain the expressions that

SIS

, N h—1
I &,0,° = ( ZHHHSQ‘ > I, &0, + wggwg I, | .
2x Kpn s=0
IT,, II,, does not depend on Ka,, so that for all A, e;H;nq)hQZq);leeg = O(1).
That is,
T—t
> e I, @, ®,I0,e, = O(T —t) .

Therefore,

1 ’ A IOgT
£ {ne H VTVTHmeg] :O< T ) )

[v] VW' = (Vz(tf)) is the 2 x n matrix. Let Péb) = Z;b) <Z;b)/Z§b)>_1Z§b)/ be
the projection matrix consisting of the K5, strongly exogenous variables, where
Z(lb)/ = (zgtl_bf, zgf_bf) is the G, x n instrumental variable matrix consisting of the
G, = 2 lagged endogenous variables. We use the decomposition for the projection

matrix (cf. Amemiya, 1985),

PO =pP 4 PO (6.65)
Then,
]_ / / 1 ’ ’ 1 ’ I =
ﬁegv(f) POVWe, = ﬁegv(f) P;b)v(f)eg + ﬁegv(f) Pgb)v(f)eg . (6.66)
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where

=0

b) rp (b Y ~5) )\ "L (b)) (b
= b (2aba) avap,

©

1

b b
P = 1,-pPY.

'®)

For the first term of (6.66), using the fact that E[Vg)vg)/] =Q (s=t)orO (s #1),

n g

1 ! ! 1 !
£ {—e v Pgb)V(f)eg} - ¢ [—tr (Pg%gﬂeglnﬂ
n

Ky,
= e Qe

n 97
— 0.

The first equality is from that the K, variables are strongly exogenous:
€ [V(f)ege’gv(f)"ng)} _ ¢ [V(f)ege;v(f)’} .

For the second term of (6.66), we consider the usual normalization because G, <

00!
L v pOvine — Lovero®zo (L0 ommm) Lo q®yve)
1x2 2%2
For the third term,
N 1wy | N
ﬁzpqumeg = Ez§>V<f>eg+ﬁz§>Pg>V<f>eg (6.67)
5 Do,

since the first term of (6.67) converges to zero by (6.77), and the second term
becomes the following by the CS inequality,

1

1
1, ’ 1, / 2 /1, , 2
e 2y PYVUe| < <5ehzﬁb’ Z(lb)eh) (5egv<f> Pg”>v<f>eg)

Since Ky, /n — 0, the lemma is verified. O

We return to the proof of theorem. Z()" is the K, x n matrix as follows:
70— WV,

jads

= (Wo o Wi) = (Vi - Vi)
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Then, the first term of (6.63) is decomposed as follows:

]_ ! / 1 ’ =/ = 1 / =/ g
11, zHOPOzW'1, = —1I, WPOWIL, — —II, W POV, II,,
n In n In n In

1

/o~ ~ 1 ., ~, -
——II, V;PYWIIL,, + —II, V., POV,II,, .
n n

(6.68)

Moreover, this first term is decomposed as follows:

1

| ST 1o s s A
—1II, WPOYWIIL, = —II, W,POW,II,, — —II, W,POW,II,,
n n n
1 ! gy ) = 1 ! gy ) =
——II, W,POW,II,, + —II, W,POW,II,,
n n

= Gui — Gni2 — Gui2 + G (say, ) .

For the backward filter,

fth'tfl = Zz(f)_l + %(Wz'tZ + -+ WZ'7,1) ,
= 2y + Wi (say,). (6.69)

Using this expression, the K, X n matrix is given by

W, =2 + W, (6.70)
then,
Gy = %H;nzwyz@nm + %H;nz(”)/VNVOHm
I, WO ZOTL, + T, WP WL, (6.71)

Since the maximum eigenvalue of P is unity, so that this fourth term is evaluated

as follows by [iv] of Lemma 2.7,

1 / ! jaduy ) = 1 / ! [y e
EegHInWOP(b)WOHmeg < eI, W Woll,e,
0.
Similarly, the first term of (6.71) becomes
1 ’ (b)/ (b) ]_ ! [y B ad 1 / jadi A ad
—11,Zz®'z011,, = ~—II, W,W,II,, — —II, W, W,II,,
n n n
1 / il S ad 1 / jai el
— I, W Wil + —IT, W WL,
R (6.72)
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because of (6.70), [¢], and [ii] of Lemma 2.7. Therefore, we obtain
1 p *
-G, — .
n

Since (1/n)G,,13 converges to O by [iv] of Lemma 2.7, and P® is idempotent, we

1 ? 1 1
(eganmeh) < (eganneg) (ehEGnmeh) -

Thus, the first term of (6.63) also converges in probability to ®*. Since the fourth
term of (6.68) can be ignored by [iv] of Lemma 2.7, it holds that

have

1
G e,
n

nl

For the fourth term of (6.63), it follows that
1
by [v] of Lemma 2.7. Therefore, we obtain

1 ,
-GY¥» X G, =090, .
n

3x3

Regarding (1/ n)HgLf’b),

n X n

1,f)
lH(f,b) _ l ( y( h ) (y(l,f)’ X(f)) _ lg(f,b) ) (6.73)
n n n

Thus, evaluating the following is sufficient:

(1.5
y !
( XU ) (y©, x0) =1 + 7Y + 1Y +HY)

where
HgLfl) _ @;H;nz(f)/z(f)l-[m@“
HY) = eI,z (V. 0)
HY) = (V¥ 0) (VY 0) .

(1 /n)H(f ) converges in probability to Gg by using the arugumens of (1/ n)G,(fl).

nl

1/n)HY) converge to O. For (1/n H(f),
n2 n3
Tpun vy = (2 0)
n " 3x3 0 0
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Therefore,
Lgun _»
—Hn7 — HO .
n

Following Akashi and Kunitomo (2015), we derive by = /(8 — ) under many
instruments variavles, where @ = (1, —6,,). Define

For Gi,, it holds that (1/y/n)G,s = O ( ) by the argument of (6.77) and
(1/4/n)Gy; fb) = 0,(1) by (6.80). For G% , the cross terms that appear from
(6.68) to (6.72) are O,(logT/T). For instance, the cross term of (6.72) becomes
1 ~ ~ 1 T-1 f2 t—1
E [Enlnwlwonln} = T Ttg [Wit,nzwih,n]
=1 h=0
-1
1 1
= 720 (5)
=1
ogT
= O :
(F)
Using the result of Lemma 2.6,
~——log T
G, = Op(1> +Op( NT T )

= Op(l) )

because vVNT /T = O(T~/*) by the assumption. Then, we have that Hi, =
O,(1). Since X\ and 9DL are the continuous functions of G%f ¥ and Hflf ’b), AMp =
O,(1) and b; = O,(1). Substituting these into (3.48) and using G¢@ = 0 under
K,/n — 0,

1 1
)\1n 1 )\1n 1 1

= H,.0 H,+ —=H;, | —=b
ff1+f<°+\/ﬁl)¢ﬁl
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By multiplying 6 on the left of (6.74),

0G0
- 0'HW0

1n + Op(l) .

In addtion, multiply by (0, Ig, x,) on the left of (6.74) and substitute Ay, then,

1
B8

QB
0

¢*\/ﬁ(éDL - 01) = (07 12) <I3 -

0’) G1,0 +0,(1) . (6.75)

From the relation that ©,0 = 0,
]_ ’ ’ ’ 1 /
G1,0 = ﬁglﬂmz(f) POul) 4 ﬁ (V(f), 0) POu)

Therefore, we obtain

. 1 / 1 '
®*\/n(0,, — 0;) = %Hmz(f) POy 4 % (u(L,f)’ 0) POu) 4 0p(1)
(6.76)
where
ull = (),
u)" = (0,1 (L, — Q,B'B v,
1xn 8'Q3

In the following, we evaluate the effects of the forward filter. From the relations
that

1
UZ(,{) = — (up —Upr) ,

Ji

and b; = f;, we use the following expression:

b - -
Zz('{) = Zz(t) + (Wit—1,0 = Wit—1,1) -
Kpx1

Then, the first term of (6.76) becomes the followings by P®Z®) = Z®)

1 / / / 1 ’ !’ / 1 ’ / jad jad !
%egnmz(f) POw) — %egl‘[mz(b) ul) 4 %egnm <W0 — WT) POy
]. / ! /
= %egHmW u— T11g — T12¢ + T13g — T14g > (677)

162



where

Tg = \/_egH W u,
’ !/ _ 1 ’ = _
Tiag = %egﬂmw ur — %egHInWOUT ,
]_ ’ / = = ! b
3y = %egﬂm (WQ - WT) P( )uN
]_ ’ ’ =~ =~ ! _
rug = e, (Wo - Wr) POuy_,

and the notations are as follows:

u = (ult) 9
nx1
uA

u. = (Uie) , Ui = TZ: )

_ _ 1

ur = (Uir) , Uit T 1+ 1( i+ )
5 o (ﬂit,T)

T~ — Y ;

[

WO = (V_Vit—l,O) y Wit—10 = (Wit—Q + + wi7_1) ,
Knxn

W, = (V~Vit—1,0) )
WT = (VNVitfl,T) ) ‘X’itfl,T = ﬁ(wit + -t WZ-T,l) .

(***)We show that the terms from 7114 to 7144 are asymptotically negligible. For
T11g, using &[r14] = 0 and the i.i.d. assumption,

T-1

— Z Var [e Wit nuzt}

logT
o(51).

where the first equality is from that Wi, ,u;s and Wy, u; are uncorrelated (s # t).

Var[rii,]

Regarding the first term of 794, similar to the result of Akashi and Kunitomo
(2015),

T-1T-1

T E E 5 |:e Wzt nuzt Tuzs TWZS ne ]

tlsl

O <logT

T
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The second term of r54 is the following by the CS inequality,

e |l e Woarl| < \f ( [(Vie w@])é(%s [Mam?})%
- o e

_ oflkel) 6.78
(=) o

4

where the last equation is due to assumption (A1").
For the first term of r34, using the CS inequality,

S

1 ’ A )~
W,PYu | < (Tegnmwowonmeg)

—u u
\/ﬁ ~ -
1

fﬁ A 2 ]_ ’
(\Tf e, IT,, WoWIL,e, ﬁuNP(b)uN ,
(6.79)

(SIS

IN

where the second inequality is from that 1/2 = f2 | < f2. Regarding this first
term, similar to (6.78),

log T
[\/_ gH WWOHIneg} = O( = > :

For the second term of (6.79), it is sufficient to show that

1, 1 0
WUNP(b)uN = TUNP( ) -~ + ﬁuNPg )UN
= 0,(1)+0,(1) . (6.80)
Let py; be the element of Péb). Forh, j, ¢, m=1, --- n=N(T—-1), we have

the following expression:
Lo \Voml 1 <
E |- (u P! uN> Z = — E Dem& (Ui g U]
[n ~2 |Z, nhjgmphjpf [un~tjne ]

where uy. are mutually independent given Z(b) In the case of {h = j = ¢ =m},
it is evaluated as O(Ky,/n) since ppp < 1. In the case of {h = ¢ # j = m} or
{h=m+# j=1(}, it is also evaluated as O(Ks,/n) by the fact that Py = Pé)
Pg) . Thus, the leading term becomes the case when {h = j # { = m}:

4 4 n n
—ZZPhhsz up | € [up.] < fT;;U ;phh ;pa

— O((tT(P(Qb)))2> ’ (681)

n

164



where the inequality is from that pus, pe > 0. Since K3 /n = O(1) by the
assumption, the order of the first term in (6.80) is verified. For the second term
of (6.80),

L 56 Lo 6om (Lowr a®o®) L o6y ae
JelPPu - ezl (Laelzl) ozl el
= o), (6:52)
since
L @y L ey L o po
= 0,(1),

this reason is that 1/2 < f2 < 1 and Lemma 2.7 below. Therefore, the first term

of (6.82) is O,(1/y/n).

Lemma 2.7 : Suppose the assumptions (A1) and (A2). For N, T, K,, — oo,
L wWPPu=0,1).
Vn g

where W, = (W(_lf, W(_Qf)/ is the 2 x n matrix consisting of the lagged endogenous
variables.

Proof: We first consider the second element wlgtzll in the following reduced form:

(1) (1)
Wy—1 | _ Wit 9
[ @) ] =1L [ @)

Wi "y Wit o

(n)

+ H/Qan‘t—l + Vit , (6.83)

where (W), w?) = w{,, w?, ) do not include individual effects and

WEZ)_/I) = (w;f’ll, R wl(fi ”1)) Using the moving average representation, we have
t—2 t-—2
@ _ ) " w® -1, (2)
Wiy = Z 7527%'(157371) + Z WSQWQan'(Tthfsfl) + T3 Wi
s=0 s=0

_(2 _(2 2
= /Ui(tll + wi(tzl,n + wz(tzl,o (say,) .

In the n x 1 vector representation,

W(_? = v® 4 Wr(z2) + WéQ) , (6.84)
where v(?) = (’Ul(tzll) ,Wq(f) = (’LTJZQL”), and W(()z) = ('U_Jz(le,o)~
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For the first term of (6.84), we decompose v(? into the sum of the vectors
(t=2,---, T —1) as follows:

Zﬂ_T 1-s (5
(2) _ (@) (2) (2)

where v = (vyjg, -, Vg }) and the construction of the (T'—1) x 1 vector v;

is as follows:

0 _ _ _
A o o
0 0 0 vy
(2) (2)
2 . v _ : G B @ | Y
Vi) = : v Vis = : ) » Vir—2) = 0 v Vir-1 = 0
0 0 ) @)
0 e Vir_4 Vir—3
il e ne)
Uz‘(12) Ui(22) | Vir—3 L Yir—2

Note that the elements in each low are mutually independent. Therefore, the

elemnet of fo]) are also mutually independent. Meanwhile, u; is given by

Uq1
U2
u; - )
(T-1)x1
U —2
| WiT-1 |

where &£ [vz(f Juy) # 0. From the decomposition,

1 , i, 1
VPP < =3l (VT POVE) (0P )

T-1

1y 2
Z T 1— 2) (b) (2)

1
2

because that the first term is O,(1) by (6.80), and for the second term it is shown

that
1 : 2 K2

Then, we obtain the result since |m| < 1.
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The second term of (6.84) is also O,(1) since

1 , 2 1 ,
’ [5 [(Tw@ PPu) (2| = L& [wPY (o°1) PYwi]
n

n

A
|
S
S
&
S

Similarly, the third term of (6.84) is as follows given the initial value:

1 : 2
¢ [g [(%wgm pou) 120,

The orders for the three terms in (6.84) are Op(1). Therefore,

- 0(1).

L @p
%wif PPu=0,(1). (6.85)
Similarly, the order of the first element wgtlll of (6.83) becomes O,(1) by using the
moving average representation. Thus, we obtain the desired result.

O

We return to the proof of theorem. The second term of 73, is also 0,(1) under
the similar arguments. Regarding 7144, using the similar arguments as used for the
second term of 154, we obtain

The first column of the second term in (6.76) is asymptotically negligible. From

the decomposition of (6.65),
L i pog) — @ poym 4 L p® v
—u VPV = —u' Py Y + —=u' Y PyaV .

Vi Vi Vi

Then, the second term becomes as follows:
|

\/ﬁzgw QP uh

]_ ! — b ]_ / b b ]_ b ’ b b a
%u(i,f) PPUS = Lu-'QPz) (Ezp QVz®
= op(1).

We evaluate the effects of the forward filter in the second term of (6.76).

1 ) 1 ,
—us Pgb)u(f) = —ut Pgb)uN —T91 — T22 +T23 , (6.86)

v Vn
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where

| AN
91 = ﬁuJ— ]_:)é)'ll’]"N 5
1 i
T2 = %u%Pg)lha
| A
o3 = %u%P(z)llTw,

and the notations are as follows:

u = (ftuth) ) uth =(0,1) (IQ - %) Vit

nx1
oy ~ 1 ~ 1 Ji
ur, = (uz’t,T) y Uy = T

—_t(uiﬂ + )

Similar to 13 and ry4, the terms from 791 to rog are O(log T/T%). Furthermore,
the first term of (6.86) disappears under Ks,/n — 0. This is because that the
leading term of (6.81) becomes zero due to

E [uztuﬂ =0.

Then,

Therefore, we obtain that

N 1 ’ ’
‘I)*\/E(ODL — 01) = %HInW u -+ Op(l)

L 1/ N
— \/thl <\/N21Wit’nu“> +0,(1) .

The 2x 1 vector (1/vV'N) Y, Wi nui (t=1,---, T—1) is the martingale difference
sequence for any N, Ks,. Therefore, from the martingale central limit theorem
and [i] of Lemma 2.6, it holds that

& Vn(Oo — 0;) - N(0,0°%") . (6.87)

Thus, [ii] of Theorem 2.14 is verified.

Finally, we consider the sampling error of the GMM estimator:

A 1 / / 1 ~ !
q)*\/ﬁ(aDG - 01) = %Hmw u -+ % (V(2)7 0) Pgb)UN + Op(l) )

(6.88)
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where

v = (6) o) = el

nx1

For the first low of the second term in (6.88),
P liff(z’/Pé”’uN} _ 1 Xn: pné [0
v Vi =

1
K2\ ®
= (_Zn) 5 [vl(f)un} s
n

where the second equality is form that f;/fi =1forall h=h (h=1,---, N(T —

1)). For its second moment,

bt [(%\%”ng’)uw) 2] = %22" (6’ [vi(f)uitDQ +0 (Kin) )

From the variance formula,

1 oy K
—vPPu | =0 =2) .
Var [\/ﬁv 5 UN} -

this term converges in probability to its expectation under K3, /n — dy. Thus, [i]
of Theorem 2.14 is verified. U

Proof of Theorem 3.1 : The denominator of A becomes the following by the
proof of Theorem 2.9:

52 — Lo'mung
n n
w (v [ Q O 3
— (187 71) < O O —,

—= 0‘2’

’

~

where @ = (1, —6,,)". Following Hayashi (2000, Ch. 3), we prepare the notations

as follows:
Ly
my = —Z y” )
n
M. = Lgzorx»
T n bl
A2
M, = 108/ 10)
n



The orthogonal condition on a sample is given by

0 m, — M,0,. = H,. (m, — M,6,)

_ 1y ey
n rz 9

where
H,. = Ix— M, (M M;'M,) ‘M, M;",
0o = (M,M;'M,) 'M,M;'m, .
Then,
19' G0
n\x = n

= n(my = M,05,) M (my — M., )

/

M
= n < -M HDG> _1 <my — MxéDG> + 0p(1)

1 ’ ! — 1

where the fourth equality is from that \/n(0p, — 61) = /(0 — 01) + 0,(1) due
to Corollary 2.1. Since M is positive definite, expressed as M;' = L' L.,

H M 'H, = HmLZ [LZ—LZMx((LZMm)/LZMm)‘l(LZMJ;)/LZ]

= wz zQxZ z (Say7)
= Lzsz z

Therefore,

n\ = <%L yAL ) Q.. (TL yAL u(f)> +0,(1) .

Under null hypothesis, using the result of Theorem 2.9 and that (L_L,)™*
O'QJ/S[Wit_lwgt_l]J,

L.z L A(0,Ig) , (6.89)

Bl
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where Q. is idempotent because rank(Q,..) = tr(Q,.) = K —(G2+ K1). Applying
Cochran’s theorem, we obtain

d
nAU S Xy -

Proof of Theorem 3.2 : Similar to the proof of Theorem 3.1, we prepare the

notations as follows:

1 /
M, = -z"'X
n

T2 ) oy (b)
n
Hy,. = Igiq, — My (M, MM,)" "M, M}

1z »

where Z{" = (Y1) Z®) and Y = (y2V) are the n x Gy, matrices. Assum-

ing that ygtzl)

is also exogenous and applying Theorem 3.1,
72 L =308,

where € becomes the (1 + Gag) X (1 4+ Ga2) matrix. Moreover,

1 b / 1 b)’
nA = (ﬁleZ(l ) u(f)) Qiz- (%lez(l : u(f)) + 019(1)

E X2K2—G22 ’
where L L. = M} and
Quox = It — LizMig(L1zMy,) L. My, )~ (L My,)
We define the K x (G + K) matrix J,, such that
z® =73, 7"

Assuming that yz(t2 Y s endogenous and applying Theorem 3.1,

1 ’ b) / ]_ / b)
nA = (ﬁLszzywﬂ) Q.. (%Lszzg’u(f)) + 0,(1)

1 o ) 1 by

where
P,. = (LzJélszl)/szLzJélszl :
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Therefore,

1 1 /
77,)\1 —n\ = <\/—L1ZZ(b > (sz - xz) (%leng) u(f)> + Op(1> .

Finally, we show that (Q., — P..) is an idempotent matrix.
Pyznz = (LZJélLIzl)/szL J,21sz1(sz1>,J21L;szLzJ/21LIzl
= (L J21 lz) Q..L (J,21M1ZJ21)L;QxZLzJ,mLf;

= (LZJ21 lz)szLZJélszl
= sza

where the third equality is from that (L.L.)™' = M, = J,,M;.Jy, and &>
supposed to be the denominator of A\. In addition,

(leMlx)/sz = (leM1x>, (LzJ/QlLIzl)/szLzJ/Qlszl

= ML} (L) "JuL.Q,.L.J, L)

= (LZMx)/QxZLZJélLl_zl
= 0.

Thus, Q..P,. = P,.. From the above,

it is the idempotent matrix. The degree of freedom becomes

tr(Qu: = Po) = [(K+Ga) — (G2 + Ki)] = [K — (G2 + K1)
== G21 .
Therefore, we obtain the desired result. O

Proof of Theorem 3.3 : [i] We first consider the case when N < oo (¢; > 0).
From the derivation of Akashi and Kunitomo (2015),

~ 0, [Gl - clcl*Hl]G
A=) = v
v —a) 0'H,0

+0,(1)
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and

1
[Gl - \/ClCl*Hl] _01] (690)
T—1 T—1 )
1 ’ ’ ’ b Qﬁ
- e e n[ < >Pg>ugf>_rn< 0)
t=1
Veicix PO
1T, Zz — P"]u!
G
T-1 /()
VA IS (V) - PP g, (2]
Vi &\ 0 0

where ¢, =n —r,, r, = K(T — 1) and
1
G, = \/ﬁ (‘G(f’b) _GO) )
n
1
H = n (—H(f’b) — HO) .
n

Multiplying @ on the left of (6.90), we have that '@, = 0 and \/¢1c1,/ /G =
¢1+/y/n. Then,

T—1
~ 1 ,
T o) — S a7 PP — e (Ty - PO ul’ 1
\/ﬁ( Cl) \/ﬁO'z = u, [ t €1 ( )] +Op( )
1 - 1
! b
= g w g @Y —alvu” o)1)
t=1
_ \/_02§ :u ul) +0,(1)

- ﬁﬂ Z utN“’ w,+ 0,(1) .

where the third equality is from that
1

N = (PP — ¢ 1y), (6.91)

and at the fourth equality the effect of the forward filter is asymptotically negligible
even in N < oo by the result of Akashi and Kunitomo (2015). (1/v/N )utNgb)ut is
the martingale difference sequence, since ¢; = K/N, so that

1 ’ 02

gtl[\/—NUtNgb)ut] \/—N

tr(N{)




The conditional variance of each ¢ is given by

5,5_1 [(u;Ngb)utf] = Z Z Z Z TLU nkg gt uztujtuktuﬁt]
= zt ntnt + Z Z nzz nkk 2

1 k#i

+Zznt) (t Uiy zt +Zznt) (t 2

LS i i
= (Eluz] — 30", + o Ut (NP)]2 + 204t ([NP)2)
= (E[ul] — 300, + 20t tr((NP?)

where n; denotes the N x 1 vector, which consists of the diagonal elements ngf) of
Ngb). Applying the martingale central limit theorem, for T"— oo,

vih—a) -5 N(0,62)

where
T-1
2 4 (6)12 4 4
oy = %5&@212" tr([N:1?) + (E[ui] — 30*)Emjny]
Elub) =30" [ I~
— 201* + m jlggo ﬁ ; g[ptpt] —C s (692)

and p; is the N x 1 vector consisting of the elements pg) of Pib). This is because
that [N12 = P®) + 2 (Iy — P") and
T-1

1 T n
Y (NP = I e,
n —1 n n

From nf! = (pff — 1)/ (1~ ca).
1 il 1 1 T-1
/ ) / , )
E tzl S[tht] — m <,111_I)I;O T tzl 8[ptpt] — 2C1 -+ Cl) .

However, the second term of (6.92) disappears since E[uj] = 30 due to the as-
sumption of normality. 0

[it] We consider the case when N — oo (¢; = 0). From the result of Akashi and
Kunitomo (2015), we have the following regardless of ¢4,

é—HIO( ! )7

NG
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/

where (1, —6,,)" = 0 and the first element of (@ — @) is zero by definition. Then,

~ 1 ’ ’ ~ pit 4 N
. (9 GUNe —20'GUN (0 — 6) + (0 — 6) GUY (9 — 0)) , (6.93)

g2
where é/(l/qn)H(f)é = #2. For the third term, normalized by /T,
1

<o -0 (G Vo - 6) = O,( o).

1
VT
Similarly, for the second term of (6.93),

% % 20/ (viGyo + G1) V(6 — 6)

1 NlogT
Op(

ﬁ)+0p< Tﬁ)a

since 8 Gy = 0 under ¢; = 0, and Gy = O,(1) + O,(y/N/Tlog T). Therefore, in
the following quantity, the second and third terms of (6.93) can be asymptotically

ignored,
n\— KT 1 0GUDg KT toy(1)
nma-—nt L _ o
OKT 72 \2KT V2KT °
1 0GUIYe — KTo? + KTo? KT
= =3 - + 0p(1)
o OKT OKT
29GUYNe — KTo? 1 KT
= 2 (0?5 +0,(1)
) oK To4 V2KT
0 GUYe — KTo? 1 log T
= O,(—=)+ 0 +0,(1), (6.94
ST ol ”(\/N) p(ﬁ) »(1), (6.94)

where the last equality is from that (62 — 0%) = O,(1/y/n) + O,(logT/T). Re-
garding the first term of (6.94),

6'GUY9 — KTo? 1 u' PO — Ko? O
= o
2KTo* VT = V2Kt .
1 —u PPy — Ko
= + 0,(1)
VT p— 2K ot
This is the martingale difference sequence since Et_l[u;P,gb)ut — Ko?| = 0. The

conditional variance of each ¢ is given by

St_l[(u;Pgb)ut — Ko*)?]
= (E[u}] — 30" pip; + 04[tr(P§b))]2 + 204tr([P§b)]2) - Qtr(PEb))KU4 + K%o*
= (&[u}] — 30")p,p: + 2Kt .
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Similar to Akashi and Kunitomo (2015), we obtain that 5[(u;P§b)ut —Ko?)1 < A.
Applying the martingale central limit theorem, for 7" — oo,

n\— KT
—_— —

/\/'O,a2 ,
ST (0,03)

where

2K o4 NT—oo T

Elul] — 30 1 —
oy = 1+M< lim ZE[pr,j) :
—1

However, if N — oo, then

1 T-1 N 1T71 N 1 1 -
b)’ b) rp (b b
EDI) DIIED D) SECL i C LE 7L IR
t=1 i=1 t=1 i=1
NT
= OP(NQT)
= o0p(1).

Since this is a bounded random variable with 0 < (1/7) >>, >, p% < (1/T) >, tr(PEb)) <
K, the convergence in probability also means the convergence in 1th mean to zero
(cf. Sen and Singer, 1993). Thus,

lim €&

N,T—oc0

1 T-1
T Zpipt] =0,
t=1

2
or oy = 1.
Finally, for the adjusted degree of freedom dy = 2KT — (G2 + K1), it holds that
dr/2KT — 1 and (Gg + K;)/dr — 0. Therefore, ¢, converges in distribution to

the standard normal distribution. 0
Proof of Theorem 3.4 : We present the following two lemmas.

Lemma 3.2 : Suppose that for the g-th reduced form, there exists a missing
variable in zz{tl}. Let d}é;} be the estimator for the variance of error term and w,,

be based on the true instrumental variable z;;. Then,

plim (&1} — &gg) = 61 >0 (6.95)

n—oo

176



Proof : For the true instrumental variable z;;, the following estimator is consistent:

N 1 Iy
Qg9 = Ey(gJ) QoQoy(g’f)
1

= ﬁ(z(f)ﬂ-g + V(g’f))/QD /OQO(Z(f)ﬂ.g + vie)
= weel 0p(1) (6.96)
where

Q =1, - Z(f)(z(b)’z(f))*lz(b)’

is idempotent but asymmetric, and the third equality is from that the results of
(6.25), (6.45), and

QZY¥) =0. (6.97)
For any candidate z{ }
w;;} — %y(g’f),Q;Qly(g’f)
_ %(meg VDY Q QUZ D, + v
= %W;Z(f)/Q;le(f)ﬂ'g + weg +0p(1)
where
@ -1zl )

is generated by z{ Y5 and z{ yo) , and the third equality is form that &£ [Z(b v =
0 and

_Z(f)/Q/lle(gJ) 2y0.

Therefore, for any z\" it holds that

it

phm( {1} Wyq) plim — (Q1Z(f )/(le(f)ﬂ'g)

n—oo n—oo

- 5@

v

0,

in the probability limit.

We show that if z;{tl} has a missing variable, then §9 # 0. Consider the regres-
{1 }

sion of 7 gWit—1 on w;, "y on the population. For some ¢,

! witt
Trng't 1 — Pg it—1 _'_Ezt 9
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where the K1y x 1 coefficient is given by

1 w1\t 1 /
Py = <5 [Wz'{tjlwi{tjl:|> & [Wz'{tjlwit—l:| g .
Then, the expectation of the error term becomes

Elen] = W;S[Witfl] - qug[wi{tljl] =0.

For its variance, using &£ [w;{tljleit] =0,
Var(e;)
’ / 1
= Ellmwies — ol )]
’ ’ ’ 1 1V
= ng[witflwit—l]ﬂ-g - pgg[wi{tjlwi{tjl]pg

’ ’ ’ 1V 4 1 f
= Ty (5[Wz‘t—lwit71] - g[witflwz‘{tl—}l](g[wi{tl—}lwi{t—}l]) 15[Wz‘{t—}lwit71]> Ty .

Now, we have that

lZ(f)/Qllle(f)
n
f 1V 1 1V 4y 1 ’
5 EWir 1wy 4] — g[witflwzt{t—}l](E[Wz‘{t—}lwz‘{t—}l]) 18[W;{t—}1wit71]
= T (say,).

Therefore,
VGT[EZ't] = 0g1 -

Suppose that dg; = 0. Then, it holds that Var[e;] = 0 or €; = 0, and

w1 = powi)
gWit—-1 = PgWy 1 -
Since for g, zl{tl} does not contain a variable wl[fll, its coefficient should be ng} # 0.

Dividing both sides by m[,k] and transposing the variables other than wl[f]_l to the

right-hand side,
(K] ' 101}

Wit—1 = PogWit—1 >

where Wi{g{ = W1 U wlf{tl_}1 is the K% x 1 vector. Expressed as the n x 1 vector

and n x K1 matrix,
wh = W

If py, = 0, then wltl = 0. This contradicts rank(W) = K* by assumption (A5).
If py, # 0, then wl*l becomes a linear combination of other variables. However,
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wz[f]_l is not included on the right-hand side, which also contradicts rank(W) = K*.
Therefore, it is verified that dg; > 0. O

If there exists no missing variable, then §9 = 0. Therefore, we examine the higher
order in the following lemma.

Lemma 3.3 : Suppose that zl{tl} includes the true instrumental variables z;.

Provided d < oo, for all g =1,--- , G,

. . d
n(Weg — w;;}) — ngX?;, Ky—K +N(0, ‘731) .

Proof: Using Q,ZY) = O,
n(@gg — d);;})
— V(g,f)/Qz)Qov(g,f) _ V(g,f)/Q’lle(g,f)
= v@I'(—P, - Py + PPy + P, + P, — P P))v(®/)
= vO'(—2Py + P Py + 2P, — PPy )vf) | (6.98)
where

P, = Z(f)(z(b)’z(f))—lz(b)’ . P, = 7

) (Z(b)lz(f) )—1Z(b)/

{1 {1 {1}

However, from the derivation of Theorem 2.9,

V(g,f)/P/lplv(g,f)

1 : 1 sy 1y 1y L1 Ly

_ wirg® (Loerom " Logrom (1,010 O (0.5)
NG (nz{l}z{l}) S0y Ly (nz{l}z{1}> TRlmV’

— V(gaf)’Pgb)V(g,f) +0,(1),

b b
Pl _ 70

0 (Z(b)/z(b) )flz(b)/

{13741} {1} -
Similarly,

Using the simlar arguments of Theorems 2.9 and 2.11 under d < co, we have the
following relations between the forward and backward filters:

1 1

%Z(f)/v(g,f) _ %Z(”)v(g’f )~ byqo) +0p(1)
L gy 70
—nz{l} V(g’f) = ﬁz{l}v(g’f) — bg{l} + Op(1> )

179



where similar to (6.47), the constant vectors by and bygy are given by

’ A
byoy = —d2J (I, ~TI") Qe
1 « -1 %
byy = ~di T, (Te. — 1) Qe .
Then,
v p y(9:F)

1y -
S p®) (g, ! (0) g (f) () (g,
2V(g ) Pl V(g f 2bg{1} <EZ{1}Z{1}) TZ{ (g f) + Op(l)

= ov@pOyen) _ g 4 0,(1) (say, ),

where the second term ¢,,; converges to a normal distribution if d > 0 and converges
to zero if d = 0. In addtion,

(@) P ye:l) = o0 plly(a.f) qno +0p(1) (say,) .
Therefore, (6.98) is expressed as
(g — @) = v (PO — POWED 1 (g5 — gu) + 0,(1) . (6.99)
For the second term,

(QnO_in) —) N(a 91)7

where

: : JoiDyJo) ™ (Jou Ty Jon) ¢ ~b
o2 — dw <—b b ) ( 01+ {13101 o1t {1} 01 g{0} 7
o . ot0p Tatty JOl(JmI‘{l}JOl)*1 I‘{11} by1y

Ly =E&w z{tl}lwz{tl}l] and ng is the K x Ky matrix such that

Z(b) — Z(b)

ypJor -

Using Jo1, we rewrite the first term of (6.99) as follows:

L@ (pW) _ po)yy(e)

Wgg

1 1,y - o
— v0@.5)' 7z 27 (b) 7 (b) _ (b) 77 (b) ®)' 5 (9.5)
Cnw ! (nz{l}z{l}) Jor (JOl Z{l}z{l}‘]m) Jou | Zy v
99

]_ b ’ _ / ’ _ / _ I\ / . b
= vz L <IK{1} — (Jo Ly 1) (Jor Ly 1(Jle 1) ) 1J(nLl 1) LIZ( Jvied)

NWgg {1} mVv
1 b 1 b
_ ( Lz gf)> Q{l}( le({>} (gf)> (say.) .
V 99 \/
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where the second equality is from that ((1 /n)Z‘({?}iZ\({?})_l — L\L,. Similar to
(6.89),

1 b)Y d
——LiZ v S N0, Ik, -

vV Weg
Since tr(Qgﬁ)}) = K1y — K, we obtain

A a{1} d 2
n(wgg w ) — w!]ng, K{l}fK .

99
O
In the following, we present the proof of theorem. If for g-th reduced form, z;-{tl}

has at least one missing variable wl[ﬂl, then there exists some 0 > 0 by Lemma

3.2,
tr(fl{l}) — tI‘(Q) Ly 5>0.
For any ¢y and €; such that 6 > ¢; > ¢y > 0, when T" — o0,

Pr(PIC1 > PICLO)

. . 1
= Pr <t1‘(Q{1}) — tr(Q) + G(K{l} — K) ogn > O)

n

v

n

A . 1
Pr <tr(Q{1}) —tr(Q) > e N |G(Kpy — K) ogn‘ < 60)

n

. . 1
> Pr (tr(ﬂ{l}) —tr(Q2) > €1> + Pr (|G(K{1} — K) ogn| < 60) -1
— 1.

This is because that the first term converges to unity, and the second term also
converges to unity by logn/n — 0.
If there exists no missing variable, then

K< K{l} s
i.e., z; is included in zz{tl}. Then,

Pr(PIC, > PIC;,) = Pr <n (tr(ﬂ{l}) - tr(fz)) +G(Kpy — K)logn > o)
— 1.

This is because that (K3 — K)logn — 400, and the following holds by Lemma
3.3,

n (@) - (@) = -

= 0,1

G
(002, xgysc + N(0,52)) + 0,(1)
g:

— =
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Proof of Theorem 3.5 : We first consider the case when the true z;; is not

included in zl{tl}. From the proof of Theorem 3.4,

A ~ 1 / 12 ]_ ’ /
Qn—-Q = —YI'Q QYY) — =y Q,QoYY)
n n

1 ’ ! !
= I Z'Q Q. ZUVTI + 0,(1)
Lot

Similar to the argument of Lemma 3.2, it is shown that the K x K matrix T'{" is
positive definite. From the assumption [ii] of (A5), the G x G matrix IT T is
also positive definite. Therefore, from an inequality for determinant (cf. Abadir,
2005), we have that [€2qy| > || for sufficiently large 7. That is,

log(|€2q1y ) > log(I€]) -

Next, consider the case when z; is included in zl{tl}. For T' — oo, it is sufficient
to show that

n(PIC, — PICsyy) = n [1og(\fz{1}\) - 1og(\fz\)] +G(Kqy — K)logn

— +00.

For the first term, we apply the mean value theorem:

G
~ A ~{1 N
n [log(IQ 1) ~1og(12)] = n " fon(@f) — @gn)
g7h:1

= Op(l) )

where fg, denotes the derivative evaluated between Q{l} and €2, and the second
equality is from that

n(@gn — @) = 0,(1) .

This is because that from the argument of Lemma 3.3 also holds for the off-diagonal
elements g # h of 2. Thus, we obtain the desired result. OJ

Proof of Lemma 3.1 : [i] For any (7,), it is necessary that

1 r (2 e
yz‘(t) = 52}’;&) + ’71Zz(f) + (0 + Us)

(1)

_ rQ (1)
= T2y )

) + (7 o)

i
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since v, = 0. Substituting the reduced form of yz(f ),

(BT, + ) — m30)2) + (BoIly, — 7))z + (i + uy) — B (i + vi) = 0.

Take the first-difference,

/ ’

0, (Wit—1 — Wit) + (it — Uir1) — B (Vit — Vigp1) =0, (6.100)
where
6, = (/621_[/12 + 7/1 - 77/117 162]'_'[,22 - 7"/21)

= (_:3 I, +~v,, -0 HQ-)

is the 1 x (K, 4+ Kj) vector. In the case when E[miv%] = O. Multiplying z; =
J'(Wi_1 + ;) on the right and taking the expectation,

8,8 (Wi = wa)wiy ] =0,
or
63Ty, -T)J=0, (6.101)

where I'y = E[wy_1wy1] and T'y = Elwyw,, 4] = IT¥T,. Similarly, multiplying
Zit_1, Zi—2, -+ on the right of (6.100) and taking the expectations,

85I, -0 )J=0, (s=1,2,---), (6.102)

where T, = (IT")"T'y. If we add up (6.101) and (6.102), then

’

83 [(Tg—Ty)+ (T, —Ty) + (T, —T3)+---]J=0".
From I' o = O, it follows that
0 JTJ=0. (6.103)
Since J'TyJ is nonsingular by T'y > O, we obtain
6, =0.
In the case when E[m;v};] # O, applying the forward filter,

67rzztf)+uzt ‘f‘ﬁV O
(b)

Since z;,” does not include =7,

T—1
5.3 &lAla) | ~0.

t=1
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If divided both sides by T, then the left-hand side converges to JTzJ as T — oo,
i.e., it is the same as (6.103). Thus, the necessity is verified.
Suppose that II,.3 = 0. From the argument of the necessity, for any -,,

G, =0

Then, we have that v, = 0 since Il,.3 = 0. Thus, the sufficiency is verified.
[ii] When v, =0,

Y1 = 7711—H12ﬁ2a
H2252 = T21 .

Therefore, v, is uniquely determined given 3,. If there exists 3,, then rank([mry;, TIy]) =
rank(IIz,). Moreover, if 3, is unique, then rank(Ily) = Gs.

Next, consider the sufficiency. Multiplying the reduced (3.9) by 8, which satisfies
the rank conditions,

Byy = Bz, +8Tz0 + 8w +Bva

= ’7125,51) + Qi+ Ui,

where o; = ,6/71'@- and u;; = ,B/Vit. In other words, the first structural equation with
an exclusion restriction is obtained by II; however, 3, is uniquely determined by

the rank condition. For instance,

’ -1 /
ﬁ2 = (H22H22> H227T21 .

Thus, (85, 7v,) is a function of II. O

Proof of Theorem 3.6 : Following Cragg and Donald (1993), we consider the

following constrained minimization problem:

(el ~

min  g(w) = n(x — ) W Hr —m),
s.t.  rank(Ily) =G, , (6.104)

where 7 = vec(IT), 7« = vec(IT), and

-1

n — (z<b>’z<b>) ZO'y D
1 -1

W o— Q@(—z@/z@) |
n

Q = HJY.

nl
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Although IT is slightly different from the instrumental variable estimator of The-
orem 1.5, it is also the consistent estimator. Then, the following lemma holds.

Lemma 3.4 : Let IT be the solution of (6.104). Under the assumptions of Theorem
3.6,

_ g
@) == X o kecn) - (6.105)

Provided rank(Iy.) < G,, there exists II such that ¢(IT) < ¢(IT) a.s., and then,

=g
@) — X o kecn) - (6.106)

Proof: For (6.105), it follows that
V(@ —m) % N(0, plim W) .

Therefore, the assumptions of theorem 1 of Cragg and Donald (1993) are satisfied.
For (6.106), the conditions of their Theorem 2 are also satisfied by the construction
of W. 0

We show the case [ii] of Theorem 3.6. Then, the degree of freedom for (6.106) is
changed into (Gy — Ga. ) (K2 — Ga.) by replacing ITy. with Iy, in the constraint

(6.104). It is sufficient to show that the minimum value ¢(II) is numerically equal
to the sum of eigenvalues. In the case of [ii], the constraint on rank means that
there exist the Ly = (G2 — G.) linearly independent vectors (B, -+, B,)) =
B. (G2 x L) such that

,J,B. =0, (6.107)

(0, Ig,). Note that if Jo and B, are replaced with I and the

where J, =
G x (G — G,) matrices, respectively, then the case [i] of Theorem 3.6 can be

verified.
We apply the following standardization,

B.J,QJ.B, =1. (6.108)

Given B, consider the minimization problem of ¢(7) under the constraints of

(6.107):

J,I1J,B, =0 & (B.J,®J,,)vec(I) =0
< Rm=0 (say,),
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where Jy, = (O, Ig,). That is,
r7rrli£ q(mw) + 'R .
Solving by Lagrange’s method of undetermined multipliers, we obtain
= (1 + WR/(RWR’)*R) 7
Substituting this into ¢(7),
¢(II) = n(R7) (RWR')!(R7)
= R#) (B30 3,)@e (20'20) ) (B.1, e 1,))  (R#)
— (R#) (B;J;QB*JQ ® J;Q(z@)/z(b))*lJZg) R
= ®a) (0@ QPz¢) ") (Ra)
— vee(JT1;B.) (1628 QZY) vec(I,T11;B.) |

where the fourth equality is based on (6.108) and that for the (K + K3) x (K1 + K3)
partitioned matrix (Z®'Z®)~1,

b)Y (b b) rp (b

Z®'Z0) Zgb),ng) ng)/ng) , (6.109)
2970 707

P = 1-zP@Pz?) 'z (6.110)

we apply the formula (6.18) to the Ky x K5 submatrix in the lower right of (6.109).
Now, the objective function is concentrated for B,. We minimize the function
with respect to B,. Put

VQC(J/Q21:IJ2B*) = VeC(fIzJQ,Bm; T 1:[2-J2/6[L2]) )

FO = 3.1, (Z" QP ZO) L, 3, and €5 = J,0J,. Then,

q(I1) = 5/[1]F(b)ﬁ i +5/[ Lo (b)B[LQ]
— (@38 (4 FOQ, QB + - + (9 Bl (€, FOQ,
> 6}1}(955 F“’)Q;%)éuw €y (92, FR0Q, e
= B/[l]F(b)B[l] oot B/[LQ}F IB[LQ]
= Ao+ Aar, (6.111)
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L1 L1
where the third inequality is from that for the orthogonal vectors (23 By, - -+, 3 ByL,),
the sum of the quadratic forms is minimized by the eigenvectors (cf. Amemiya,
1985). In fact, for the following characteristic equation,

=

(Q;% FOQ,? - )\I) c=0, (6.112)
even if the eigenvalues overlap, the orthogonal eigenvector ¢ exists since the cor-
responding matrix is symmetric (cf. Abadir and Magunus, 2005). If 3 = Q, °¢,
then the third inequality and standardization (6.108) are satisfied. The fifth equal-
ity of (6.111) is from that the minimum value is represented by the sum of the
eigenvalues from the smaller of (6.112); however, these eigenvalues are equivalent
to the generalized eigenvalues of F) (= J ;G;};’b)J 2), since

Q)7 FOO,* I =0 < |F® — A, |=0.

Finally, we show that F(® and J;G%’b)Jg are numerically equal. For (6.109),
using the inverse of the partitioned matrix,

-1
3,2’z = 3, ( My, M12>

M, My,
- J<_MSM - _Sng) (sav.)
22 12~11 22
Then,
F®

_ <J/22(Z(b)/Z(b))—lz(b)/Y(f);b)/ <Z§b)’ng)Z§b)> 3,,(Z 7201 Z0 Y (1 g,

= I,yws (zé”’Qﬁ”’zS”) SY(J, (6.113)
where

S = nglz(zb)/ - M2_21M/1281_11Z(1b)/ :
For the central term of (6.113), we have that
S (27QV7)s = §'8n (s:7V — MpM,S;'7)
= S'sy (852 - sy MMz

b b) a— b b
- QY (2'suz)al,
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where the second equation is due to the fact that

—1ng -1 _ q-1ng -1
M22 MIQSH - S22 M12M11 :

Therefore,

’ ’ ’ ’ -1
FO — 3y (Q(lwng) (20 QPz) Znggb)) Y3,
! ! b
= J,YW (P(b) —Pg)) YN,
/ b
= LG,

where the first equality is an expression of the LIML estimator defined by Gold-

berger (1964), and the second equality is due to the partitioned matrix of projection

matrix (cf. Amemiya, 1985). O
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