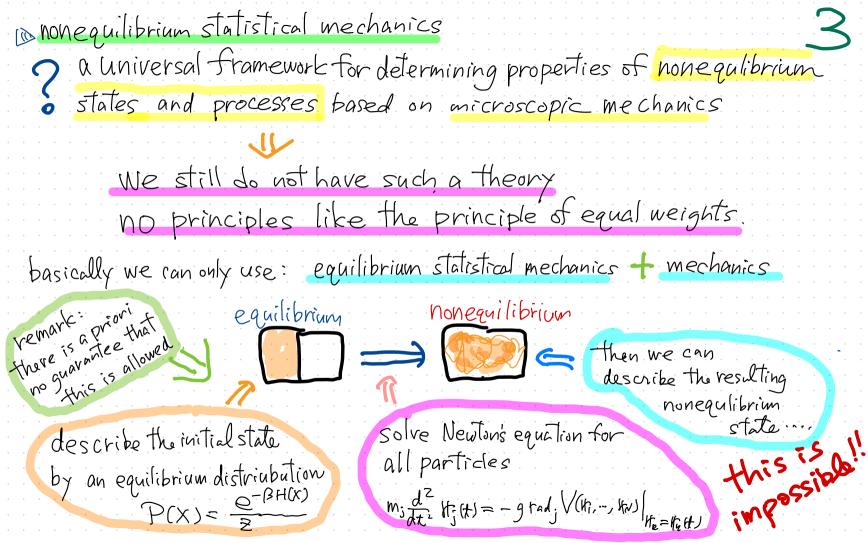

Part 0 Introduction


What is nonequilibrium statistical mechanics?

The approach in the present lecture

The outline of the course

(Introduction) 3 What is nonequibrium statistical mechanics? Dequilibrium) thermodynamics a macroscopic theory that places strong constraints on · properties of equilibrium states and thermodynamic functions · transitions between equilibrium states WS Finit - Frin Maximum work principle (equilibrium) statistical mechanics a universal framework for determining properties of equilibrium states and thermodynamic functions of macroscopic systems based on microscopic mechanics -> classical or quantum $S = k \log \Omega$, $F = -\frac{1}{3} \log \sum_{i} e^{-\beta E_{i}}$

nonequilibrium statistical mechanics (not yet complete)	
equilibrium statistical mechanics + mechanics	
Jo concrete computations (general setting	
 useful new quantities general relations in (some restricted setting 	9
· entropy production , reciprocal relations . close to equilibrium	
· entropy production rate. Aluctuation - dissipation relation · only a small part of the	
· approach to equilibrium	• •
 the Znd law of theromody namics (detailed) Fluctuation theorem 	• •
· various trade off relations . thermodynamic uncertainty principles	· · ·

S The approach in the present lecture 5
pquilibrium statistical mechanics + classical mechanics
fluctuation ~ detailed balance condition V(h) / / / / / / / / / / / / / / / / / / /
effective stochastic processes (Markov jump processes) classical system with
some general results for nonequibrium proceses and states larger system(s) (= bath(s))
 suitable approach for discussing general results not very suitable for practical applications

Part 1 Foundation

What do we get from mechanics and equilibrium statistical mechanics?

Classical Hamiltonian mechanics

Jarzynski equality

Fluctuation theorem

Detailed balance condition

Part 2 Abstract theory

Probability

Entropy

Stochastic matrix and basic convergence theorem

Markov jump process

Part 3 Nonequilibrium processes in an equilibrium environment

Relaxation process in an equilibrium environment

Approach to thermal equilibrium

Fluctuation theorem

Operations in an equilibrium environment

Jarzynski equality and the second law of thermodynamics No pumping theorem

Part 4 Nonequilibrium states and processes in nonequilibrium environments

Nonequilibrium steady states (NESS)

Relaxation to NESS

Linear response relations

Reciprocal relations

Inequality between current and dissipation

Improved Shiraishi-Saito inequality

No free-pumping theorem

Trade-off relation between power and efficiency in a heat engine

Part 5 The theory of Brownian motion

Typical experiment

Basic symmetry and the transition probability

Kramers equation

Langevin equation

Einstein's theory of Brownian motion