Part 2 Abstract theory

Probability

Entropy

Stochastic matrix and basic convergence theorem

Markov jump process

<probability> n elementrary events Sbasic concepts in probability theory · a physical system with discrete microscopic states j=1,2,...,2 see part 1-p36 particle configurations, spib configurations, ... · events A, B, ... A is either true or false for each state j=1, ..., S2 random variables f takes value f_j in state $j = l_r - 2$ • state quantities f, g,... (may not be a standard terminology) • probability distribution (1) $P = \begin{pmatrix} P_2 \\ \vdots \end{pmatrix} = (P_j)_{j=1,\dots,2}$ $P_j = \text{the probability of state j} (2) \quad P_j \ge 0$, (3) $\sum_{i=1}^{j} P_j = 1$

2 • probability of an event A (1) $Prob_{P}[A] := \sum_{j=1}^{2} P_{j} X_{j}[A]$ (2) X; [A] = { | Aistrueinj 0 Aistalse inj · expectation value of a state quantity f $(3) \quad \langle \hat{f} \rangle_{\mathbb{P}} := \sum_{j=1}^{-2} P_j f_j$ · fluctuation (standard deviction) of f (4) $\operatorname{T}_{\mathbb{P}}[\widehat{f}] := \sqrt{\langle \widehat{f}^2 \rangle_{\mathbb{P}} - \langle \langle \widehat{f} \rangle_{\mathbb{P}} \rangle^2} = \sqrt{\langle \langle \widehat{f} - \langle \widehat{f} \rangle_{\mathbb{P}} \rangle^2}_{\mathbb{P}}$ • uniform distribution (S) $R_u = \begin{pmatrix} 1/2 \\ \vdots \\ 1/2 \end{pmatrix}$

§ combined system 7 generalization to N subsystems 3
a system consisting of two subsystems
subsystem 1 : states $j=1,2,,2$, j / k subsystem 2 : states $k=1,2,,2$
states of the whole system (j,k) J=1, 21, k=1,,22
probability distribution of the whole system $P = (P_{j,k})_{j=1,,S_{l}}$, $k=1,,S_{l}$
marginal distributions (1) $P_j^{(1)} := \sum_{k=1}^{n} P_{j,k}$ (2) $P_k^{(2)} := \sum_{j=1}^{n} P_{j,k}$
$\mathbb{P}^{(i)}$, $\mathbb{P}^{(2)}$ probability distributions
two subsystems are independent if $P_{j,k} = P_j^{(l)} P_k^{(2)}$ (3)

§ Jensen's inequality (a) a convex function of zER $\forall \chi_{l} \chi_{2} \in \mathbb{R} \quad \forall \lambda \in [0, 1]$ $\mathcal{P}(\lambda \alpha_1 + (1 - \lambda) \lambda_2) \leq \lambda \mathcal{P}(\alpha_1) + (1 - \lambda) \mathcal{P}(\alpha_2)$ (P'alzo if twice differentiable) $\varphi(x)$ for any IP and f $\overrightarrow{\chi_2}$ $(2) \mathcal{P}(\langle \hat{f} \rangle_{\mathbb{P}}) \leq \langle \mathcal{P}(\hat{f}) \rangle_{\mathbb{P}}$ $> \varphi(\hat{f})$ takes value $P(f_j)$ in state j example (3) $\mathcal{P}(x) = e^{x}$ $(4) e^{\langle f \rangle_{\mathbb{P}}} \leq \langle e^{f} \rangle_{\mathbb{P}}$

proof the same proof applies to continuous random variables Duseful fact if P(x) is convex then Pas for any Xo, there exists del s.T. (1) $\mathcal{P}(x) \geq \mathcal{P}(x_0) + \alpha (x - x_0)$ for any XEIR $\xrightarrow{:}$ \mathcal{X}_{0} $\alpha : subderivative \alpha = \varphi'(\alpha_0)$ if P(x) is differentiable at 2. set $x=f_j$ and $x_o=\langle f_p \rangle$ in (1) $(2) \mathcal{P}(f_j) \geq \mathcal{P}(\langle \hat{f} \rangle_p) + \alpha (f_j - \langle \hat{f} \rangle_p)$ $\sum_{i} P_{i}(\dots)$ $(3) \langle \mathcal{G}(\mathcal{G}) \rangle_{\mathbb{P}} \geq \mathcal{G}(\langle \mathcal{G} \rangle_{\mathbb{P}}) + d(\langle \mathcal{G} \rangle_{\mathbb{P}} - \langle \mathcal{G} \rangle_{\mathbb{P}})$

S canonical distribution a probability distribution that reproduces macroscopic properties of the equilibrium state of a physical system at temperature B⁻¹ · a physical system with discrete microscopic states j=1,2,...,2 · Ej the energy of the system in the state j • canonical distribution $\mathbb{P}^{(can,B)}$ (1) $\mathbb{P}^{(can,B)}_{j} = \frac{\mathbb{P}^{-\beta E_{j}}}{\mathbb{Z}(B)}$ partition function (2) $Z(B) = \sum_{j=1}^{32} e^{-BE_j}$ Helmholtz free energy (3) $F(\beta) = -\frac{1}{3}\log Z(\beta)$

7 a system consisting of two subsystems subsystem 1 : states $\hat{J}=1,2,...,S_1$ subsystem 2 : states $k=1,2,...,S_2$ if energy of the whole system is $(1) = \tilde{E}_{jk}^{(1)} + \tilde{E}_{k}^{(2)}$ no interaction energy $\begin{array}{c} (2) \\ \mathbb{Z}(B) = \sum_{j=1}^{\mathcal{L}_{1}} \sum_{k=1}^{\mathcal{L}_{2}} e^{-\beta E_{j,k}} = \sum_{j=1}^{\mathcal{L}_{1}} e^{-\beta E_{j}^{(1)}} \sum_{k=1}^{\mathcal{L}_{2}} e^{-\beta E_{k}^{(2)}} = \mathbb{Z}_{1}(B) \mathbb{Z}_{2}(B) \end{array}$ $\begin{array}{c} (3) \\ P_{j,h}^{(can,\beta)} = \frac{e^{-\beta E_{j,k}}}{Z(\beta)} \end{array}$ $e^{\beta E_{j}^{(l)}} e^{\beta E_{k}^{(2)}}$ $\frac{\varepsilon}{Z_1(B)} = P_j^{(l_1, con_1, B)} P_{l_2}^{(2, con_1, B)}$ two subsystems are independent

S the physical meaning of probability 8 8 8 8 8 Q. What does it mean that the probability of an event A is P, e.g., P=0.3? After an experiment (trial), A may be true on false ... Q. What does it mean that the expectation value of a physical quantity f is (f)p? After an experiment (trial), I takes a value f; for some J ... (you never get 3.5 by rolling a fair dice !) Dan assumption necessary for relating the probability theory Cournot's principle of many versions with the physical world Pick an event A such that Probp [A] << 1, and make an experiment Then the event A is never true in practice.

Chebyshev's inequality for any probability distribution IP, state quantity \hat{F} , and $E \ge 0$ (1) $\operatorname{Prob}_{P}\left[|\hat{f}-\langle\hat{f}\rangle_{P}|\geq\varepsilon\right] \leq \left(\frac{\operatorname{U}_{P}(\hat{f})}{\varepsilon}\right)^{2}$ proof Define 6 by (2) $\Theta_j = \begin{cases} 1 & \text{if } |f_j - \langle f \rangle_p | \ge \varepsilon \\ 0 & \text{if } |f_j - \langle f \rangle_p | < \varepsilon \end{cases}$ then (3) $\Theta_{j} \leq \left(\frac{f_{j} - \langle \hat{f} \rangle_{P}}{\varepsilon}\right)^{2}$ for all j $\left(\frac{f_j-(\hat{f})_p}{\varepsilon}\right)^2$ $\begin{array}{c} (4) \\ \langle \hat{0} \rangle_{\mathbb{P}} \leq \left\langle \underbrace{(\hat{f} - \langle \hat{f} \rangle_{\mathbb{P}})^2}_{\mathcal{E}^2} \right\rangle_{\mathbb{P}} = \left(\underbrace{(\underbrace{\mathcal{I}}_{\mathbb{P}} (\hat{f}))^2}_{\mathcal{E}} \right)^2 \\ \end{array}$ $Prob_{p}[|f-\langle f\rangle| \ge \varepsilon]$ $0 \in f_j - \langle \hat{f} \rangle_{\mathbf{P}}$ - 1<u>E</u>1 - 1

Suppose (1) $\operatorname{Op}[\widehat{f}] \ll \mathcal{E}$ the precision for measuring \widehat{f} often true in macroscopic systems Chebyshev's ineq. (2) $\operatorname{Prob}_{\mathbb{P}}[\widehat{f} - (\widehat{f})_{\mathbb{P}}] \ge \mathcal{E}] \le \left(\frac{\operatorname{Op}(\widehat{f})}{\mathcal{E}}\right)^2 \ll 1$ Othe measurement result of f is always equal to (f) within the precision! Cournot's principle => f for the n-th copy When Op[f] is not small Nidentical independent copies of the system (3) $f_{av} := \frac{1}{N} \sum_{n=1}^{V} f_{n}^{(n)}$ (4) $\langle \hat{f}_{av} \rangle_{poin} = \langle \hat{f} \rangle_{p}$ (5) $\bigcup_{POIN} [\hat{f}_{av}] = \frac{1}{\sqrt{N}} \bigcup_{P} [\hat{f}] \leq \varepsilon$ if Nis large the measurement result of fav is always equal to <fp

(entropy) -> information theoretic entropy []
§ Shannon entropy
system with discrete states $j=1,,2$
Shannon entropy of a probability distribution $P = (P_j)_{j=1,\dots,N}$
(1) $S(P) := -\sum_{j=1}^{2} P_j \log P_j$ we use the convention $O \log O = O$
uniform distribution $\mathbb{P}_{4} = \begin{pmatrix} V \cdot \mathcal{L} \\ \vdots \\ V \cdot \mathcal{L} \end{pmatrix}$
(2) $S(fl_u) = log \Omega$
in general (3) $0 \leq S(P) \leq \log \Omega$
trivial See P[5-(5)

interpretation (1) $I_j = \log \frac{1}{P_j}$ information content = "amount of surprise when the state j is o	," 12 bserved
$ \begin{array}{l} (P_{j}=1 \rightarrow l_{0}, P_{j}=0) \\ \text{You know that } j \text{ happens} \\ \text{S(P) is the average of } I_{j} \end{array} \begin{array}{l} P_{j}=0 \\ \text{P}_{j}=1, P_{j}=1, P_{j}=1,$	loglo) > event! prise {!
additivity system which is a combination of two subsystems if $P_{j,k} = P_j^{(l)} p_{k}^{(2)}$ independent $p_j^{(l)} p_j^{(l)} p_{k}^{(l)} p_{k}^{(l)}$	
(3) $S(P) = -\sum_{j,k} P_{j,k} \log P_{j,k} = -\sum_{j} \sum_{k} P_{j,k} \log P_{j,l} - \sum_{j} \sum_{k} P_{j,k} \log P_{j,l}$	$g h^{(2)}_{l_2}$
$= -\sum_{j} P_{j}^{(1)} \log P_{j}^{(1)} - \sum_{k} P_{k}^{(2)} \log P_{k}^{(2)} = S(P^{(1)}) + S(P^{(2)})$	· · · · · · · · · ·

example: binary entropy $\mathcal{D} = 2 \qquad (I) \quad \mathbb{P} = \begin{pmatrix} P \\ I - P \end{pmatrix}$ (2) $S_2(P) := S(P) = - P \log P - (I - P) \log (I - P)$ $S_2(P)$ (3) $S_2(p) = \log \frac{1-p}{p}$ log 2 (4) $S_{2}''(p) = -\frac{1}{p(1-p)} < 0$ entropy = information = amount of surprise is) maximum when $P = \frac{1}{2}$ Zevo when P=0 or 1

S relative entropy a.k.g. KL divergence [4 Pr 9 probability distributions relative entropy or Kullback-Leibler divergence (1) $D(P(R)) := \sum_{j=1}^{2} P_j \log \frac{P_j}{Q_j} \longrightarrow D(P(R)) = \infty \text{ if } P_j \neq 0 \text{ and } Q_j = 0$ for some j basic property (2) $D(P(R) \ge 0$ (3) $D(P(R) = 0 \iff P = R$ proof recall that (4) log X < X-1 for X>0 1 log x thus (5) log $\frac{1}{x} \ge (-x) \left(\log \frac{1}{x} > (-x) \right)$ $+ \sum_{q} x (6) D(P(q) \ge \sum_{q} P_j(1 - \frac{q_j}{p_j}) = \sum_{j} P_j - \sum_{j} q_j = 0$ > for at least one j if P+R

(1) $D(P(P)) := \sum_{j=1}^{2} P_j \log \frac{P_j}{q_j}$ 15 $(2) D(P(R) \ge 0 \quad (3) \quad D(P(R) = 0 \iff P = R$ D(PP(R) is an asymmetric distance between Pand R uniform distribution $P_{4} = \begin{pmatrix} V_{2} \\ i \\ V_{2} \end{pmatrix}$ (4) $D(P|P_{4}) = \sum_{j} P_{j}(\log P_{j} + \log P_{j})$ $= \log \Omega - S(P)$ $= \log \Omega - S(P)$ $= \int_{1}^{1} \log \Omega - S(P)$ (5) $D(P|P_u) \ge 0 \implies \log \Omega \ge S(P) p(1-G)$ when P and Q are close (6) $D(P[Q) = \frac{1}{2} \sum_{j=1}^{22} \frac{(P_j - Q_j)^2}{Q_j} + O([P-Q]^3)$

16 & relations to statistical mechanics Shannon entropy and statistical mechanical entropy fix E_j ($j=1,...,\Omega$) canonical distribution (1) $P_j^{(can,B)} = \frac{e^{-BE_j}}{Z(B)}$ (2) $S(\mathbb{P}^{(can,\beta)}) = -\sum_{j=1}^{2} p_{j}^{(can,\beta)} \log \frac{e^{-\beta E_{j}}}{2(\beta)} (f)_{\beta}^{can} = (f)_{p}^{(can,\beta)}$ $= \sum_{i=1}^{\infty} \left(P_{j}^{(can,\beta)} \left(\beta E_{j} + \log 2(\beta) \right) \right)$ $= \beta \langle \hat{E} \rangle_{\beta}^{can} + \log \mathbb{Z}(\mathbb{R}) = \beta \{ \langle \hat{E} \rangle_{\beta}^{can} - \overline{F}(\mathbb{R}) \}$ $= \frac{1}{T} \left(\left\langle \hat{E} \right\rangle_{B}^{con} - F(B) \right) = S(B) + Statistical mechanical entropy$

De Variational characterization of the canonical distribution 17 for any probability distribution P (1) $D(P|P^{(can_i\beta)}) = \sum_{j=1}^{n} P_j \log \left(P_j - \frac{Z(B)}{e^{-BE_j}}\right) - BF(B)$ $= \sum_{i} P_{j} \log P_{j} + \beta \sum_{i} P_{j} E_{j} + \log 2(\beta)$ $= -S(P) + B(\hat{E})_{P} - BF(B) \ge 0$ $= only when P = P^{(Cam, B)}$ $= only when P = P^{(Cam, B)}$ $(z) F(P) \ge F(B)$ P(can, B) is the unique probability distribution that minimizes (3) $F(P) = \langle E \rangle_{P} - \frac{1}{3} S(P)$ Helmholtz free energy" for general P

<stochastic matrix and basic convergence theorem> (8) S stochastic matrix $\Delta \times \Omega$ matrix (1) $T = (T_{j,k})_{j,k=1,\dots,N}$ such that (2) $T_{j,k} \ge 0$ and (3) $\sum_{i=1}^{1} T_{j,k} = 1$ for all k if Pis a probability distribution then (4) P'= TP is also a probability distribution $proof (5) P_j' = \sum_{k=0}^{\infty} T_{jk} P_k \implies (6) P_j' \ge 0$ J- J $(7) \sum_{j=1}^{2} p_{j}' = \sum_{k=1}^{2} \sum_{j=1}^{2} T_{j,k} p_{k} = \sum_{k=1}^{2} p_{k} = 1$

& monotonicity of the KL-divergence P. R arbitrary probability distributions, T arbitrary stochastic matrix (1) DIPLAI > DITELTAI $(1) \quad D(P(R) \ge D(TP(TR))$ $\frac{\text{proof}}{(2)} P'_{j} = \sum_{k} T_{jk} P_{k}, \quad Q'_{j} = \sum_{k} T_{jk} Q_{k}$ then (4) $\sum_{j}^{l} P_{j}^{(h)} = \frac{P_{h}'}{P_{h}} = 1$ define (3) $p_j^{(k)} = \frac{T_{kj} P_j}{P_{k'}}, \quad q_j^{(k)} = \frac{T_{kj} h_j}{q'_{k}}$ P(k) Q(k) are probability distributions $D(P|P) - D(P'|P') = \sum_{j} P_{j} \log \frac{P_{j}}{2j} - \sum_{j} P_{j}' \log \frac{P_{j}'}{2j}$ $\overline{l_{k_j}} P_j = \widehat{P}_j^{(h)} P_{h_z}^{\prime}$ $\overline{l_{k_j}} Q_j = \widehat{Q}_j^{(h)} Q_{h_z}^{\prime}$ $= \sum_{k,j} \operatorname{T}_{kj} P_j \log \frac{\operatorname{T}_{kj} P_j}{\operatorname{T}_{kj} Q_j} - \sum_j P_j' \log \frac{P_j'}{Q_j'}$ $= \sum_{k:j} P_{h}' P_{j}' \log \frac{\tilde{P}_{j}'^{(h)}}{\tilde{q}_{j}'^{(h)}} + \sum_{k:j} P_{h}' P_{j}'^{(h)} \log \frac{P_{h}'}{\tilde{t}_{h}'} - \sum_{j} P_{j}' \log \frac{P_{j}}{\tilde{q}_{j}'}$ $= \sum_{\mathbf{k}} P_{\mathbf{k}}' D(\widetilde{\mathbf{p}}^{(\mathbf{k})} | \widetilde{\mathbf{q}}^{(\mathbf{k})}) \ge 0$

3 Convergence theorem 20 T stochastic matrix, Pro) arbitrary probability distribution how does the prob. dist. The Prod behave for large n? > (Markov process with discrete time n=1,2,...) 1 3 2 $T_{11} = [-\sigma] \quad \overline{T_{12}} = (3)$ B example with 12=2 $7_{21}=q$ $T_{22}=1-G$ $(1) \quad (1 = \begin{pmatrix} |-\alpha| & \beta \\ \alpha & |-\beta| \end{pmatrix} \quad 0 < \alpha < (1, 0 < \beta < 1)$ (2) $P^{(0)} = \begin{pmatrix} P \\ I-P \end{pmatrix} (0 \le P \le I)$ (3) $T P^{(0)} = \begin{pmatrix} (I-a-B) P + B \\ (a+B-I) P + (I-B) \end{pmatrix}$, one can compute $T^n P^{(0)}$ for general n by diagonalizing T(4) det(T- λ I) = det($\begin{bmatrix} 1-\alpha-\lambda & \beta \\ \alpha & (-\beta-\lambda) \end{bmatrix}$ = $\lambda^2 + (\alpha + \beta - 2)\lambda + (1 - (\alpha + \beta))$ $= \left(\left(\lambda - 1 \right) \left(\left(\lambda - 1 \right) \right) \right)$

$ = \left(l - \alpha \right) $	eigenvalues (2) $\lambda_1 =$	$1, \lambda_2 = (-(\alpha + \beta))$	21
$(1) [-(\alpha) [-\beta])$	eigenvectors (3) Ui =	$\begin{pmatrix} \frac{\beta}{\alpha_{tB}} \\ \frac{\alpha}{\alpha_{tB}} \end{pmatrix}, \mathcal{W}_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$	
then (4) $P^{(o)} = \begin{pmatrix} P \\ (-p) \end{pmatrix} =$	$W_1 + (P - \frac{\beta}{\alpha_{tB}}) W_2$	rormalized a probability	as clistribution
and (5) $T^{n} \mathbb{P}^{(0)} = -$	$\overline{[}^{n} \mathcal{V}_{i} + (\mathcal{P} - \frac{\mathcal{B}}{\alpha + \mathcal{B}}) \overline{[}^{n}$	\mathbb{V}_{2}^{1}	· · · · · · · · · · · · ·
= 1	$r_i + (P - \frac{B}{\sigma + B}) \{l - l\}$	[atB) 5" W2	· · · · · · · · · · · · ·
since [[-Catb] [<	1		· · · · · · · · · · · · · · · · · · ·
$(6) \lim_{n \to \infty} T^n P^{(0)}$	= 14; for any pro	bability distribution P	$(0) = \left(\begin{array}{c} P \\ P \end{array} \right) = \left(\begin{array}{c} P \\ P \end{array} \right)$
N1 1/ 1∞	Converges To	a unique probability	distribution

D Convergence theorem

22

Definition: a stochastic matrix T is said to be primitive (or irreducible + aperiodic) if there is an integer $\mathcal{V} \ge 1$ such that (1) $(T^{\mathcal{V}})_{j,k} \ge 0$ for any $\tilde{J}_{j,k}$. Theorem: assume that T is primitive. then In there is a unique probability distribution $\mathbb{P}^{S} = (\mathbb{P}_{j}^{S})_{j=1,...,S}$ that satisfies (2) $T \mathbb{P}^{S} = \mathbb{P}^{S}$ > stationary distribution le it holds that PS >0 for any J A for any prob. distribution P(0) we have $T^{2}(0)$ $(3) \lim_{n \neq \infty} T^n \mathbb{P}^{(0)} = \mathbb{P}^S$ T³ (⁶⁾ 2 · · · · PS_ $\mathbb{P}^{(0)} \xrightarrow{\mathsf{T}^{2} \mathbb{P}^{(0)}} \xrightarrow{\mathsf{T}^{2} \mathbb{P}^{(0)}}$ Convergence to a unique stationary distribution is a univeral phenomenon.

 $\mathbb{D} \operatorname{proof} (\mathbb{V}_{0}) := \left(\mathbb{V}_{j} = (\mathbb{V}_{j})_{j=1,\cdots,2} \in \mathbb{R}^{-2} \mid \sum_{j=1}^{2} \mathbb{V}_{j} = 0 \right)$ Lemma: if T is primitive then (2) $\lim_{n \to \infty} T^n \psi = 0$ for any $\psi \in V_0$ proof of Theorem given Lemma $(3) \left(\left(\left(\begin{array}{c} l \\ l \\ l \end{array} \right) \right)_{l} = \sum_{k=l}^{2} \left(\left(\begin{array}{c} l \\ l \\ l \end{array} \right) \right)_{k} = \sum_{k=l}^{2} \left(\left(\begin{array}{c} l \\ l \\ l \end{array} \right) \right)_{k} = \left(\begin{array}{c} l \\ l \\ l \\ l \end{array} \right) = \left(\begin{array}{c} l \\ l \\ l \\ l \end{array} \right)$ λ=(îs an eigenvalue of Tt $\lambda = 1$ is an eigenvalue of $T \rightarrow corresponding eigenvector <math>\mathcal{U} = (\mathcal{U}_j)_{j=1,\dots,\Omega}$ with $\mathcal{U}_j \in \mathbb{R}$ $(5) T U = U \xrightarrow{\text{Lemma}} U \notin V_0 \longleftrightarrow (6) \sum_{i=1}^{2} U_j \neq 0$ define \mathbb{P}^{S} by $(\eta) \mathbb{P}_{j}^{S} = \left(\sum_{k=1}^{n} \mathcal{U}_{k}\right)^{-1} \mathcal{U}_{j}$ then (8) $\sum_{j=1}^{n} \mathbb{P}_{j}^{S} = 1$ we still do not know whether IPS is a probability distribution or not

there is $\mathbb{P}^{s} = (\mathbb{P}^{s}_{j})_{j=1, \gamma, 2}$ such that (1) $\mathbb{T}^{p} = \mathbb{P}^{s}$ (2) $\sum_{i=1}^{j} \mathbb{P}^{s}_{j} = 1$ **Z4** ► for arbitrary probability distribution P(0) = P^S & Vo & Lemma $(3) T^{h} \mathbb{P}^{(0)} = T^{h} \mathbb{P}^{S} + T^{h} (\mathbb{P}^{(0)} \mathbb{P}^{S}) \xrightarrow{N \not \gg} \mathbb{P}^{S}$ convergence is proved. ► since T^h P^(o) is a probability distribution, so is ft^s properties of IPS ave proved. $(4) \mathbb{P}^{S} = \mathbb{T}^{2} \mathbb{P}^{S} \longrightarrow (5) \mathbb{P}^{S}_{j} = \sum_{k=1}^{2} \mathbb{T}^{2} \mathbb{P}^{S}_{k} > 0$ positive nonnegative Assume $T P^A = P^A$ for a prob. dist. $P^A \neq P^S$ inqueness of the solution this contradicts with (3) if we set $P^{(0)} = P^A$ of $TP^S = P^S$ is proved. remark 2=1 and 1P10 are the Perron-Frobenius eigenvalue and eigenvector of T. we avoided the use of the Perron-Frobenius theorem

25 Perron-Frobenius theorem j and k are "connected" via nonzero entries let A= (ajk) j, k=1,..., 2 be an Dx Smatrix with (i) ajre R for any Jrk (ii) Qj R≥O for any j+k (iii) A is irreducible, i.e., for any J+k, there exist N>O and i_0, i_1, \dots, i_n s.t. $i_0 = j$, $i_n = k$, and $a_{i_{\ell-1}, i_\ell} \neq 0$ for $l = l_1, \dots, n$ then there exists a nondegenerate real eigenvalue λ^{r+} of A, and the corresponding eigenvector $V^{PF} = (V^{PF}_{j})_{j=1, ..., S}$ can be chosen to satisfy Vizo for all i. any other eigenvalue λ of A satisfies $Re \lambda < \lambda^{rr}$

proof of Lemma 26
some definitions
(1) $\mathcal{M} = \min(T^{2})_{j,k} > 0$
$M: IX \subseteq Matrix such that (M)_{j,k} = \mu for all j,k$
$S = T^{\nu} - M$
then (3) $(S)_{j,h} = (T^{\nu})_{j,h} - M \ge 0$ (4) $\sum_{j=1}^{j} (S)_{j,h} = 1 - 2M$
P for any $V \in V_o$
$(5) \sum_{j=1}^{n} \left(T^{\nu} \psi \right)_{j} = \sum_{j,k}^{l} \left(T^{\nu} \right)_{jk} \psi_{k} = \sum_{k} \psi_{k} = 0 \rightarrow (6) T^{\nu} \psi \in V_{0}$
$(\eta) \left(\mathcal{M} \mathcal{W} \right)_{j} = \sum_{k} (\mathcal{M})_{j,k} \mathcal{V}_{k} = \mathcal{M} \sum_{k} \mathcal{V}_{k} = 0$
we thus have (8) $MW = 0$ and hence (9) $T^2W = SW$

$ \lim_{N \to \infty} \operatorname{of} \alpha \operatorname{vector} W = (W_j)_{j=1,\dots,2} \in \mathbb{R}^{2^{2^{2^{2^{2^{2^{2^{2^{2^{2^{2^{2^{2^$	27
for any $W \in V_0$ p26-(9)	· · · · · ·
(2) $\ T^{\nu} \psi \ _{s} = \sum_{j} (T^{\nu} \psi)_{j} = \sum_{j} (S \psi)_{j} \leq \sum_{j,k} S_{jk} V_{k} $	· · · · · ·
$p^{26} \stackrel{-(4)}{\cong} (I - \Omega \mu) \sum_{k} [V_{k}] = (I - \Omega \mu) W _{I}$	
since TVVEVo, we can repeatedly use (2) to get	
$(3) T^{Vm} \psi _{1} \leq (1 - 2\gamma)^{m} \psi _{1}$	
thus (4) $\lim_{m \to \infty} \ T^{\gamma m} \psi\ _{1} = 0 \implies (5) \lim_{m \to \infty} T^{\gamma m} \psi = 0$	
	· · · · · ·

28 < Markov jump process> a Markov process with discrete states and continous time t 20 § definitions $\int e^{(w_{k} \rightarrow j)} k^{(w_{k} \rightarrow j)}$ Microscopic states J=1,2,..., D D a Markov jump process is fully characterized by a collection of transition rate $W_{k \to j}(t) \ge 0$ for k, j = 1, ..., S2, $k \neq j$, and $t \ge 0$ Define collection of transition rates at t $W(t) = (W_{k \to j}(t))_{k, j=1, \dots, 2}$ the collection of W(t) over whole $t \ge 0$ $\widetilde{W} = (W(t))_{t \ge 0}$ $(k \neq j)$ If the system is in state & at time t, then it is in state i at time test with probability $\Delta t (w_{k \to j}(t) + O((M)^2))$ ($\Delta t \ge 0$) \square escape rate (1) $\lambda_k(t) = \sum_{i(t+1)}^{l} \omega_{k \to j}(t) \ge 0$ if the system is in state & at time I, then the probability that it is no longer in k at time t + Jt is $\Delta t \lambda_k(t) + O((Ut)^2)$

29 Smaster equation P(t)=(P;(t))j=1,-,2 probability distribution at time t Pilt) the probability that the system is in state j at time t ([) $P_{j}(f+st) - P_{j}(t) = -\left\{ st \lambda_{j}(t) + O((st)^{2}) \right\} P_{j}(t) + \sum_{k(\neq j)} \left\{ st W_{k \to j}(t) + O((st)^{2}) \right\} P_{k}(t)$ jump from k to j escape from j jer k by letting StJO (2) $P_{j}(t) = (-\lambda_{j}(t)P_{j}(t) + \sum_{k(\neq j)} (\omega_{k \to j}(t)P_{k}(t))$

(i) $P_j(t) = -\lambda_j(t)P_j(t) + \sum_{k(\neq j)} \omega_{k \to j}(t)P_k(t)$ 30 define transition rate matrix by (2) R(+) = (Rjk(+))jik=1, , 52 (3) $R_{jk}(t) = (\omega_{k \to j}(t) \ge 0)$ (j+k) any R(t) with Rjk(t) ≥ 0 forjtk (4) $R_{kk}(t) = -\lambda_k(t) = -\sum_{j(t)} \omega_{h \to j}(t) \leq 0$ and (5) is a transition rate matrix We then have (5) $\int_{J=1}^{1} R_{jk}(t) = 0$ for any k (6) $\dot{P}_{j}(t) = \sum_{k=1}^{2} R_{jk}(t) P_{k}(t)$ master equation (1) is written as Kolmogorov's forward equation 0, 2, , $(7,) \mathbb{P}(+) = \mathbb{R}(+) \mathbb{P}(+)$

monotovicity	31
suppose P(+) and R(+) satisfy	· · · · · · · · ·
(1) $P(t) = R(t) P(t)$ $R(t) = R(t) R(t)$	· · · · · · · · ·
with common transition rate matri.	r R(t)
then D(P(t)/filt) is non-increasing in t	4(0)
proof for $t > 0$ and small $\epsilon > 0$ (2) $\mathbb{P}(t + \epsilon) = \mathbb{P}(t) + \epsilon \mathbb{R}(t) \mathbb{P}(t) + O(\epsilon^2) = T \mathbb{P}(t) + O(\epsilon^2)$ where (3) $T = I + \epsilon \mathbb{R}(t)$ is a stochastic matrix	P.(+-)
$(4) \Re[++\varepsilon] = T \Re[+) + O(\varepsilon^2)$	pl9-CI)
Then (5) $D(P(t+e)[P(t+c_{1}) - D(P(t) P(t)]) = D(TP(t)[TP(t)] - D(P(t)(P(t) P(t)) + C))$ (6) $f_{t+} D(P(t) P(t) P(t)) \leq 0$	N(E ²) ₹D(E ²)

32 De probability current ji+h (t) for J+k (1) Jj→k(t) = Rhj(t) Pj(t) - Rjk(t) Pk(t) jtok ktoj the net-flow of probability from jtok (2) $\int J \rightarrow k(t) = - \int k \rightarrow j(t) - R_{jj}(t)$ (3) $\sum_{k(\neq j)} f_{j \to k}(t) = \left\{ \sum_{k(\neq j)} R_{kj}(t) \right\} P_{j}(t) - \sum_{k(\neq j)} R_{jk}(t) P_{k}(t)$ $= - \sum_{k=1}^{1} R_{jk}(t) P_{k}(t) = - P_{j}(t)$ we thus have the continuity equation master equation $(a) \stackrel{\dot{P}_{j}}{=} (t) + \sum_{k(\neq j)} f_{J \to k}(t) = 0$

3 convergence theorem for stationary proces (Wj+k(t) is independent of t) 33 time-independent transition rate matrix R = (Rin)j,k=1,...,2 master equation (1) P(t) = RP(t) $(3) e^{A} = \sum_{n=1}^{\infty} \frac{l}{n!} A^{n}$ \rightarrow solution (2) $\mathbb{P}(t) = \mathbb{C}^{tR} \mathbb{P}(0)$ $= \lim_{N \ge \infty} \left(I + \frac{A}{N} \right)^{N}$ $\mathbb{P} \text{ example with } \mathbb{P} = 2 \qquad \begin{pmatrix} R_{11} = -d & R_{12} = B \\ R_{21} = d & R_{22} = -G \end{pmatrix}$ $\mathbb{P} = \begin{pmatrix} -d & B \\ d & -G \end{pmatrix} \qquad d > 0, B > 0 \qquad d$ $(4) \frac{d}{dt} e^{tR} = R e^{tR}$ (5) $\dot{P}_{1}(t) = -\alpha P_{1}(t) + \beta P_{2}(t)$ $1 \qquad 3 \qquad 2$ (3 2 Convergence to a stationary distribution. Thus (9) lim $P(t) = \begin{pmatrix} 3 \\ \alpha \tau \beta \\ \alpha \tau \beta \end{pmatrix}$ (6) $P_2(t) = \alpha P_1(t) - \beta P_2(t)$ solution) (7) $P_1(t) = C e^{-(\alpha t \beta)t} + \frac{\beta}{\alpha t \beta}$ $(P) P_2(+) = -C e^{-(a+rs)t} + \frac{\alpha}{\alpha + rs}$ for ¥ P(o)

D Convergence theorem

34

Definition: a transition rate matrix R is said to be irreducible if, for any j+k there exist N>O and Lo, Li, ..., Lin s.t. lo=j, in=k, and Riple-1 >0 for all l=1,...,n any j and k are "connected" via nonzero entries Theorem: assume that R is irreducible. Then There is a unique probability distribution $\mathbb{P}^{S} = (\mathbb{P}_{j}^{S})_{j=1,...,2}$ that satisfies (VRPS=0) > stationary distribution Dit holds that PS >0 for any J Tor any initial distribution IP(0) it holds that (2) $\lim_{t \neq \infty} \mathbb{P}(t) = \mathbb{P}^{s}$ PS . Plo Pit (IP(+) solution of P(+) = R P(+)

@ general "H-theorem" for Markov jump processes 35 historical name, given by Boltzmann Corollary: suppose that R is irreducible define (2) $H(P) := D(P(P^{s}))$ then, for any P(0), H(P(t)) is non-increasing in $t \ge 0$ and. converges to zero as t70 (P(+) solution of P(+) = RP(+)) there is a function that knows the 'arrow of time" $H(H) \uparrow$

36 De proof of the theorem Lemma: for any T > 0, $T = e^{TR}$ is a stochastic matrix, and satisfies (T)hi >0 for any J.k More or less Trivial ... proof of Theorem given Lemma fix T>D (we need Lemma only for a single value T>D) → P22 $T = e^{\tau P}$ is primitive \rightarrow convergence theorem for $T^n P^{(o)}$ unique \mathbb{P}^{S} s.T. (1) $\mathbb{T}\mathbb{P}^{S} = \mathbb{P}^{S} \iff (2) \mathbb{R}\mathbb{P}^{S} = 0$ write t=mt+s with 0≤s<t $P(t) = e^{(mTts)R} P(0) = e^{sR} T^{m} P(0)$ converges to IPS as m100

proof of Lemma 37 $Proof of (1) \sum_{k=1}^{j} (e^{\tau R})_{kj} = 1$ (2) $\sum_{k=1}^{32} (e^{0R})_{kj} = 1$ (3) $\frac{d}{d\tau} \sum_{k=1}^{52} (e^{\tau R})_{kj} = \sum_{k,l=1}^{52} R_{kl} (e^{\tau R})_{lj} = 0$ proof of (e^{TR})k; >0 for any T>0 and j,k=1,-..,12 • diagonal (4) $\left(e^{sR}\right)_{jj} = 1 + \sum_{n!} \frac{\left(R^{n}\right)_{jj}}{n!} s^{n} = f(s)$ f(s) is continuous in S and f(o)=0 (5) (esR) > 0 for sufficiently small s 20

Definition: a transition rate matrix R is said to be irreducible if, for any jtk there exist N>0 and $i_0, i_1, ..., i_n s.t.$ $i_0 = j$, $i_n = k$, and 38 $R_{i_0, i_{n-1}} > 0$ for all l = 1, ..., n minimum nwith the above property • off-dragonal for any J=12 there is No=1.2... such that (2) $(\mathbb{R}^{n_{0}})_{k_{j}} > 0$, $(\mathbb{R}^{n})_{k_{j}} = 0$ for $n < n_{0} \rightarrow 0$ as 550 (3) $(e^{SR})_{hj} = \sum_{n=0}^{\infty} \frac{(R^n)_{kj}}{N!} S^n = \begin{cases} \frac{(R^n)_{kj}}{n_0!} + \sum_{n>n_0}^{\infty} \frac{(R^n)_{kj}}{n!} S^{n-n_0} \end{cases}$ >0 for sufficiently small S>0 Zo>o st. (esp)kj >0 for any Ĵik if o<s≤to (4) $e^{TR} = \left(e^{\frac{T}{N}R}\right)^{N} \Rightarrow \left(e^{TR}\right)_{kj} > 0 \text{ for any like and any T20}$

§ description in terms of path	39
· arbitrary Markov jump process with time-dependent	
transition rates $(W(t)) = (W_{j \rightarrow k}(t))_{j,k=1,\dots,2} (j \neq k)$	
• escape rate $\lambda_j(t) = \sum_{k(t)}^{j} \omega_{j \to k}(t)$	· · ·
• the collection of transition rates $\tilde{W} = (W(t))_{t \in [0, T]}$	· · ·
\mathbb{D} staying probability $\widehat{P}_{j}(t,t')$ $(t \leq t')$ $(\tau > 0 \text{ final time})$	J
the probability that the system is always in state j in the time	
interval (t,t), provided that it is in j at time t	• • •
then (1) $\widehat{\mathcal{P}}_{j}(t,t) = 1$ (2) $\frac{2}{2t}, \widehat{\mathcal{P}}_{j}(t,t') = -\lambda_{j}(t)\widehat{\mathcal{P}}_{j}(t,t')$	· · ·
(3) $\tilde{\gamma}_{i}(t,t') = \exp\left[-\int_{t}^{t'} ds \lambda_{j}(s)\right]$	• • •

Y: a path (or a history) in the time interval [0, 2] 40 D path that connects states Vinit and Sfin (with N jumps) to (1) $Y = (\hat{J}_0, \hat{J}_1, \dots, \hat{J}_n; t_1, \dots, t_n)$ with (2) $\hat{O} < t_1 < t_2 < \dots < t_n < C$ Sinit Sfin M-th jump at t_m from state J_{m-1} to J_m we write (3) $\mathcal{X}(t) = Jm$ for $t \in (t_m, t_{m+1}]$ and $\mathcal{X}(0) = Jo$ De Transition probability density of a path & $(4) \quad \mathcal{J}_{\widetilde{w}}(\mathcal{X}) := \underbrace{\mathcal{P}_{j}(0, t_{1})}_{j_{0} \rightarrow j_{1}} \underbrace{\mathcal{W}_{j_{0} \rightarrow j_{1}}(t_{1})}_{j_{0} \rightarrow j_{1}} \underbrace{\mathcal{P}_{j}(t_{1}, t_{2})}_{j_{1} \rightarrow j_{2}} \underbrace{\mathcal{W}_{j_{1} \rightarrow j_{2}}(t_{2})}_{j_{1} \rightarrow j_{2}} \underbrace{\mathcal{W}_{j_{1} \rightarrow j_{2}}(t_{2} \rightarrow j_{2})}_{j_{1} \rightarrow j_{2}} \underbrace{\mathcal{W}_{j_{1} \rightarrow j_{2}}(t_{2} \rightarrow j_{2})}_{j_{1} \rightarrow j_{2}} \underbrace{\mathcal{W}_{j_{1} \rightarrow j_{2}}(t_{2} \rightarrow j_{2} \rightarrow j_{2} \rightarrow j_{2}} \underbrace{\mathcal{W}_{j_{1} \rightarrow j_{2}}(t_{2} \rightarrow j_{2} \rightarrow j_{2}$ staying probability ? It ransition rate $\begin{array}{c|c} & & \\ \hline \\ 0 & t_1 & t_2 & t_3 & t_4 & t \end{array}$ $t_{0}=0$, $t_{n+1}=T$

41 (1) $P(0) = (P; 0)_{j=1,\dots,2}$ arbitrary initial probability distribution Deprobability density that a path & is realized (2) $P_{\text{Sinit}}(0) \int_{\widetilde{w}}(8) = P_{j_0}(0) P_{j_0}(0,t_1) W_{j_0 \rightarrow j_1}(t_1) \cdots W_{j_{n-1} \rightarrow j_n}(t_n) P_{s_n}(t_n,\tau)$ initial staying jump staying staying staying normalization (3) $\int DY P_{T_{int}}(0) J_{in}(y) = 1$ where the "sum" over all possible paths is (4) $SDY(\dots) = \sum_{N=0}^{\infty} \sum_{\tilde{J}_0,\tilde{J}_1,\cdots,\tilde{J}_n=1}^{J^2} \int_0^{\tau} dt_1 \int_0^{\tau} dt_2 \int_{t_1}^{\tau} dt_3 \cdots \int_{t_{n-1}}^{\tau} dt_n (\dots)$ 2' indicates the constraint Jm-1 + Jm (m=1,...,n) it holds that (S) $P_j(t) = \int DY P_{\text{Sinit}}(0) J(r) S_{\gamma(t), j}$ CJ.0]37

42 Remark: Key observation for the relations in p42 γ any path for the interval [0, T] $\gamma(T) = J$ γ' path on [0, T+0] such that $\gamma'(t) = \gamma(t)$ for $t \in [0, T]$ $(\text{probability density for } \mathscr{V}) = \mathcal{P}_{\text{init}}(0) \ \mathcal{J}_{\widetilde{W}}(\mathscr{V})(\widetilde{\mathcal{P}}_{j}(t_{n}, \tau+\sigma\tau) = \widetilde{\mathcal{P}}_{j}(t_{n}, \tau))(\tau, \tau+\sigma\tau)$ $\begin{array}{c} no jumps \\ P_{j}(\tau, \tau + \sigma \tau) = 1 - \sigma \tau \lambda_{j}(\tau) + O((\sigma \tau)^{2}) \end{array}$ 1 1 > T T+JT $\mathcal{P}_{j}(T, t_{f}) W_{j \rightarrow h}(t_{f}) \mathcal{P}(t_{f}, T+JT) \uparrow$ $= P_{\gamma_{init}}(0) J_{\widetilde{w}}(\gamma) \times \{$ L k $\mathcal{W}_{j \rightarrow k}(t) + O(dt)$ T T+JT for some ts E (T, T+JT) and kt J (probability density) for 8 higher orders in ST We recover the definition of the process -> proof of (3), (5)

Sexpectation values and their relations 43 \square state quantity $f \rightarrow takes value f; in a (microscopic) state <math>j=1,...,52$ probability distribution $P = (P_j)_{j=1,\dots,N}$ $(I) \left< \hat{f} \right>_{\mathbb{P}} = \sum_{i=1}^{I} P_{i} f_{j}^{i}$ Djump quantity g takes value giak when a jump jak takes place $(3) \ll \widehat{F} \gg_{P(0),\widetilde{W}} = \int DY P_{Y_{init}}(0) \int_{\widetilde{W}}(Y) F(Y).$

ID time-dependent state quantity f(t) -> takes value filt) 44 corresponding path quantity f(t) takes value (1) $f(t, \gamma) = f_{\gamma(t)} = \sum_{m=0}^{\infty} f_{j_m}(t) \chi [t \in (t_m, t_m + i]]$ in path Y=(Jo,--, Jn; tr, --, tn) to=0, tn+1=て then (2) $\langle\langle \hat{f}(t) \rangle_{\mathbb{P}(b), \widetilde{\omega}} = \langle \hat{f}(t) \rangle_{\mathbb{P}(t)} = \hat{f}(t) \hat{f}_{j(t)} \hat{$ P46 integrated quantity (3) $\widehat{F} = \int_{0}^{T} dt \widehat{f}(t)$ Takes value (4) $F(\gamma) = \int_0^T dt f(\tau, \gamma) = \sum_{m=0}^n \int_{t_m}^{t_{m+1}} dt f_{j_m}(\tau)$ thus $\langle \widehat{F} \rangle_{\mathbb{P}(\omega), \widetilde{\omega}} = \int_{0}^{1} dt \langle \widehat{f}(t) \rangle_{\mathbb{P}(t)}$

ID time-dependent jump quantity g(t) -> takes value giablet) 45 corresponding path quantity $\widehat{g}(t)$ takes value (1) $g(t, Y) = \sum_{m=1}^{1} g_{j_{m-1}} \rightarrow j_m(t_m) S(t-t_m)$ in path $Y = (\hat{J}_{0}, -, \hat{J}_{n}; t_{1}, -, t_{n})$ $t_{0} = 0, t_{n+1} = T$ $\text{then (2)} \left\langle \left\langle \hat{g}(t) \right\rangle_{\mathbb{P}(b), \widetilde{\omega}} = \left\langle \hat{g}(t) \right\rangle_{\mathbb{P}(t+), w(t+)} \right|_{\substack{j \neq k \\ j, k=1 \\ (j \neq k)}} \sum_{\substack{j \neq k \\ j \neq k}} \left\langle f_{j}(t) \right\rangle_{\mathbb{P}(b), \widetilde{\omega}} = \left\langle \hat{g}(t) \right\rangle_{\mathbb{P}(t+), w(t+)}$ integrated quantity (3) $\widehat{G} = \int_{0}^{T} dt \, \widehat{g}(t)$ \searrow P46 takes value (4) $G(Y) = \int_0^T dt G(t,Y) = \sum_{m=1}^{1} G_{j_{m-1}} \rightarrow j_m(t_m)$ thus $\langle \widehat{G} \rangle_{P(0), \widetilde{\omega}} = \int_{0}^{\tau} dt \langle \widehat{g}(t) \rangle_{P(t), W(t)}$

derivation of P44-(2) and P45-(2) $f(t, \gamma) = f_{\gamma(t)} = \sum_{j=1}^{m} f_j(t) S_{\gamma(t), j}$ 46 $\int_{t}^{1+st} ds \langle \langle \hat{g}(s) \rangle \rangle_{\text{RGD}, \tilde{W}} = \sum_{\tilde{J}, k} (g_{\tilde{J} \neq k}(t) \operatorname{Prob}(there is a jump \tilde{J} \neq k within trattat) + O((\Delta t)^2)$ (j+h) $= \sum_{j\neq h} \Delta t P_j(t) W_{j\neq h}(t) \mathcal{G}_{j\neq k}(t) + O((\Delta t)^2)$ $= \Delta t \langle \hat{g}(t) \rangle_{P(t), W(t)} + O((\Delta t)^2)$ $= \langle \hat{g}_{(t)} \rangle_{\mathbb{P}^{(k)}, \tilde{w}} = \langle \hat{g}_{(t)} \rangle_{\mathbb{P}^{(t)}, w^{(t)}}$

looks complicated But everything is formal 47 3 abstract fluctuation theorems for Markov jump processes a Markov jump process with $\tilde{W} = (W_{k \rightarrow j}(t))_{k \neq j}, t \in [0, \tau]$ assume for any $j \neq k$ and $t \in [0,T]$ that (1) $W_{k \rightarrow j}(t) \neq 0 \iff W_{j \rightarrow k}(t) \neq 0$ - the only assumption ! In "entropy production" formal definition (2) $\Theta_{k \to j}^{\tilde{\omega}}(t) := \log \frac{W_{k \to j}(t)}{W_{j \to k}(t)}$ if $W_{k \to j}(t) \neq 0$ (set $\Theta_{k \to j}^{\tilde{\omega}}(t) = 0$ otherwise) we thus have (3) $W_{k \to j}(t) e^{-\Theta_{k \to j}^{\tilde{\omega}}(t)} = W_{j \to k}(t)$ and (4) $\Theta_{j \to k}^{\tilde{\omega}}(t) = -\Theta_{k \to j}^{\tilde{\omega}}(t)$ path quantity for a path $\chi = (\hat{J}_0, ..., \hat{J}_n; t_1, ..., t_n)$ $(6) \quad (1) \quad (1)$ $(5) \bigoplus^{\widetilde{w}} (\gamma) := \sum_{m=1}^{\gamma} \Theta^{\widetilde{w}}_{\widehat{J}_{m-1}} \to \widehat{J}_{m}(\mathcal{T}_{m})$ total entropy production along the path of

	time-reveresed Markov jump process	48
• •	transition rates $\tilde{W}^{\dagger} = (W_{k \to j}^{\dagger}(S))_{k \neq j}, S \in [0, T]$ with (1) $W_{k \to j}^{\dagger}(S) = W_{k \to j}(T)$	-s)
• •	(reversed time (2) $S = T - t$) $o _ t \rightarrow \tau t$	
• •	escape rate (3) $\lambda_h^{\dagger}(s) = \sum_{k \neq j} \omega_{k \neq j}^{\dagger}(s) = \lambda_k(T-s)$ $\tau \leq S^0$	· · · · · ·
• •	(4) $\tilde{W} = \tilde{W}^{\dagger}$ if \tilde{W} is time-independent	
ß	time-reveresed path y j_ j2 j3	
	$(5) \forall = (\hat{J}_0, \dots, \hat{J}_h); \forall t_1, \dots, t_n)$	
· ·	(6) $\gamma^{\dagger} = (J_{n, -1}, J_{0}; \tau - t_{n}, -1, \tau - t_{l})$	· · · · · · ·
• •	$=(k_0, \dots, k_n; S_1, \dots, S_n)$	· · · · · · ·
· ·	(7) $k_m = J_{n-m}$ (8) $S_m = T - T_{n-m+1}$	· · · · · · ·
• •	$p(7-(4) \rightarrow (4) \qquad \qquad$	· · · · · ·

 $= \prod_{m=0}^{n} \widetilde{\mathcal{P}}_{j_m}^{\omega}(t_m, t_{m+1}) \prod_{m=1}^{n} (\omega_{j_m} \rightarrow J_{m-1})$ (2) $\widetilde{P}_{jm}(t_m, t_{m+i}) = \exp\left(-\int_{t_m}^{t_{m+i}} dt \lambda_{jm}(t)\right) = \exp\left(-\int_{S_{n-m}}^{S_{n-m+i}} ds \lambda_{k_{n-m}}^{\dagger}(s)\right) = \widetilde{P}_{k_{n-m}}^{\widetilde{w}^{\dagger}}(S_{n-m}, S_{n-m+i})$ (3) $W_{j_m} \rightarrow j_{m-1} (t_m) = W_{k_{n-m}}^{\dagger} \rightarrow k_{n-m+1} (S_{n-m+1})$ $= \prod_{m=0}^{n} \widetilde{P}_{k_{n-m}}^{\widetilde{W}^{\dagger}}(S_{n-m}, S_{n-m+1}) \prod_{m=1}^{n} \widetilde{W}_{k_{n-m} \rightarrow k_{n-m+1}}^{\dagger}(S_{n-m+1})$ $= \prod_{m=0}^{n} \widetilde{\mathcal{P}}_{km}^{\widetilde{w}^{\dagger}}(S_{m}, S_{m+1}) \prod_{m=1}^{n} \omega_{km-1}^{\dagger} (S_{m}) = \widetilde{J}_{\widetilde{w}^{\dagger}}(X^{\dagger})$ (4) $\int_{\widetilde{W}}(\gamma) e^{-\widetilde{W}(\gamma)} = \int_{\widetilde{W}}(\gamma) e^{-\widetilde{W}(\gamma)} = \int_{\widetilde{W}}(\gamma) e^{-\widetilde{W}(\gamma)} = \int_{\widetilde{W}}(\gamma) e^{-\widetilde{W}(\gamma)} = W_{j \to k}(\gamma)$

50 D integrated fluctuation theorem) P(0) arbitrary initial probability distribution with $P_{j}(0) \neq 0$ for $\forall j$ $q = (l_j)_{j=1,..,n}$ arbitrary probability distribution with $l_j \neq 0$ for $\forall j$ $\left\langle \exp\left[-\widehat{\Theta}^{\widetilde{W}} - \log P_{\gamma_{init}}(0) + \log \left\{ v_{\gamma_{fin}} \right\} \right\rangle \right\rangle_{P(0), \widetilde{W}}$ $= \int \mathcal{D} \mathcal{F} \mathcal{P}_{\mathcal{V}_{init}}(0) \mathcal{J}_{\widetilde{W}}(\mathcal{X}) \mathcal{C}^{-\overline{\mathcal{W}}(\mathcal{X})} \frac{1}{\mathcal{P}_{\mathcal{V}_{init}}(0)} \mathcal{V}_{\mathcal{V}_{fin}}$ the path probability in the process with with initial distribution R $DY = DY^{\dagger}$ $= \int D^{*} + \int_{\mathcal{X}_{in:t}} \mathcal{J}_{\widetilde{w}t}(x^{\dagger}) = \int D^{*} \mathcal{Q}_{\mathcal{X}_{int}} \mathcal{J}_{\widetilde{w}t}(x) = 1$ (2) $\left(\exp\left[-\widehat{\Theta}^{\widetilde{\omega}} - \log P_{\gamma_{init}}(0) + \log V_{\gamma_{fin}} \right] \right) \right)_{P(o), \widetilde{\omega}} =$

D-fluctuation theorem a Markov jump process such that $\tilde{W} = \tilde{W}^{\dagger}$ (e.g. time-independent process) (P(0) arbitrary initial probability distribution with $P_{5}(0) \neq 0$ for $\forall j$ define (1) $\Psi(8) := \Theta(8) + \log P_{sint}(0) - \log P_{sfin}(0)$ (2) $P(s) := \langle S(\hat{\Psi} - s) \rangle_{P(0), \tilde{W}}$ prob. density that $\Psi(\delta)$ is equal to s (3) $P(s) e^{-s} = \int DY P_{r_{inf}}(0) J_{\overline{w}}(x) S(\Psi(x) - s) e^{-\Psi(x)}$ $= \int \mathcal{D} \mathcal{F} \mathcal{P}_{\mathcal{S}_{inft}}(0) \mathcal{J}_{\tilde{w}}(\mathcal{F}) \mathcal{P}_{\mathcal{C}}(\mathcal{F}) \frac{\mathcal{P}_{\mathcal{F}_{fm}}(0)}{\mathcal{P}_{\mathcal{S}_{inft}}(0)} S(\Psi(\mathcal{F}) - S)$ $= \int \mathcal{D} \mathcal{F} \mathcal{P}_{\mathcal{F}_{fin}}(0) \mathcal{J}_{\tilde{w}t}(\mathcal{F}) \mathcal{F}(\mathcal{F}) S(\Psi(\mathcal{F}) - S) \qquad (\Psi(\mathcal{F}) = -\Psi(\mathcal{F}))$ $= \int \mathcal{D} \mathcal{F} \mathcal{P}_{\mathcal{F}_{fin}}(0) \mathcal{J}_{\tilde{w}t}(\mathcal{F}) \mathcal{F}(\mathcal{F}) S(\Psi(\mathcal{F}) - S) \qquad (\Psi(\mathcal{F}) = -\Psi(\mathcal{F}))$ $= \int D \chi^{\dagger} P_{\chi_{ijj}^{\dagger}}(0) J_{\tilde{w}}(\chi^{\dagger}) S(-\mathbb{P}(\chi^{\dagger}) - s) = P(-s)$ $(4) P(s) = e^{s} P(-s)$

Incomplete references

Cournot's principle

G. Shafer, "Why did Cournot's principle disappear?", presentation slides (2006). <u>http://www.brunodefinetti.it/Bibliografia/disappear.pdf</u>

Fluctuation theorem in the path description

C. Maes, "The Fluctuation Theorem as a Gibbs Property", J. Stat. Phys. 95, 367 (1999).

J. L. Lebowitz and H. Spohn, "A Gallavotti-Cohen-Type Symmetry in the Large Deviation Functional for Stochastic Dynamics", J. Stat. Phys. **95**, 333 (1999).

G. Crooks, "Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences", Physical Review E, **60**, 2721 (1999).