Part 3 Nonequilibrium processes in an equilibrium environment

Relaxation process in an equilibrium environment

Approach to thermal equilibrium

Fluctuation theorem

Operations in an equilibrium environment

Jarzynski equality and the second law of thermodynamics No pumping theorem

<relaxation process in an equilibrium environment >
may be large or small, the system parameters are timeindependent · physical system with almost stable states j=1,2,...,12 Ej energy (free energy) of state j · the system is in Touch with a heat bath = a larger system (e.g., surrounding water) in equilibrium with inverse temperature 13 . The interaction with the bath causes the system to "jump" from a state another, from time to time, in a stochastic manner effective theory a Markov jump process with time-independent transition rates $W = (W_{k \rightarrow j})_{k, j = l_{c}, -2, k \neq j}$ More or less faithful description of some systems (ionic conductors, trapped beads,...) a theoretical playground for developing nonequilibrium statistical mechanics

2 liabasic assumptions on W "proved" from a mechanical model + · W satisfies detailed balance condition equilibrium stat. mech. part 1 - p=3-(3) (1) $\frac{W_{k\to j}}{W_{j\to k}} = e^{\beta(E_k - E_j)} \text{ for any } k, j \text{ with } k \neq j \text{ and } W_{k\to j} \neq 0$ • all states are "connected" through nonzero WE-35 -> Ris irreducible for & j,k, = n>0 and lo, lis ..., ln sit lo=j, in=k, and $\bigcup_{i_{l+1} \to i_l} \neq 0$ for $l=l_1 - h$ remark (1) implies characterizes the jundle (2) $W_{k \rightarrow j} = e^{\beta E_k} A_{jk}$ for any jule (2) $W_{k \rightarrow j} = e^{\beta E_k} A_{jk}$ for any jule (3) Ajk~e^{-BBjk} j Bjie Ele example with $A_{jk} = A_{kj} \ge 0$

3 Sapproach to thermal equilibrium corresponding transition rate matrix (1) Rik = WR-J (J+k) R is irreducible \rightarrow unique \mathbb{P}^{S} s.t. (2) $\mathbb{R} \mathbb{P}^{S} = 0$ \Leftarrow part 2 - p34 detailed balance condition (3) $W_{k\rightarrow j} e^{-(SE_k)} = W_{j\rightarrow k} e^{-(SE_j)}$ (4) $R_{jk} P_{k}^{(can,B)} = R_{kj} P_{j}^{(can,B)}$ with (5) $P_{j}^{(can,B)} = \frac{e^{-BEj}}{Z(B)}$ (5) $\sum_{k=1}^{n} R_{jk} P_{k}^{(con_{j}\beta)} = R_{jj} P_{j}^{(can_{j}\beta)} + \sum_{k(\neq j)}^{l} R_{jk} P_{k}^{(can_{j}\beta)} = \left(\sum_{k=1}^{n} R_{kj}\right) P_{j}^{(can_{j}\beta)} = 0$ Rkj P; (can, B) (6) $R P^{(can, \beta)} = 0 \xrightarrow{\text{hiqueness}} (n) P^{S} = P^{(can, \beta)}$

4 Theorem: let P(t) be the solution of (1) P(t) = R P(t) with arbitrary initial distribution P(0) then (2) $\lim_{t \to \infty} P(t) = P^{(can, \beta)}$ the minus first law of thermodynamics has been proved." (within the effective Markov jump process) fluctuation in small systems is also precisely described by P(can,B) DH-theorem part 2- p35 (3) $H(P) = D(P(P^{(can,B)}) = \beta (F(P) - F(\beta))$ $\mathbb{F}(\mathbb{P}) = \mathbb{F}(\mathbb{P}) = \mathbb{F}(\mathbb{P})_{\mathbb{P}} = \mathbb{F}(\mathbb{P})_{\mathbb{P}}$ part 2 - p17 Kelmholtz free energy" for general probability distribution P (5) $F(B) = -(S') \log Z(B) \leftarrow$ the standard Helmholtz free energy lheorem F(1P(+)) is non-increasing in I and converges to F(B)

S relaxation to equilibrium from a different temperature : a fluctuation theorem 5 chose $P(0) = \mathbb{P}^{(cqn, B')}$ with $B \neq B'$ then $P(t) \xrightarrow{\pm \uparrow \infty} \mathbb{P}^{(cqn, B)}$ $B \xrightarrow{B'}$ part 2 P47-(2) entropy production (1) $\Theta_{k \to j} = \log \frac{W_{k \to j}}{W_{s \to k}} \stackrel{\checkmark}{=} B(E_k - E_j)$ path in the time interval [0,7] (2) $Y = (j_0, ..., j_n; t_1, ..., t_n)$ to the bath $(3) (\widehat{H}(Y) = \sum_{m=1}^{n} \Theta_{j_{m-1}} \widehat{J}_{m} = \beta \sum_{m=1}^{n} \beta(E_{j_{m-1}} - E_{j_{m}}) = \beta(E_{j_{0}} - E_{j_{n}}) = \beta(E_{\gamma_{init}} - E_{\gamma_{fin}})$ $part 2 - \beta' E_{init} - \log 2(\beta') - \beta' E_{fin} + \log 2(\beta')$ $(4) \quad \underline{\Psi}(Y) = (\underline{\Theta}(Y) + \log P_{Y_{int}}(0) - \log P_{Y_{fin}}(0) = (\underline{B} - \underline{B}^{2}) (\underline{E}_{Y_{int}} - \underline{E}_{Y_{fin}})$ total heat transferred from the system to the bath Q(8)

(1) $P(s) = \langle S((B-B')\widehat{Q}-s) \rangle_{P(o),\widetilde{\omega}}$ probability density that (B-B')Q(Y) equals $S \in \mathbb{R}$ part2-pS1-(4) fluctuation theorem (2) P(s) = C^SP(-S) (β-β)Q is more likely to be positive = heat flows from hot to cold
 Q is likely to be positive if B-B'>0 We know this since $\mathbb{P}(4) \rightarrow \mathbb{P}^{(\operatorname{Can},\beta)}$ \$ is likely to be negative if B-B'<0 D there is a small chance that (B-B)Q becomes negative part 1-p25-(3) heat may flow from cold to hot \$!(3) $Prob[(\beta - \beta')\widehat{Q} \le -5] \le e^{-5}$ for any \$20 the probability density P(s) exhibits nontrivial symmetry (2) > meaningful in small system + small B-B'+ small C

the heat and work X $(2) R_{jk}(t) = (\omega_{k \to j}(t))$ master equation (1) P(t) = R(t) P(t) $(3) \frac{R_{jk}(t)}{R_{kj}(t)} = e^{\beta(E_k(t) - E_j(t))}$ the energy expectation value at time t $(4) \left\langle \dot{E}(t) \right\rangle_{R(t)} = \sum_{i=1}^{n} \left\langle E_{j}(t) \right\rangle_{f(t)}$ $-\sum_{j=1}^{2} E_j(t) P_j(t)$ $(5) - \frac{d}{dt} \left(\hat{E}(t) \right)_{\mathbb{R}(t)} = - \sum_{j=1}^{12} E_j(t) P_j(t)$ the change of energy caused by the the change of energy caused directly change in the probability distribution by the change in the parameter old) = heat current the work done the heat transferred $i \Rightarrow i$ Ej(t+2t) Ej(t+2t) in unit time in unit time from the system to the bath by the system on the agent +st

 $(I) - \frac{d}{dt} \left(\hat{E}(t) \right)_{\mathbb{R}(t)} = -\sum_{j=1}^{n} E_j(t) P_j(t) - \sum_{j=1}^{n} E_j(t) P_j(t) + \sum_{j=1}^{n} E_j(t) + \sum_{j=1}$ total work (2) What = $-\int_{0}^{\tau} dt \sum_{j=1}^{T} E_j(t) P_j(t) = \langle \widetilde{W} \rangle_{P(o), \widetilde{W}}$ • the work done in a path $Y = (\hat{J}_0, ..., \hat{J}_n; t_1, ..., t_n)$, $t_0 = 0$, $t_{n+1} = T$ (3) $W(Y) = -\sum_{m=0}^{n} (t_{m+1} + t_{j_m}(t)) \Rightarrow state quantity <math>\int_{m=0}^{n} \frac{\dot{E}_{j_s}(t)}{t_{m}} \frac{\dot{E}_{j_s}(t)}{t_{m}}$ \rightarrow tTotal heat and the heat in a path & $(4) Q_{\text{fof}} = -\int_{0}^{T} dt \sum_{j=1}^{2} E_{j}(t) \dot{P}_{j}(t) = \int_{0}^{T} dt \sum_{j,k} \hat{P}_{j}(t) W_{j \rightarrow k}(t) \langle E_{j}(t) - E_{k}(t) \rangle = \langle \langle \hat{Q} \rangle \rangle_{\text{Proj, } \tilde{W}}$ (S) $Q(\chi) = \sum_{m=1}^{1} \left\{ E_{jm-1}(t_m) - E_{jm}(t_m) \right\} = \int_{part2}^{1} part2 p45$ work W(8) and heat Q(8) are defined for each & Sekimoto 97), Jarzynski 92

10 3 Jarzynski equality operation in an equilibrium environment from t=0 to t=Tenergy $E_j(t)$ initial energy $E_j = E_j(0)$ final energy $E_j' = E_j(t)$ transition rates $W_{k \to j}(t)$ (1) $\frac{W_{k \to j}(t)}{W_{j \to k}(t)} = e^{\beta(E_k(t) - E_j(t))}$ when $W_{k \to j}(t) \neq 0$ entropy production (2) $\Theta_{k} \rightarrow j(t) = \log \frac{W_{k} \rightarrow j(t)}{W_{j} \rightarrow k(t)} = \beta(E_{k}(t) - E_{j}(t))$ choose initial distribution as $P(0) = P^{Can,B}$ (3) $P_{5}^{Can,B} = \frac{e^{-\beta E_{5}}}{2(\beta)}$, $F(\beta) = -\frac{1}{\beta} \log 2(\beta)$ set $P = P^{Can',B}$ (4) $P_{5}^{Can',B} = \frac{e^{-\beta E_{5}'}}{2'(\beta)}$, $F'(\beta) = -\frac{1}{\beta} \log 2'(\beta)$ integrated fluctuation theorem (part 2 pso-(2)) (5) $\left(\exp\left[-\widehat{\oplus} - \log P_{x_{init}}(0) + \log V_{x_{ini}}\right] \right)_{P(0), \widetilde{W}} =$

path (1) $\gamma = (\hat{J}_0, ..., \hat{J}_n) t_1, ..., t_n), t_0 = 0, t_{n+1} = T$ total entropy production (2) $(H)(Y) = \sum_{m=0}^{n-1} \Theta_{j_m} = \int_{m+1}^{n-1} (t_{m+1}) = (3 \sum_{m=0}^{n-1} \{E_{j_m}(t_{m+1}) - E_{j_{m+1}}(t_{m+1})\}$ (3) $\log P_{\text{Vinit}}(0) = \log P_{j_0}^{\text{can}, \beta} = -\beta E_{j_0}(0) - \log Z(\beta) = -\beta E_{j_0}(0) + \beta F(\beta)$ $(4) \log \operatorname{V}_{\mathrm{fin}} = \log \operatorname{P}_{\mathrm{jn}}^{\mathrm{Can'},\mathrm{B}} = -\operatorname{BE}_{\mathrm{Jn}}(\mathrm{T}) - \log \operatorname{Z}'(\mathrm{B}) = -\operatorname{BE}_{\mathrm{jn}}(\mathrm{T}) + \operatorname{BE}'(\mathrm{B})$ $(S) = \beta \{ E_{j_0}(0) - \sum_{m=0}^{n-1} (E_{j_m}(t_{m+1}) - E_{j_{m+1}}(t_{m+1})) - E_{j_n}(\tau) - F(B) + F(B) \}$ $= \beta \left(\sum_{m=0}^{n} (E_{j_m}(t_m) - E_{j_m}(t_{m+1})) - F(\beta) + F'(\beta) \right) = \beta \left(W(\gamma) - F(\beta) + F'(\beta) \right)$ $\int_{m=0}^{N} \int_{t_m}^{t_{m+1}} \dot{E}_{j_m}(t) = W(Y)$ the work in path $Y = \int_{0}^{1} \int_{t_m}^{t_{m+1}} \dot{E}_{j_m}(t) = W(Y)$

D Jarzynski equality Jarzyski 97 [2 (1) $(+) = \beta \{ W(Y) - \Delta F \}$ (2) $\Delta F = F(\beta) - F'(\beta)$ (3) $\langle e^{(*)} \rangle_{P(0), \tilde{w}} = 1$ integrated fluctuation theorem $(4) \ll e^{\beta \widehat{W}} \gg_{P(0), \widehat{W}} = e^{\beta \Delta F}$ exact equality that holds for any operation in any system of slow or fast large or small Decorresponding fluctuation theorem Crooks 99 (5) $P^{\tilde{w}}(W) = e^{\beta(-W+\delta F)} P^{\tilde{w}}(-W)$ starts from $P^{can',\beta}$ $p^{\tilde{w}^{\dagger}}(w)$ the probability distribution of work in the inverse process

De the second law of thermodynamics Jensen's inequality (1) $e^{\beta \langle \langle \hat{W} \rangle \rangle_{\text{Provent}}} \leq \langle \langle e^{\beta \hat{W}} \rangle_{\text{Provent}} = e^{\beta \Delta F}$ maximum work principle (2) $W_{tot} = \langle \langle \hat{W} \rangle \rangle_{P(0), \tilde{W}} \leq \Delta F = F(B) - F'(B)$ BEE Tof Sessentially no fluctuation in a macroscopic system "violation" of the second law in a small system probability that $\hat{W} \leq SF$ is "violated" (3) $\operatorname{Prob}[\widehat{W} \ge \Delta F + S] \le e^{-\beta S}$ for any 520 $(4) LHS = \langle \langle \chi [\tilde{W} - dF - 5 \ge 0] \rangle_{\mathbb{R}(0), \tilde{W}} \leq \langle \langle e^{\beta \{\tilde{W} - dF - 5\}} \rangle_{\mathbb{R}(0, \tilde{W})} \leq e^{-\beta S} \rangle_{\mathbb{R}(0, \tilde{W})} \leq$ (6) e⁻¹³⁵ ≪1 if S≫ kT ⇒ no macroscopic violation

Simple example system of N independent spins [4 state (1) $T = (\sigma_1, \dots, \sigma_N)$ (2) $\sigma_j = \pm 1$ no magnetic field energy (3) $E_{\sigma}(t) = \begin{cases} 0 & t \in [0, \frac{\tau}{2}) \\ E_{\sigma} = -h \sum_{j=r}^{N} (\sigma_{j}) & t \in [\frac{\tau}{2}, \tau] \end{cases}$ suddenly apply magnetic freld h at 2 (4) $\mathbb{Z}[\beta] = 2^N \qquad \mathbb{Z}^{\Gamma}[\beta] = \left(\mathbb{C}^{\beta h} + \mathbb{C}^{-\beta h}\right)^N = \left(2\cosh(\beta h)\right)^N$ $[S] \ \Delta F = F(\beta) - F'(\beta) = \frac{N}{\beta} \log \frac{Z'(\beta)}{Z(\beta)} = \frac{N}{\beta} \log \cosh(\beta h) > 0$ work (6) $W_{\sigma} = 0 - E_{\sigma} = h \sum_{j=1}^{N} \sigma_{j}$ $\stackrel{\sim}{\longrightarrow} \frac{NBh^{2}}{2}$ if $Blh(\ll 1)$ all σ appears with equal probability 2^{-N} at time $\frac{C}{2}$ $(\eta) \langle W_{0} \rangle = 0 \qquad (8) \langle (W_{0})^{2} \rangle = N h^{2}$ (9) < Wo> \$ dF is of coures valid.

work (1) $W_{\sigma} = 0 - E_{\sigma} = h \sum_{j=1}^{N} \sigma_{j}$ (all σ appears with equal probability 2^{-N} 15 N=1(2) $W_0 = \begin{cases} h \neq \Delta F = \frac{1}{15} \log \cosh(Bh) \\ -h \neq \Delta F \end{cases}$ with probability 1/2 with probability 1/2 the second law is "violated" with probability 42 $|V \gg| \quad Wo \quad is \quad distributed according to (3) \quad P(W) = \frac{W^2}{\sqrt{2\pi N h^2}} e^{-\frac{W^2}{2N h^2}}$ $[4) \quad Prob[Wo \ge \sigmaF] \sim e^{-\frac{(\Delta F)^2}{2N h^2}} \sim e^{-\frac{1}{2} \left(\frac{\log \cosh(\beta h)}{\beta h}\right)^2} N$ 🗢 very small essentially no violation of the 2nd law even Wasf is impossible irreversible process

17 Do setting and results ■ setting and results • Markov jump process with (1) $W_{k \rightarrow j}(t) = e^{\beta E_k(t)} A_{kj}$ this assumption can be removed (2) Anj=Ajh 20 time-independent, all states are connected by nonzero Ajh's control $E_{k}(t)$ according a periodic protocol (3) $E_{k}(t+T_{0}) = E_{k}(t)$ • $\mathbb{P}(t)$ solution of the master equation (4) $\mathbb{P}(t) = \mathbb{R}(t) \mathbb{P}(t)$ • probability current (5) $\int k \rightarrow j(t) = P_k(t) W_{k \rightarrow j}(t) - P_j(t) W_{j \rightarrow k}(t)$ (k+j) ≥ part2-p32 Theorem (6) $\lim_{T \neq a} \frac{1}{T} \int_{0}^{t} dt \quad j_{k \rightarrow j}(t) = 0$ for any k, j ($k \neq j$) no net probability current -> pumping is impossible! Rahav, Horowitz, Jarzynski 2008

8] De proof Maes, Netocay, Thomas 2010 proof Maes, Netocay, Thomas 2010 set (1) $V_{h} = \sum_{i} A_{jh}$ (2) $T_{jh} = \begin{cases} A_{jh} & for \ j \neq h \\ V_{h} & 0 \end{cases}$ for j = h. (3) Tip 20 and (4) $\sum_{j=1}^{\infty} T_{jk} = 1 \longrightarrow T$ is a stochastic matrix Lemma Thas eigenvalue (, and it is nondegenerate direct consequence of proof (of in D-TTI) proof let 151 R=T-I, which is an irreducible transition rate matrix. then use the convergence theorem (part2 - p34) W=(Vin)k=1,..., is the corresponding eigenvector proof (5) $T_{jk}V_k = A_{jk} = A_{kj} = T_{kj}V_j$ detailed balance conditions and hence (6) $\sum_{k=1}^{n} T_{jk} V_k = V_j$

escape rate (1) $\lambda_k(t) = \sum_{j(\neq k)} (W_{k \rightarrow j}(t) = e^{\beta E_k(t)} \sum_{j(\neq k)} A_{jk} = e^{\beta E_k(t)} V_k [9]$ $j \neq k$ transition rate [2] $W_{k \rightarrow j}(t) = e^{\beta E_k(t)} A_{jk} = e^{\beta E_k(t)} V_k \frac{A_{jk}}{V_k} = \lambda_k(t) T_{jk}$ probability current (3) $J_{k \rightarrow j}(t) = P_k(t) W_{k \rightarrow j}(t) - P_j(t) W_{j \rightarrow h}(t)$ $= \operatorname{T_{jk}} \lambda_{k}(t) \operatorname{P}_{k}(t) - \operatorname{Tk}_{j} \lambda_{j}(t) \operatorname{P}_{j}(t)$ long-time averages (4) $\sum_{k \to j} := \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} dt \int_{k \to j} (t) (5) f_{k} := \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} dt \lambda_{k} (t) f_{k}(t)$ periodicity (p17 (3)) $(3) \Longrightarrow (6) \quad \forall k \to j = \operatorname{Tik} \operatorname{Re} - \operatorname{Tik} \operatorname{Pj}$ is only used to guarantee the existence Continuity equation (7) $\dot{P}_{k}(t) + \sum_{j \in k} \dot{J}_{k \to j}(t) = 0$ of the limits part2-p32-(4) Since $(9) \sum_{j(\neq h)} \mathcal{V}_{k \rightarrow j} = 0$ (8) $\lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} dt P_{r2}(t) = 0$

from (1) $\mathcal{V}_{k \to j} = \operatorname{Tik} P_k - \operatorname{Tik} P_j$ $\begin{array}{ccc} (2) & \sum_{j} & \mathcal{V}_{k \rightarrow j} = 0 \\ j(\pm h) \end{array}$ we see (3) $\sum_{i} T_{jk} P_{k} - \sum_{i} T_{kj} P_{j} = 0$ $j(\neq k)$ (4) $\sum_{i=1}^{2} T_{ki} f_i = f_k$ Lemma in P.18 $(5) P_k = c V_k$ $P[8-(6)(T_{jh}V_h = T_{kj}V_j)$ then (6) $V_{k \rightarrow j} = C T_{jk} V_n - C T_{kj} V_j = 0$ $\lim_{T \to \infty} \frac{\int_{0}^{T} dt \int_{k \to j} (t)}{\int_{0}^{T} dt \int_{k \to j} (t)}$

Why doesn't the following "pump" work??			
a single particle	ω	/ ω.	$\omega' <\!\!< \omega$
in the potential			periodic b.C.
. .			. .
 		$\gamma \gamma$	
<pre></pre>		$\wedge \wedge \wedge$	· · · · · · · · · · · · · · · · · · ·

Incomplete references

Fluctuation theorem

D. J. Evans, E. G. D. Cohen, and G. P. Morriss, "Probability of second law violations in shearing steady states", Phys. Rev. Lett. **71**, 2401 (1993).

D. J. Evans and D. J. Searles, "Equilibrium microstates which generate second law violating steady states", Phys. Rev. E **50**, 1645 (1994).

G. Gallavotti and E. G. D. Cohen, "Dynamical ensembles in nonequilibrium statistical mechanics", Phys. Rev. Lett. **74**, 2694 (1995).

Fluctuation theorem for stochastic processes

J. Kurchan, Fluctuation theorem for stochastic dynamics, J. Phys. A.: Math. Gen. **31**:3719 (1998).

C. Maes, "The Fluctuation Theorem as a Gibbs Property", J. Stat. Phys. 95, 367 (1999).

J. L. Lebowitz and H. Spohn, "A Gallavotti-Cohen-Type Symmetry in the Large Deviation Functional for Stochastic Dynamics", J. Stat. Phys. **95**, 333 (1999).

G. Crooks, "Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences", Physical Review E, **60**, 2721 (1999).

Path-wise definitions of heat and work in stochastic differential equations

K. Sekimoto, "Kinetic Characterization of Heat Bath and the Energetics of Thermal Ratchet Models", J. Phys. Soc. Jpn. **66**, 1234 (1997).

Jarzynski equality for stochastic processes

C. Jarzynski, "Equilibrium free-energy differences from nonequilibrium measurements: A master-equation approach", Phys. Rev. E **56**, 5018 (1997).

No pumping theorem

S. Rahav, J. Horowitz, and C. Jarzynski, Phys. "Directed flow in nonadiabatic stochastic pumps", Rev. Lett. **101**, 140602 (2008).

C. Maes, K. Netocny, and S.R. Thomas, "General no-go condition for stochastic pumping", J. Chem. Phys. **132**, 234116 (2010).