

a new exactly solvapie for interacting bosons that exhibits Mott insluator-like (quasi) BEC!

we have rigorous theorems, convincing heuristic arguments, and conclusive numerical simulations!!

Hosho Katsura, Naoki Kawashima, Satoshi Morita, Akinori Tanaka, and Hal Tasaki brief introduction @ YouTube / May 2021

background models with a flat band

interacting models with a flat-band for any nonzero interaction kinetic energy \ll interaction

the effect of interaction may be magnified

theoretical playground for investigating nontrivial collective phenomena in interacting many-body systems

Hubbard model (fermions) ferrimagnetism Lieb1989 ferromagnetism Mielke 1991, Tasaki 1992 bosonic models Winger crystal + beyond Huber, Altman 2010 Takayoshi Katsura, Watanabe Aoki 2013 Tovmasyan, von Nieuwenburg, Huber 2013 Mielke 2018, Fronk, Mielke 2020 Mott insulator-like Bose-Einsteint condensation

the new exactly solvable model and main results

definition of the model p = 1**Mattice and the boson system** decorated d-dim. hyper cubic lattice \hat{a}_r^{\dagger} creation operator at site r \hat{a}_r annihilation operator at site r $[\hat{a}_r, \hat{a}_s^{\dagger}] = \delta_{r,s}$ E set of black sites I set of white sites **Special boson operators** $\zeta > 0$ $x \in \mathcal{E} \qquad \hat{d}_x = \zeta \, \hat{a}_x + \sum_u \hat{a}_u$ neighboring sites in \mathcal{I} \mathcal{X} $u \in \mathcal{I} \quad \hat{b}_u = \frac{1}{\sqrt{2+\zeta^2}} (\zeta \hat{a}_u - \hat{a}_x - \hat{a}_y)$ $[\hat{d}_x, \hat{b}^{\dagger}_u]$ neighboring sites in \mathcal{E}

definition of the model p=2**Mattice and the boson system** decorated d-dim. hyper cubic lattice \hat{a}_r^\dagger creation operator at site r \hat{a}_r annihilation operator at site r $[\hat{a}_r, \hat{a}_s^{\dagger}] = \delta_{r,s}$ E set of black sites I set of white sites **Special boson operators** $\zeta > 0$ $x \in \mathcal{E} \quad \hat{d}_x = \zeta \, \hat{a}_x + \sum_u \hat{a}_u$ neighboring sites in \mathcal{I} $u \in \mathcal{I} \quad \hat{b}_u = \frac{1}{\sqrt{2+\zeta^2}} (\zeta \hat{a}_u - \hat{a}_x - \hat{a}_y)$ $[\hat{d}_{x},\hat{b}_{y}^{\dagger}]=0$ neighboring sites in \mathcal{E}

Hamiltonian and the unique ground state Special boson operators $c \in \mathcal{E} \qquad u \in \mathcal{I}$ $\hat{d}_x = \zeta \, \hat{a}_x + \sum_u \hat{a}_u \qquad \hat{b}_u = \frac{\zeta \hat{a}_u - \hat{a}_x - \hat{a}_y}{\sqrt{2 + \zeta^2}} \quad \downarrow$ $x \in \mathcal{E}$ \hat{d}_x \boldsymbol{x} $\hat{H} = t \sum_{x \in \mathcal{E}} \hat{d}_x^{\dagger} \hat{d}_x + \frac{U}{2} \sum_{u \in \mathcal{I}} \hat{n}_u (\hat{n}_u - 1) \qquad t > 0, U > 0$ repulsive interaction fine-tuned hopping only at white sites between nearest and some **Image of the state THEOREM:** Let the particle number be $N = |\mathcal{I}|$ For any $t > 0, U > 0, \zeta > 0$, the ground state is unique and is given by $|\text{GS}\rangle = (\prod_{u \in \mathcal{T}} \hat{b}_u^{\dagger}) |\text{vac}\rangle$

basic features of the ground state $|\mathrm{GS}\rangle = (\prod_{u \in \mathcal{I}} \hat{b}_u^{\dagger}) |\mathrm{vac}\rangle \qquad \hat{b}_u = \frac{\zeta \hat{a}_u - \hat{a}_x - \hat{a}_y}{\sqrt{2 + \zeta^2}}$ there is a b-state on every bond Kimchi, Parameswaran, Turner, Wang, Vishwanath 2013 **Mapparent resemblance to a Mott insulator** exactly one particle for each bond but the property of the model is nontrivial and rich possible Bose-Einstein condensation (BEC) \hat{b}_{u}^{\dagger} creates a coherent superposition of states in which a boson is at u, x, and ycoherence may "propagate" to generate BEC

loop-gas representation

REMARK: no (quasi) BEC in the state of Kimchi, Parameswaran, Turner, Wang, Vishwanath 2013

numerical evidence of a Kosterlitz-Thouless (KT) transition Monte Carlo simulation of the loop-gas model in 20 worm algorithm Prokof'ev, Svistunov, Tupitsyn 1998 static structure factor $S = \begin{cases} O(1) & \beta < \beta_{\rm c} \\ O(L^{2-\eta}) & \beta \ge \beta_{\rm c} \end{cases}$ $S := (\zeta^2 \beta)^{-1} \sum \langle \hat{a}_v^{\dagger} \hat{a}_u \rangle$ helicity modulus (\propto superfluid density) $\eta = 1/4$ at $\beta = \beta_c$ $v \in \mathcal{I}$ $\Upsilon := \left\langle \left(\sum_{\ell \in \mathcal{L}} w_{\ell} \right)^2 \right\rangle_{\mathrm{MC}} = \left\langle \sum_{\ell \in \mathcal{L}} w_{\ell}^2 \right\rangle_{\mathrm{MC}} \quad \omega_{\ell} \text{ winding number}$ expected to show a discontinuous jump $0 \rightarrow 2/\pi \ \text{at} \ \beta_{\rm c}$

the model based on the $L \times L$ square lattice p = 1

the loop-gas model undergoes KT transition at $\beta c \simeq 1.0$ the loop-gas corresponds to a g.s. only when $\beta < 1/2$ the ground state is always in the disordered phase

the model based on the $L \times L$ square lattice p = 2

the loop-gas model and also the exact ground state undergoes a KT transition at $\beta c \simeq 0.2$, and exhibits quasi-BEC for $\beta c \gtrsim 0.2$!!

the model based on the $L \times L$ square lattice p = 2the size dependence of S and Υ

the loop-gas model and also the exact ground state undergoes a KT transition at $\beta c \simeq 0.2$, and exhibits quasi-BEC for $\beta c \gtrsim 0.2$!!

is the ground state a Mott insulator? yes and no, it depends on the phase

- $\overrightarrow{\mathbf{Charge gap}} \ \Delta E = E_{N+1}^{\mathrm{GS}} + \underbrace{E_{N-1}^{\mathrm{GS}}}_{\otimes 0} \underbrace{2E_{N}^{\mathrm{GS}}}_{\otimes 0} \quad N = |\mathcal{I}|$
 - a simple criterion for Mott insulator $\Delta E \ge \text{const} > 0$ if there is (quasi) OPLRO then $\Delta E \lesssim L^{\eta-d}_{\text{Tasaki, Watanabe (in preparation)}}$ cannot be a Mott insulator!!
- Conjecture:
- $\beta < \beta_c$ the ground state is a Mott insulator
- $\beta > \beta_c$ the ground state is a Mott insulator-like (quasi) Bose-Einstein condensate, not a true Mott insulator

summary / remaining issues Image: A new exactly solvable model of interacting bosons on a lattice with a unique ground state If the ground state resembles a Mott insulator Conjecture: the ground state may exhibit (quasi) BEC in two or higher dimensions, keeping Mott-like nature Strong numerical evidence that the 2D ground state undergoes a KT transition, and exhibits quasi BEC

similar model for lattice electrons which exhibits superconductivity?

similar model of a supersolid??

* OPLRO + SSB of translation invariance