Efficient Heat Engines are Powerless a fundamental tradeoff relation in thermodynamics proved in 2016 Hal Tasaki

prerequisites part 1: some idea about college thermodynamics part 2: some knowledge about statistical mechanics and stochastic processes

about part 2

In an application of techniques of non equilibrium statistical mechanics to the fundamental problem in thermodynamics about power and efficiency of heat engines

Here we shall
 O treat general Markov processes
 O prove a general tradeoff relation which shows that nonzero heat current implies dissipation
 O apply the relation to heat engines to show that a heat engine with non-zero power can never attain the Carnot efficiency

Stochastic Thermodynamics microscopic model of thermodynamic systems

Basic setting

engine = a system of N classical particles

 $\beta_{\rm H}$

 \mathcal{B}_{T}

 $(\mathbf{A} + \mathbf{A})$ $(\mathbf{A} + \mathbf{A}$

 λ parameter (a set of parameters) which controls the external forces, the interactions, and the couplings to the heat baths

 λ is varied (by an external agent) according to a fixed protocol

Deterministic dynamics engine = a system of N classical particles state of the system $X = (\boldsymbol{r}_1, \dots, \boldsymbol{r}_N; \boldsymbol{v}_1, \dots, \boldsymbol{v}_N) \in \mathbb{R}^{6N}$ \mathbf{M} deterministic dynamics with fixed λ Newton equation with arbitrary force and interactions which conserves total energy $m_i \frac{d}{dt} \boldsymbol{v}_i(t) = \boldsymbol{F}_i^{\lambda}(X(t)) \quad \frac{d}{dt} \boldsymbol{r}_i(t) = \boldsymbol{v}_i(t)$ $i = 1, \dots, N$ $E^{\lambda}(X)$ energy of X at parameter λ $\frac{d}{dt}E^{\lambda}(X(t)) = 0$

Stochastic dynamics

state of the system $X = (\boldsymbol{r}_1, \dots, \boldsymbol{r}_N; \boldsymbol{v}_1, \dots, \boldsymbol{v}_N) \in \mathbb{R}^{6N}$ $\mathcal{P}_t(X)$ probability density to find the system in X at t \mathbf{M} Kramers equation with fixed λ and single bath $\frac{\partial}{\partial t}\mathcal{P}_t(X) = \hat{\mathcal{L}}_{\det}\mathcal{P}_t(X) + \hat{\mathcal{L}}_{bath}\mathcal{P}_t(X)$ corresponds to equation random motion from the hath $\hat{\mathcal{L}}_{bath} = \sum_{i=1}^{N} \frac{\gamma(\boldsymbol{r}_{i})}{m_{i}} \left\{ \frac{\partial}{\partial \boldsymbol{v}_{i}} \cdot \boldsymbol{v}_{i} + \frac{1}{\beta m} \frac{\partial^{2}}{\partial \boldsymbol{v}_{i}^{2}} \right\}$ from the bath $\lim_{t\uparrow\infty} \mathcal{P}_t(X) = \frac{\exp\left[-\beta E^{\lambda}(X)\right]}{Z(\beta)} \begin{array}{l} \text{equilibrium} \\ \text{distribution at } \beta \end{array}$

The whole equation

the parameter is varied according to a fixed protocol $\lambda(t)$ $\lambda(t) = \lambda(t + \tau)$ for any t with a fixed period τ Kramers equation (continuous master equation) $\mathcal{P}_t(X)$ probability density to find the system in X at t

$$\frac{\partial}{\partial t} \mathcal{P}_t(X) = \hat{\mathcal{L}}_{det}^{\lambda(t)} \mathcal{P}_t(X) + \sum_{B=H,L} \hat{\mathcal{L}}_B^{\lambda(t)} \mathcal{P}_t(X)$$

 $\begin{array}{l} \begin{array}{l} \text{corresponds to} \\ \text{the Newton} & \longleftarrow \hat{\mathcal{L}}_{det}^{\lambda} = \sum_{i=1}^{N} \left\{ -\boldsymbol{v}_{i} \cdot \frac{\partial}{\partial \boldsymbol{r}_{i}} - \frac{1}{m_{i}} \frac{\partial}{\partial \boldsymbol{v}_{i}} \cdot \boldsymbol{F}_{i}^{\lambda}(X) \right\} \\ \text{equation} \\ \\ \begin{array}{l} \text{brings the system} \\ \text{to equilibrium at } \beta_{B} \end{array} \quad \hat{\mathcal{L}}_{B}^{\lambda} = \sum_{i=1}^{N} \frac{\gamma_{B}(\lambda, \boldsymbol{r}_{i})}{m_{i}} \left\{ \frac{\partial}{\partial \boldsymbol{v}_{i}} \cdot \boldsymbol{v}_{i} + \frac{1}{\beta_{B}m_{i}} \frac{\partial^{2}}{\partial \boldsymbol{v}_{i}^{2}} \right\} \\ \\ \text{state of the system } X = (\boldsymbol{r}_{1}, \dots, \boldsymbol{r}_{N}; \boldsymbol{v}_{1}, \dots, \boldsymbol{v}_{N}) \end{array}$

Main results

Entropy production rate $\mathcal{P}_t(X)$ probability density to find the system in X at t $J_B(t)$ heat current to bath B = H, L at t

total entropy production rate

$$\sigma(t) = \frac{d}{dt}H(\mathcal{P}_t) + \beta_{\rm H}J_{\rm H}(t) + \beta_{\rm L}J_{\rm L}(t)$$

change in the Shannon entropy of the system (microscopic)

 $\Delta S = \frac{\Delta Q}{T} = \beta \Delta Q$

$$H(\mathcal{P}) = -\int dX \,\mathcal{P}(X) \log \mathcal{P}(X)$$

entropy production rates in the baths (phenomenological)

Main tradeoff inequality

 $J_{\rm B}(t)$ heat current to bath ${\rm B}={\rm H,L}$ at ttotal entropy production rate

$$\sigma(t) = \frac{a}{dt} H(\mathcal{P}_t) + \beta_{\rm H} J_{\rm H}(t) + \beta_{\rm L} J_{\rm L}(t)$$

improved Shiraishi-Saito bound

$$|J_{\mathrm{H}}(t)| + |J_{\mathrm{L}}(t)| \le \sqrt{\Theta(t) \, \sigma(t)}$$
 for any f

close to equilibrium

 $\hat{\mathcal{L}}_{B}^{\lambda} = \sum_{i=1}^{N} \frac{\gamma_{B}(\lambda, \boldsymbol{r}_{i})}{m_{i}} \Big\{ \frac{\partial}{\partial \boldsymbol{v}_{i}} \cdot \boldsymbol{v}_{i} + \frac{1}{\beta_{B}m_{i}} \frac{\partial^{2}}{\partial \boldsymbol{v}_{i}^{2}} \Big\}$

 $\Theta(t) = \sum_{i=1}^{N} \sum_{B=L,H} \frac{1}{\beta_B} \langle \gamma_B(\lambda(t), \boldsymbol{r}_i) | \boldsymbol{v}_i |^2 \rangle_t \simeq \kappa$ heat conductivity
average with respect to \mathcal{P}_t $J \simeq \kappa \Lambda \beta$ $J \simeq \kappa \Delta \beta$

Main tradeoff inequality and its use improved Shiraishi-Saito bound

$$|J_{\rm H}(t)| + |J_{\rm L}(t)| \le \sqrt{\Theta(t) \sigma(t)}$$

"current" always induces "dissipation" (measured by $\sigma(t)$)

nonzero power

nonzero current

nonzero dissipation

the maximum efficiency cannot be attained

Main tradeoff inequality and its use improved Shiraishi-Saito bound

$$|J_{\rm H}(t)| + |J_{\rm L}(t)| \le \sqrt{\Theta(t) \sigma(t)}$$

 $\begin{aligned} & \text{``current'' always induces ``dissipation'' (measured by $\sigma(t)$)} \\ & \text{integrate over a period } t \in [0, \tau] \\ & \int_{0}^{\tau} dt \big\{ |J_{\rm H}(t)| + |J_{\rm L}(t)| \big\} \leq \int_{0}^{\tau} dt \sqrt{\Theta(t) \, \sigma(t)} \\ & \text{Schwarz inequality} \quad \leq \left(\int_{0}^{\tau} dt \, \Theta(t) \right)^{1/2} \left(\int_{0}^{\tau} dt \, \sigma(t) \right)^{1/2} \end{aligned}$

we can assume the periodicity $\,\mathcal{P}_0=\mathcal{P}_{ au}$

 $\int_{0}^{T} dt \,\sigma(t) = H(\mathcal{P}_{\tau}) - H(\mathcal{P}_{0}) + \int_{0}^{\tau} dt \{\beta_{\mathrm{H}} J_{\mathrm{H}}(t) + \beta_{\mathrm{L}} J_{\mathrm{L}}(t)\}$

 $\sigma(t) = \frac{d}{dt}H(\mathcal{P}_t) + \beta_{\rm H}J_{\rm H}(t) + \beta_{\rm L}J_{\rm L}(t)$

Main tradeoff inequality and its use $\int_{0}^{\tau} dt \{ |J_{\rm H}(t)| + |J_{\rm L}(t)| \} \leq \left(\int_{0}^{\tau} dt \,\Theta(t) \right)^{1/2} \left(\int_{0}^{\tau} dt \,\sigma(t) \right)^{1/2}$ $\int_0^{\tau} dt \,\sigma(t) = \int_0^{\tau} dt \left\{ \beta_{\rm H} J_{\rm H}(t) + \beta_{\rm L} J_{\rm L}(t) \right\}$ $\left(\int_0^\tau dt \left\{ |J_{\rm H}(t)| + |J_{\rm L}(t)| \right\} \right)^2 \\ \leq \tau \,\overline{\Theta} \, \int_0^\tau dt \left\{ \beta_{\rm H} J_{\rm H}(t) + \beta_{\rm L} J_{\rm L}(t) \right\}$ inequality between observable quantities $J_{\rm H}(t), J_{\rm L}(t)$ $\bar{\Theta} = \frac{1}{\tau} \int_{0}^{\tau} dt \,\Theta(t)$ $\Theta(t) = \sum_{i=1}^{N} \sum_{B=L,H} \frac{1}{\beta_B} \langle \gamma_B(\lambda(t), \boldsymbol{r}_i) | \boldsymbol{v}_i |^2 \rangle_t$

Power and efficiency

rigorous and quantitative tradeoff relation between power and efficiency

a heat engine with non-zero power can never attain the Carnot efficiency

✓ applies to any heat engine that can be described by classical mechanics (with or without time-reversal symmetry) and Markov process

state of the engine can be arbitrarily far from equilibrium

Power and efficiency

 $\frac{W}{\tau} \leq \bar{\Theta}\beta_{\rm L}\,\eta(\eta_{\rm C}-\eta)$

the key quantity $\bar{\Theta} = \frac{1}{\tau} \int_{0}^{\tau} dt \,\Theta(t)$

 Q_{H}

If not a universal constant, but is always finite for proportional to the size of the system (the bound is meaningful in thermodynamic limit) approaches the heat conductivity κ in the limit of equilibrium dynamics N

$$J \simeq \kappa \Delta \beta \qquad \qquad \hat{\mathcal{L}}_{B}^{\lambda} = \sum_{i=1}^{N} \frac{\gamma_{B}(\lambda, \boldsymbol{r}_{i})}{m_{i}} \left\{ \frac{\partial}{\partial \boldsymbol{v}_{i}} \cdot \boldsymbol{v}_{i} + \frac{1}{\beta_{B}m_{i}} \frac{\partial^{2}}{\partial \boldsymbol{v}_{i}^{2}} \right. \\ \Theta(t) = \sum_{i=1}^{N} \sum_{B=\text{L,H}} \frac{1}{\beta_{B}} \left\langle \gamma_{B}(\lambda(t), \boldsymbol{r}_{i}) |\boldsymbol{v}_{i}|^{2} \right\rangle_{t}$$

Derivation some essence

Proof of the improved Shiraishi-Saito bound in the simplest setting Markov jump process $|J(t)| \leq \sqrt{\Theta(t)\sigma(t)}$ finite discrete state space $\mathcal{S} \ni x, y, \ldots$ λ parameter(s) of the model E_x^{λ} energy of state x with λ R_{xy}^{λ} transition rate for stochastic dynamics which satisfies the detailed balance condition for single β no time- $R_{xy}^{\lambda} \ge 0 \ (x \neq y) \qquad \sum_{x} R_{xy}^{\lambda} = 0$ reversal! $R_{xy}^{\lambda}e^{-\beta E_{y}^{\lambda}} = R_{yx}^{\lambda}e^{-\beta E_{x}^{\lambda}}$ for any x, ythe parameter changes according to a fixed protocol $\lambda(t)$ $p_x(t)$ probability to find the system in x at t master equation $\dot{p}_x(t) = \sum_y R_{xy}^{\lambda(t)} p_y(t)$

Lower bound for $\sigma(t)$

entropy production rate $J(t) = -\sum_{x,y} E_x^{\lambda(t)} R_{xy}^{\lambda(t)} p_y(t)$ $\sigma(t) = \frac{d}{dt} \{ -\sum_x p_x(t) \log p_x(t) \} + \beta J(t)$ $= \sum_{x \neq y} R_{xy}^{\lambda(t)} p_y(t) \log \frac{R_{xy}^{\lambda(t)} p_y(t)}{R_{yx}^{\lambda(t)} p_x(t)} - \frac{\text{standard}}{\text{expression}}$ $= \frac{1}{2} \sum_{x \neq y} \{ R_{xy}^{\lambda(t)} p_y(t) - R_{yx}^{\lambda(t)} p_x(t) \} \log \frac{R_{xy}^{\lambda(t)} p_y(t)}{R_{yx}^{\lambda(t)} p_x(t)}$ $x \neq y$ $\geq \sum_{\substack{x \neq y \\ x \neq y}} \frac{\{R_{xy}^{\lambda(t)} p_y(t) - R_{yx}^{\lambda(t)} p_x(t)\}^2}{R_{xy}^{\lambda(t)} p_y(t) + R_{yx}^{\lambda(t)} p_x(t)}$ $(a-b)\log\frac{a}{b} \ge \frac{2(a-b)^2}{a+b}$ $R_{xy}^{\lambda}e^{-\beta E_{y}^{\lambda}} = R_{yx}^{\lambda}e^{-\beta E_{x}^{\lambda}}$

Upper bound for |J(t)| $J(t) = -\sum_{x,y} E_x^{\lambda(t)} R_{xy}^{\lambda(t)} p_y(t)$ $= -\sum_{x,y} E_x^{\lambda(t)} \{ R_{xy}^{\lambda(t)} p_y(t) - R_{yx}^{\lambda(t)} p_x(t) \}$ $= -\frac{1}{2} \sum_{x \neq y} \{ E_x^{\lambda(t)} - E_y^{\lambda(t)} \} \{ R_{xy}^{\lambda(t)} p_y(t) - R_{yx}^{\lambda(t)} p_x(t) \}$ $= -\frac{1}{2} \sum_{x \neq y} \{ E_x^{\lambda(t)} - E_y^{\lambda(t)} \} \sqrt{R_{xy}^{\lambda(t)} p_y(t) + R_{yx}^{\lambda(t)} p_x(t)} \frac{R_{xy}^{\lambda(t)} p_y(t) - R_{yx}^{\lambda(t)} p_x(t)}{\sqrt{R_{xy}^{\lambda(t)} p_y(t) + R_{yx}^{\lambda(t)} p_x(t)}} \frac{R_{xy}^{\lambda(t)} p_y(t) - R_{yx}^{\lambda(t)} p_x(t)}{\sqrt{R_{xy}^{\lambda(t)} p_y(t) + R_{yx}^{\lambda(t)} p_x(t)}}$ Schwarz $|J(t)| \le \sqrt{\frac{1}{4} \sum_{x \neq y} \{ E_x^{\lambda(t)} - E_y^{\lambda(t)} \}^2 \{ R_{xy}^{\lambda(t)} p_y(t) + R_{yx}^{\lambda(t)} p_x(t) \}} \sqrt{\sigma(t)}$ $\stackrel{\text{l}}{=} \frac{1}{2} \sum_{x \neq y} \{ E_x^{\lambda(t)} - E_y^{\lambda(t)} \}^2 R_{xy}^{\lambda(t)} p_y(t) =: \Theta(t)$ $|J(t)| \le \sqrt{\Theta(t) \,\sigma(t)}$ $\sigma(t) \ge \sum_{x \neq y} \frac{\{R_{xy}^{\lambda(t)} p_y(t) - R_{yx}^{\lambda(t)} p_x(t)\}^2}{R_{xy}^{\lambda(t)} p_y(t) + R_{yx}^{\lambda(t)} p_x(t)}$

Treatment of the full model master equation (Kramers equation) $\frac{\partial}{\partial t} \mathcal{P}_t(X) = \hat{\mathcal{L}}_{det}^{\lambda(t)} \mathcal{P}_t(X) + \sum_{B=H,L} \hat{\mathcal{L}}_B^{\lambda(t)} \mathcal{P}_t(X)$ written as a continuum

never satisfies detailed balance, but does not produce entropy

-12'

written as a continuum limit of a discrete model with detailed balance (this reflects the reflection symmetry of the v transition rate)

$$\hat{\mathcal{L}}_B^{\lambda} = \sum_{i=1}^N \frac{\gamma_B(\lambda, \boldsymbol{r}_i)}{m_i} \Big\{ \frac{\partial}{\partial \boldsymbol{v}_i} \cdot \boldsymbol{v}_i + \frac{1}{\beta_B m_i} \frac{\partial^2}{\partial \boldsymbol{v}_i^2} \Big\}$$

Summary

We have proved a tradeoff relation (improved Shiraishi-Saito bound) which shows that a nonvanishing heat current implies dissipation

$|J_{\rm H}(t)| + |J_{\rm L}(t)| \le \sqrt{\Theta(t) \,\sigma(t)}$

If The bound, when applied to a heat engine, leads to a tradeoff relation between power and efficiency, which implies that a heat engine with non-zero power can never attain the Carnot efficiency

$$\leq \bar{\Theta} \beta_{\rm L} \eta (\eta_{\rm C} - \eta)$$

For further discussion, see Shiraishi, Saito, and Tasaki 2016, Shiraishi and Saito 2019

W

au