異常拡散における長時間平均量の分布極限法則

ー非再現性の中の分布的な再現性一

慶應義塾大学理工学研究科 秋元 琢磨
第2回統計物理学根談会＠学習院大学2014年3月11日（火）

再現性（エルゴード性）

任意の初期条件に対して，長時間観測すれば，観測量が同じ値に収束するとき，再現性（エルゴード性）があるという。

$$
\frac{1}{n} \sum_{k=0}^{n-1} f\left(x_{k}\right) \rightarrow\langle f\rangle_{e q} \quad \text { as } n \rightarrow \infty
$$

例えば，平均2乗変位

$$
\begin{aligned}
\overline{\delta^{2}(\Delta ; t)} & \equiv \frac{1}{t-\Delta} \int_{0}^{t-\Delta}\left\{x\left(t^{\prime}+\Delta\right)-x\left(t^{\prime}\right)\right\}^{2} d t^{\prime} \\
& \rightarrow\left\langle x(\Delta)^{2}\right\rangle \quad \text { as } t \rightarrow \infty
\end{aligned}
$$

非再現性

（エルゴード性の破れ）

$$
\overline{\delta^{2}(\Delta ; t)} \equiv \frac{1}{t-\Delta} \int_{0}^{t-\Delta}\left\{x\left(t^{\prime}+\Delta\right)-x\left(t^{\prime}\right)\right\}^{2} d t^{\prime} \quad \Phi_{\mathrm{on}}(t) \equiv \frac{1}{t} \int_{0}^{t} I\left(t^{\prime}\right) d t^{\prime}
$$

I．Golding and E．C．Cox，PRL 96， 098102 （2008）
X．Brokmann et al．，PRL 90， 12601 （2003）

異常拡散

$$
\left\{\begin{array}{l}
\left\langle x_{t}\right\rangle=0 \\
\left\langle x_{t}^{2}\right\rangle \simeq D_{\alpha} t^{\alpha} \quad(t \rightarrow \infty)
\end{array}\right.
$$

normal diffusion（ $\alpha=1$ ）

α が 1 でない拡散

 を異常拡散と呼ぶ
遅い拡散のメカニズム

－アモルファス材料における荷電粒子の輸送（トラップモデル）平均待ち時間の発散
－からみあった高分子溶液中の拡散（粘弾性）相関のあるノイズに駆動されるブラウン運動
－細胞内における生体分子の拡散（粘弾性 or トラップモデル）

H．Scher and E．Montroll， PRB 12，2455（1975）

T．G．Mason et al，PRL 79，3282（1997）

I．Golding and E．C．Cox， PRL 96， 098102 （2008）

目的

非再現性（エルゴード性の破れ）の起源は何か？

非再現性を示す現象を分布としてとらえたとき，普遍分布は存在するか？そして，それは何か？

トラップモデルを例として，非再現性が本質的に
現れることを示し，その分布を明らかにする。

モデル

－RWSD（Random walk with static disorder）
－CTRW（Continuous－time random walk）
－SEDLF（Stored－energy－driven Levy flight）

待ち時間はランダムだが各
サイト毎に決まっている

RWSD

待ち時間は完全にランダム
（同じサイトでもランダム）

CTRW

待ち時間分布はべキ分布

$$
\psi(\tau) \propto \tau^{-1-\alpha}
$$

CTRWと更新過程

0 N_{t} ：時刻 t までの総ジャンプ数

$$
\left\langle x_{t}^{2}\right\rangle=\left\langle\delta^{2}\right\rangle\left\langle N_{t}\right\rangle
$$

平均 2 乗変位

待ち時間分布

$$
\psi(\tau) \sim \frac{\alpha c^{\alpha}}{\Gamma(1-\alpha)} \tau^{-1-\alpha} \quad(\tau \rightarrow \infty)
$$

Laplace変換

$$
\hat{\psi}(s)= \begin{cases}1-\langle\tau\rangle s+(c s)^{\alpha}+o\left(s^{\alpha}\right) & (1<\alpha<2) \\ 1-(c s)^{\alpha}+o\left(s^{\alpha}\right) & (\alpha<1)\end{cases}
$$

$$
\left\langle x_{t}^{2}\right\rangle \sim\left\{\begin{array}{l}
\frac{\left\langle\delta^{2}\right\rangle}{\langle\tau\rangle} t \quad(1<\alpha) \\
\frac{\left\langle\delta^{2}\right\rangle}{\Gamma(\alpha+1)}\left(\frac{t}{c}\right)^{\alpha} \quad(\alpha<1)
\end{array}\right.
$$

（時間）平均 2 乗変位

TAMSD（時間平均された平均 2 乗変位）はノーマル

$$
\overline{(\delta x)^{2}}(\Delta, t) \approx \frac{1}{t} \sum_{k=1}^{N_{t}}\left[\Delta z_{k}^{2}+2 \sum_{l=1}^{k-1} z_{k} z_{l} \theta\left(\Delta-\left(t_{k}-t_{l}\right)\right)\right]=\frac{N_{t}}{t}\left\langle z_{k}^{2}\right\rangle \Delta
$$

TAMSDの振る舞い

分布的再現性

ノーマル拡散だが，拡散係数が軌道毎に異なる。

$$
D_{t} \equiv \frac{\overline{\delta^{2}(\Delta ; t)}}{\Delta} \Rightarrow t^{-\beta} \mathbf{D} \quad(t \rightarrow \infty)
$$

相対標準偏差

$$
R(t)=\frac{\sqrt{\left\langle\overline{\delta^{2}}(\Delta, t)^{2}\right\rangle-\left\langle\overline{\delta^{2}}(\Delta, t)\right\rangle^{2}}}{\left\langle\overline{\delta^{2}}(\Delta, t)\right\rangle} \sim \begin{cases}\sqrt{\frac{\left\langle\tau^{2}\right\rangle-\langle\tau\rangle^{2}}{\langle\tau\rangle}} t^{-1 / 2} & (2<\alpha) \\ \sqrt{\frac{1}{(2-\alpha)(3-\alpha)\langle\tau\rangle}} t^{(1-\alpha) / 2} & (1<\alpha<2) \\ \sqrt{\frac{\Gamma(\alpha+1)}{\Gamma(2 \alpha+1)}-1} & (\alpha<1)\end{cases}
$$

一般化された中心極限定理

$\mathrm{X}_{1}, \cdots, \mathbf{X}_{n}$ は，独立な確率変数でベキ分布に従うとする。

$$
\int_{x}^{\infty} \psi\left(x^{\prime}\right) d x^{\prime} \sim \frac{x^{-\alpha}}{\Gamma(1-\alpha)} \quad(x \rightarrow \infty)
$$

このとき，$\left(\mathrm{X}_{1}+\cdots+\mathrm{X}_{n}\right) / n^{1 / \alpha}$ は安定分布に従う。

$$
\int_{0}^{\infty} g_{\alpha}(x) e^{-s x} d x=\exp \left(-s^{\alpha}\right)
$$

$$
\int_{x}^{\infty} g_{\alpha}\left(x^{\prime}\right) d x^{\prime} \sim \frac{x^{-\alpha}}{\Gamma(1-\alpha)} \quad(x \rightarrow \infty)
$$

更新理論

$\overline{\delta^{2}(\Delta ; t)}=\frac{N_{t}}{t} \Delta$ より，拡散係数は本質的にランダムになる

Mittag－Leffler分布

指数分布の一般化（ $\alpha=0$ は指数分布，$\alpha=0.5$ はハーフガウシアン）

エイジング

拡散係数の平均（アンサンブル平均）は，観測時間に依存する（観測時間と共に減衰する）

$$
\overline{\delta^{2}(\Delta ; t)}=D_{t} \Delta
$$

$$
\left\langle D_{t}\right\rangle \propto t^{-(1-\alpha)}
$$

カットオフの影響

待ち時間分布にカットオフがあるとき（多くの現象には有限性よりカットオフがある），TAMSDの振る舞い （再現性）はどのようになるか？

$$
\tilde{P}_{\mathrm{TL}}(s, \lambda)=\exp \left\{-c\left[(\lambda+s)^{\alpha}-\lambda^{\alpha}\right]\right\}
$$

$$
\psi(\tau) \propto \begin{cases}\tau^{-1-\alpha} & (\tau \ll 1 / \lambda) \\ \exp (-\lambda \tau) & (\tau \gg 1 / \lambda)\end{cases}
$$

観測時間がカットオフ時間より小さいとき，非再現的になる

非再現性から再現性への

 クロスオーバー

T．Miyaguchi and TA，PRE 83， 062101 （2011）

他のモデル

－RWSD（Random walk with static disorder）
TAMSDは線形に増大する。
2次元以上では，拡散係数の分布はCTRWと同じに なるが，1次元だと異なる分布になる。分布的再現性 の起源は同じ（平均待ち時間の発散）

T．Miyaguchi and TA，PRE 83， 031926 （2011）
－SEDLF（Stored－energy－driven Levy flight） ジャンプ幅と待ち時間のカップルに より生じる大数の法則の破れ

Discussion

CTRWを例として，分布的再現性が本質的に現れる事 を示した。分布的再現性の起源は，平均待ち時間が発散する事による大数の法則の破れである。他にも，

- ジャンプ幅の2次モーメントの発散
- ジャンプ幅と待ち時間とのカップル
- 時間的にランダムに拡散係数が変化 する系（過渡的）

表面とバルクで拡散係数が異なる

レプテーションモデルのRSD
T．Uneyama，TA，and T．Miyaguchi， JCP 137， 114903 （2012）

まとめ

拡散係数が観測毎に変化する（非再現性）

拡散係数の分布は普遍的（分布的再現性）

