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acts with the random medium in which it is moving.
Whereas a particle moving in a uniform medium, whatever
the viscosity, constantly makes small jumps due to thermal
energy, some types of random media can ‘‘trap’’ the par-
ticle in one location for varying and widely distributed
periods, allowing only infrequent ‘‘jumps’’ between loca-
tions and leading to the observed subdiffusion on the
relevant time scale of particle/obstacle interactions [7,8].
This trapping can be geometrical—as in a percolation
cluster, whose fractal geometry often causes the particle
to get stuck in cul de sacs—or it can have a temporal
origin, with the particle constantly binding to obstacles
with a broad distribution of binding times.

Formally, the broad distribution of ‘‘cage times’’ tc leads
to anomalous !2!"" behavior. A power-law distribution
P!tc" # t$#c with 2> #> 1 leads to subdiffusion with an
exponent $ % #$ 1 [8,15]. The distribution of cage times
has been measured directly for tracer particles moving in
actin networks in vitro [15]. Another formulation ascribes
the motion to thermal fluctuations opposed by a time

FIG. 2 (color online). Subdiffusive motion of RNA molecules
in the cell. Movies were read into Matlab software (Mathworks).
The fluorescent particles were automatically recognized and
followed, to yield a time series of particle coordinates r!t" %
!x!t"; y!t"" for each RNA molecule, where t % f0;!T; 2!T;
3!T . . .g is discretized by the camera framing interval !T.
This vector was used to calculate the mean square displacement
as a function of time interval: h!2!""i, where ! % jr!t& "" $
r!t"j and averaging is performed over all pairs of time points
!t1; t2" obeying jt1 $ t2j % ", thus " is also discretized by !T.
(a) The mean squared displacement h!2i of the molecule is
plotted as a function of the time-interval between measure-
ments ". Different markers and colors denote different trajecto-
ries (total of 23 trajectories from 3 different experiments).
Solid lines % slope 0:7. Deviations from the 0.7 slope at longer
times are due to the effect of limited cell size, and the averag-
ing over a smaller number of position pairs. Also shown in the
figure is a typical plot of h!2!""i for an RNA particle diffusing in
70% glycerol. In this case the motion is normal diffusion ($ %
1:04' 0:03, 4 trajectories), as demonstrated by the dashed line
with slope 1. (b) Power spectrum P!f" of RNA trajectories. The
complete set of x!t" and y!t" trajectories were concatenated,
and the power spectral density of the combined trajectory
was calculated [see [12,13] ]. Blue dots % measuredP!f";
solid line % linear fit yielding slope $1:77' 0:03. A calcula-
tion using only the x!t" and y!t" coordinates separately gave
similar results. As an additional test for the validity of the
spectral density calculation, the trajectory steps [!x!t";!y!t"]
were randomly permutated and then reintegrated [27]. The
resulting new trajectory should exhibit a random walk behavior,
with P!f" # f$2 [28]. The calculated spectral density (red dots)
is in agreement with this prediction, yielding a slope of$1:96'
0:04.

FIG. 1 (color online). Motion of a tagged RNA molecule in-
side an E. coli cell [see also movie in [13] ]. Cells were grown
and treated as described previously [10–12]. Cells were imaged
with a Nikon Eclipse inverted epifluorescence microscope, under
a 60X objective. Time-lapse movies were taken with a
Cascade:512B (Roper Scientific) high sensitivity camera for
30 minutes at 1 frame=second, 200 msec exposure time. Each
camera pixel covers a square of size #67( 67 nm2, thus over-
sampling the optical resolution limit (Airy radius #200 nm).
(a) A series of epifluorescent images of the cell. Images are
100 sec apart (scale bar % 1 %m.) (b) A plot of the x and y
coordinates (axis chosen arbitrarily) of particle position during
the time covered in panel A. (c) A two-dimensional plot of the
particle trajectory (same data as in panels A and B).
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ble MSD. This effect is seen in both GFP and QD tracking of
nonclustered channels. As a control of our averaging algorithms,
Fig. 2F shows the time and ensemble averages for the simulated
confined random walkers. The two distributions are very similar
and, as expected from the central limit theorem applied to a
Gaussian process, the width of the distribution for the simulated
data is σ ∝ 1∕

ffiffiffiffi
N

p
, where N is the number of independent

variables.
In order to compare the diffusion pattern to the CTRWmodel

predictions, we examined the time-ensemble-averaged MSD
(TEA-MSD) for all data at different lag times. The TEA-MSD
was obtained by applying an additional ensemble average to
the temporal MSD. Fig. 3A shows the MSD vs. the length of the
trajectory, which was measured by truncating the experimental
data at a time T and performing a temporal average (i.e., a mov-
ing average). The TEA-MSD fluctuated for short times (due to

small number statistics), but it scaled as a power law hhΔr2iTiens ∼
Tα−1 beyond 3 s (30 points) with α ¼ 0.90" 0.01 for all lag
times. The TEA-MSD was found to scale as hhΔr2iTiens ∼ tlag

γ

with γ ¼ 0.79" 0.02 (Fig. 3B). Only lag times up to 0.5 s were
included in these data to avoid boundary effects (these are appre-
ciated in the inset of Fig. 2A). All the previously discussed anom-
alous diffusion models predict the ensemble average scales as
hΔr2iens ∼ tlag

η. The analysis presented in Fig. 3 confirms this
behavior, with the exponent determined to be 0.8" 0.1.

Heavy-tailed CTRWs display waiting times in all scales,
enabling the observation of transient channel immobilization.
We identified the events in which the channel remained confined
within a radius RTH ≪ MSD and constructed the distribution of
waiting times from these events. Fig. 4 shows the distributions for
three different thresholds, R2

TH ¼ 500, 1,000, and 2;000 nm2,
which correspond to radii three, four, and six times the standard
error of the mean localization accuracy (22, 32, 45 nm, respec-
tively). Remarkably, the distribution of immobile times does not
change with the threshold radius, which is consistent with a bind-
ing model. The same distribution is found for nonclustering
channels.

Kv2.1 Anomalous Diffusion Is Modeled by a CTRW on a Fractal. The
distributions of temporal and ensemble MSDs are consistent
with the nonergodic CTRW model where the temporal averages
become random quantities different from the ensemble averages
(9). Noticeably, the time-ensemble-averaged MSDs exhibit aging,
which can be modeled by a CTRW with a waiting-time distribu-
tion that scales as 1∕τ1þα (5, 21). The agreement between our
results and the CTRW is very convincing, but both the temporal
MSDs and the time-ensemble MSDs are sublinear in lag time.
This is expected from diffusion on a fractal but not from a CTRW
(8). In theory, the two processes can coexist, and thus we inves-
tigated the combination of a CTRWand a fractal (33, 34). Meroz
et al. recently simulated a CTRWon a fractal structure (34). The
ensemble-averaged MSD was found to follow a power law

hΔr2ðtlagÞiens ¼ Γtα·βlag [3]

where α and β are the critical exponents of the CTRW and the
fractal, respectively. Due to the fractal structure, the temporal
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Fig. 2. Statistical analysis of Kv2.1 channel trajectories. (A) Square displace-
ment CDF of a representative clustered channel at tlag ¼ 0.1 s. Fits to both
single-exponential using Eq. 1, dash red, and biexponential using Eq. 2, solid
blue, are shown together with their respective residuals. The inset is the MSD
of this trajectory. (B) Log–log plot of the temporal MSD of 26 representative
trajectories of clustered channels. The dashed lines scale as t0.8 in order to
show that the trajectories are sublinear with an exponent equal to or smaller
than 0.8. The MSD data for a longer time range is presented in Fig. S3.
(C) Weighting value of the slow mobility component (w) in Eq. 2 vs. lag time.
(D) Distribution of MSD values calculated from individual trajectories and
ensembles in clustered channels for tlag ¼ 0.1 s. (E) Control measurements
of MSD distribution in GFP-tagged channels without QDs. In order to track
individual GFP we analyzed nonclustered channels, which exhibit a five-time
higher median effective diffusion constant. (F) Distribution of MSD values
calculated from simulated confined random walkers.

A B

Fig. 3. Time-ensemble-averaged MSD of clustered Kv2.1 channels. (A) The
MSD is plotted against total time—i.e., the time used in the moving average.
The straight lines show a power law fit MSD ∼ Tα−1, with a slope
α − 1 ¼ −0.10. (B) The MSDs for total times 20 s and 80 s are plotted against
lag time. At both total times the MSDs exhibit the same subdiffusion critical
exponent.

Fig. 4. Distribution of waiting times as measured using different radial
thresholds. The solid symbols are from clustered channels (left axis) and
the open circles from free channels (right axis). The threshold value indicates
that the particle was measured to remain within that circle for the specific
time. The dashed line indicates a power law Pw ðτÞ ∼ τ−ð1þαÞ with α ¼ 0.9.
This value corresponds to the measured MSD. At long times (τ > 3 s) the dis-
tribution appears to drop faster than τ−1.9, suggesting a breakdown in the
heavy tail of the CTRW. However, this is an artifact in our measurement,
which derives from QD blinking because QDs are not in the “bright” state
for that long. To verify this, we determined the probability distribution of
QD “bright” times and found it to have a median of 10 s. For comparison,
the figure shows a line that scales as t−1.9, as expected from a CTRW with
α ¼ 0.9. The distribution for clustered channels is identical to that of the free
channels (○).
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例えば、平均２乗変位

任意の初期条件に対して、長時間観測すれば、観測量が同じ
値に収束するとき、再現性（エルゴード性）があるという。
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非再現性 
（エルゴード性の破れ）

I. Golding and E. C. Cox, PRL 96, 098102 (2008)

acts with the random medium in which it is moving.
Whereas a particle moving in a uniform medium, whatever
the viscosity, constantly makes small jumps due to thermal
energy, some types of random media can ‘‘trap’’ the par-
ticle in one location for varying and widely distributed
periods, allowing only infrequent ‘‘jumps’’ between loca-
tions and leading to the observed subdiffusion on the
relevant time scale of particle/obstacle interactions [7,8].
This trapping can be geometrical—as in a percolation
cluster, whose fractal geometry often causes the particle
to get stuck in cul de sacs—or it can have a temporal
origin, with the particle constantly binding to obstacles
with a broad distribution of binding times.

Formally, the broad distribution of ‘‘cage times’’ tc leads
to anomalous !2!"" behavior. A power-law distribution
P!tc" # t$#c with 2> #> 1 leads to subdiffusion with an
exponent $ % #$ 1 [8,15]. The distribution of cage times
has been measured directly for tracer particles moving in
actin networks in vitro [15]. Another formulation ascribes
the motion to thermal fluctuations opposed by a time

FIG. 2 (color online). Subdiffusive motion of RNA molecules
in the cell. Movies were read into Matlab software (Mathworks).
The fluorescent particles were automatically recognized and
followed, to yield a time series of particle coordinates r!t" %
!x!t"; y!t"" for each RNA molecule, where t % f0;!T; 2!T;
3!T . . .g is discretized by the camera framing interval !T.
This vector was used to calculate the mean square displacement
as a function of time interval: h!2!""i, where ! % jr!t& "" $
r!t"j and averaging is performed over all pairs of time points
!t1; t2" obeying jt1 $ t2j % ", thus " is also discretized by !T.
(a) The mean squared displacement h!2i of the molecule is
plotted as a function of the time-interval between measure-
ments ". Different markers and colors denote different trajecto-
ries (total of 23 trajectories from 3 different experiments).
Solid lines % slope 0:7. Deviations from the 0.7 slope at longer
times are due to the effect of limited cell size, and the averag-
ing over a smaller number of position pairs. Also shown in the
figure is a typical plot of h!2!""i for an RNA particle diffusing in
70% glycerol. In this case the motion is normal diffusion ($ %
1:04' 0:03, 4 trajectories), as demonstrated by the dashed line
with slope 1. (b) Power spectrum P!f" of RNA trajectories. The
complete set of x!t" and y!t" trajectories were concatenated,
and the power spectral density of the combined trajectory
was calculated [see [12,13] ]. Blue dots % measuredP!f";
solid line % linear fit yielding slope $1:77' 0:03. A calcula-
tion using only the x!t" and y!t" coordinates separately gave
similar results. As an additional test for the validity of the
spectral density calculation, the trajectory steps [!x!t";!y!t"]
were randomly permutated and then reintegrated [27]. The
resulting new trajectory should exhibit a random walk behavior,
with P!f" # f$2 [28]. The calculated spectral density (red dots)
is in agreement with this prediction, yielding a slope of$1:96'
0:04.

FIG. 1 (color online). Motion of a tagged RNA molecule in-
side an E. coli cell [see also movie in [13] ]. Cells were grown
and treated as described previously [10–12]. Cells were imaged
with a Nikon Eclipse inverted epifluorescence microscope, under
a 60X objective. Time-lapse movies were taken with a
Cascade:512B (Roper Scientific) high sensitivity camera for
30 minutes at 1 frame=second, 200 msec exposure time. Each
camera pixel covers a square of size #67( 67 nm2, thus over-
sampling the optical resolution limit (Airy radius #200 nm).
(a) A series of epifluorescent images of the cell. Images are
100 sec apart (scale bar % 1 %m.) (b) A plot of the x and y
coordinates (axis chosen arbitrarily) of particle position during
the time covered in panel A. (c) A two-dimensional plot of the
particle trajectory (same data as in panels A and B).
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are independent. These results show that the aging effect
has a pure statistical origin and is not related to an
irreversible process (such as photodestruction). Because
of the statistical properties of Lévy distributions, non-
stationarity emerges despite the time independence of the
laws governing the microscopic fluorescence process.

From a more general standpoint, this nonstationary
behavior also has profound consequences on basic data
interpretation, such as the ensemble-averaged total fluo-
rescence emitted by a population of QDs. We illustrated
this by studying !on!t", the fraction of QDs in the on state
at a given time t [Fig. 3(a)]. In the context of Lévy
statistics, the time evolution of !on!t" is intimately linked
to the relative amount of time spent in the on and off
states for each QD. Qualitatively, the off events tend to be
dominant whenever !off <!off since "!N" # PN

i#1 #
!i"
off

grows faster than its counterpart "̂"!N" # PN
i#1 #

!i"
on .

When analyzed in a more quantitative way, the fraction
!on!t" can be shown to decrease asymptotically as
t!off$!on [15]. Experimental results confirm this analysis:
!on!t" decays as t$$, with an exponent $ # 0:13 indeed
consistent with the previous determination of !on and
!off [Fig. 3(a)]. We also observed that the average signal
over the whole CCD detector, i.e., the sum of the fluo-
rescence of all the QDs, decays as t$0:18, in agreement
(within experimental uncertainty) with the fact that time

increasing, less and less QDs are in the on state, causing
the total fluorescence to decrease as !on!t" [Fig. 3(b)].
Importantly, we also observed that this fluorescence de-
cay is laser induced and reversible: after a continuous
laser illumination of 10 min, leaving the sample in the
dark for about 10–15 min systematically lead to a com-
plete recovery of its initial fluorescence. This confirms
that this decay is again purely statistical, and not related
to an irreversible bleaching of the QDs.

Our final observation focuses on nonergodic aspects of
random processes driven by Lévy statistics. Single par-
ticle measurements allow one to compare directly !on!t"
and the fraction of time !!i"on!0 ! t" spent in the on state
between 0 and t for the ith QD. This provides a direct test
of the ergodicity of the QD fluorescence. While the en-
semble average !on!t" decays deterministically as t$0:13

[Fig. 3(a)], each time average widely fluctuates over time
and for a given t, the values of !!i"on are broadly distributed
between 0 and 1, even after a long time of integration
[Fig. 3(c)]. To study the behavior of time averages, we
calculated the relative dispersion %r!t" of the time aver-
ages at time t, where %r!t" corresponds to the standard
deviation of the distribution of !!i"on!0 ! t" over the set of
QDs, divided by its mean value. Figure 3(d) shows that
%r!t" does not decay to zero, and is still of the order of 1
on the experimental time scale. Therefore, even for long
acquisition times, the fluctuations of the time averages
from QD to QD remain of the order of the time averages
themselves and do not vanish as expected for ergodic
systems. These data indicate ergodicity breaking: due to
rare events with a duration comparable to the total acquis-
ition time, there is no characteristic time scale over which
physical observables can be time averaged. Even for long
acquisition time, !!i"on!0 ! t" does not converge and no
information on the ensemble value !on can be obtained
by time averaging an individual trajectory.

While we found that accurate estimates of!on and!off
are essential to analyze and predict the statistical proper-
ties of the fluorescence, the microscopic origin of these
broad distributions is not yet established. Possible explan-
ations are related to the general question of relaxation in
disordered systems [14,20,30]. Distributions of off times
are sometimes attributed to distributions of static traps
from which the charge of an ionized QD escapes by
tunneling effect [12,31]. In these models, the value of
!off strongly depends on microscopic characteristics
of the QDs, and it is not clear how this is compatible
with the statistical homogeneity of the different QDs
suggested by the KS test. The dynamic changes of the
particle environment are also often invoked to account
for the fluctuating emission of the QD [13,32]. Some
authors have thus suggested models in which the trap
for the charge of the ionized QD follows a random
walk in a 1D parameter space, yielding a universal value
1=2 for !off [13]. However, both of these models (static
and dynamic) have yet to be more thoroughly tested.
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FIG. 3. Nonstationarity and nonergodicity in a sample of
QDs. (a) Time evolution of the fraction !on!t" of QDs in
the on state at time t (5). !on!t" decays as t$0:13 # t!off$!on

(solid line). (b) Time evolution of the total fluorescence signal
emitted by the sample (!): the darkening effect follows a t$0:18

power-law decay (solid line). (c) Typical time evolution of
!!i"on!0 ! t"—the fraction of time spent in the on state between
0 and t - for seven QDs. The time averages are widely fluctuat-
ing, even in the long integration time limit. (d) Evolution of the
relative dispersion %r!t" of !!i"on!0 ! t" at time t over the
ensemble of QDs (%). As time grows, %r!t" tends to a constant
value, illustrating that the time averages trajectories do not
converge to any asymptotic value.
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長時間平均量が収束しない、サンプル毎に異なる値になる
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αが１でない拡散
を異常拡散と呼ぶ



遅い拡散のメカニズム
• アモルファス材料における荷電粒子の輸送（トラップモデル） 

• からみあった高分子溶液中の拡散（粘弾性） 

• 細胞内における生体分子の拡散（粘弾性 or トラップモデル）

I. Golding and E. C. Cox, 
PRL 96, 098102 (2008)

'E

トラップモデル

acts with the random medium in which it is moving.
Whereas a particle moving in a uniform medium, whatever
the viscosity, constantly makes small jumps due to thermal
energy, some types of random media can ‘‘trap’’ the par-
ticle in one location for varying and widely distributed
periods, allowing only infrequent ‘‘jumps’’ between loca-
tions and leading to the observed subdiffusion on the
relevant time scale of particle/obstacle interactions [7,8].
This trapping can be geometrical—as in a percolation
cluster, whose fractal geometry often causes the particle
to get stuck in cul de sacs—or it can have a temporal
origin, with the particle constantly binding to obstacles
with a broad distribution of binding times.

Formally, the broad distribution of ‘‘cage times’’ tc leads
to anomalous !2!"" behavior. A power-law distribution
P!tc" # t$#c with 2> #> 1 leads to subdiffusion with an
exponent $ % #$ 1 [8,15]. The distribution of cage times
has been measured directly for tracer particles moving in
actin networks in vitro [15]. Another formulation ascribes
the motion to thermal fluctuations opposed by a time

FIG. 2 (color online). Subdiffusive motion of RNA molecules
in the cell. Movies were read into Matlab software (Mathworks).
The fluorescent particles were automatically recognized and
followed, to yield a time series of particle coordinates r!t" %
!x!t"; y!t"" for each RNA molecule, where t % f0;!T; 2!T;
3!T . . .g is discretized by the camera framing interval !T.
This vector was used to calculate the mean square displacement
as a function of time interval: h!2!""i, where ! % jr!t& "" $
r!t"j and averaging is performed over all pairs of time points
!t1; t2" obeying jt1 $ t2j % ", thus " is also discretized by !T.
(a) The mean squared displacement h!2i of the molecule is
plotted as a function of the time-interval between measure-
ments ". Different markers and colors denote different trajecto-
ries (total of 23 trajectories from 3 different experiments).
Solid lines % slope 0:7. Deviations from the 0.7 slope at longer
times are due to the effect of limited cell size, and the averag-
ing over a smaller number of position pairs. Also shown in the
figure is a typical plot of h!2!""i for an RNA particle diffusing in
70% glycerol. In this case the motion is normal diffusion ($ %
1:04' 0:03, 4 trajectories), as demonstrated by the dashed line
with slope 1. (b) Power spectrum P!f" of RNA trajectories. The
complete set of x!t" and y!t" trajectories were concatenated,
and the power spectral density of the combined trajectory
was calculated [see [12,13] ]. Blue dots % measuredP!f";
solid line % linear fit yielding slope $1:77' 0:03. A calcula-
tion using only the x!t" and y!t" coordinates separately gave
similar results. As an additional test for the validity of the
spectral density calculation, the trajectory steps [!x!t";!y!t"]
were randomly permutated and then reintegrated [27]. The
resulting new trajectory should exhibit a random walk behavior,
with P!f" # f$2 [28]. The calculated spectral density (red dots)
is in agreement with this prediction, yielding a slope of$1:96'
0:04.

FIG. 1 (color online). Motion of a tagged RNA molecule in-
side an E. coli cell [see also movie in [13] ]. Cells were grown
and treated as described previously [10–12]. Cells were imaged
with a Nikon Eclipse inverted epifluorescence microscope, under
a 60X objective. Time-lapse movies were taken with a
Cascade:512B (Roper Scientific) high sensitivity camera for
30 minutes at 1 frame=second, 200 msec exposure time. Each
camera pixel covers a square of size #67( 67 nm2, thus over-
sampling the optical resolution limit (Airy radius #200 nm).
(a) A series of epifluorescent images of the cell. Images are
100 sec apart (scale bar % 1 %m.) (b) A plot of the x and y
coordinates (axis chosen arbitrarily) of particle position during
the time covered in panel A. (c) A two-dimensional plot of the
particle trajectory (same data as in panels A and B).
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sphere in two dimensions with Å-scale resolution. As
with some optical tweezers [7], a laser beam sl ≠
670 nmd is focused by the microscope’s objective onto
a sphere. However, by contrast to optical tweezers, we
use low laser power (2 mW) so that the optical forces
are small s,5%d compared to the random entropic forces
driving the sphere’s motion in the solution. The for-
ward scattered light is collected by a high numerical
aperture [1.4 NA (numerical aperture)] condenser. If the
sphere moves even slightly away from the beam’s axis,
the forward scattered light will contain an off-axis in-
tensity asymmetry reflecting the sphere’s position. This
intensity asymmetry can be measured in two orthogo-
nal directions by subtracting the photocurrent of oppos-
ing quadrant pairs of a photodiode detector centered about
the optical axis beyond the condenser. The photocur-
rent differences are amplified and converted into volt-
ages which yield the spatial coordinates of the sphere’s
center using a prior calibration of displacements gener-
ated by a piezoelectric x-y stage. (The voltage varies
linearly for displacements out to 130 nm and exhibits
a maximum at 200 nm.) The sphere’s trajectory is
obtained by sampling the voltages with a 12-bit A/D
converter at rates up to 50 kHz. The spatiotemporal res-
olution is 0.01 nmyHz1y2 above 500 Hz, degrading to
1 nmyHz1y2 at 20 Hz due to mechanical resonances of the
stage. To avoid wall effects, we consider a sphere at least
3 mm away from the cover slip; the sphere is initially cen-
tered in the beam using feedback from the photodiode to
control the x-y stage.
The trajectory of a sphere in the PEO solution measured

using LDPT is shown in the inset of Fig. 1 over a duration

FIG. 1. The three-dimensional mean square displacement,
kDr2stdl, as a function of time for polystyrene spheres in a
viscoelastic entanglement network of polyethylene oxide s5 3
105 mol. wt.d at 3% by mass in water determined using LDPT
(radius a ≠ 0.26 mm; upper curve) and DWS (a ≠ 0.49 mm;
lower curve). Inset: two-dimensional trajectory measured using
LDPT at a sampling rate of 15 kHz over 1 s.

of 1 s at a sampling rate of 15 kHz. The sphere remains
in the linear voltage-displacement region at all times, and
successive displacements are several orders of magnitude
smaller than the sphere’s size. This trajectory is much
more compact than that for a sphere in water due to the
elasticity of the polymer network. Using this trajectory,
we calculate kDr2stdl in two dimensions by sweeping the
time lag and averaging over all possible initial times,
assuming a stationary process [8]. We multiply this result
by 3y2 to obtain kDr2stdl in three dimensions. To extend
kDr2stdl to longer times, a sampling rate of 150 Hz is
also used; kDr2stdl for both rates are shown in Fig. 1
(upper curve). The measured kDr2stdl are reproducible
to 10% standard deviation. Because of the entanglement
elasticity of the PEO network, kDr2stdl is subdiffusive at
the earliest times, whereas at longer times, the slope on
the log-log plot approaches unity, reflecting a terminal
diffusive behavior due to the relaxation of entanglements.
Mechanical vibrations of the stage introduce an oscillatory
error in kDr2stdl which is maximum at t ¯ 5 3 1023 s.
We have also measured kDr2stdl using transmission

DWS with a 2 mm thick rectangular cell. We illuminate
the cell with an intensity-stabilized argon-ion laser in a
single frequency mode at l ≠ 514 nm. The scattering
mean free path of the light, lp ≠ 166 mm [9], is much
smaller than the cell thickness, ensuring strong multiple
scattering from the spheres; scattering from the polymer is
negligible by comparison. Correlation spectroscopy of the
fluctuations of the scattered light intensity, caused by the
motion of the spheres, is made using a digital correlator
fed by a single-mode optical fiber and photomultiplier
detection system. From the intensity correlation function,
we calculate kDr2stdl [9], as shown by the lower curve in
Fig. 1. The shapes of the DWS and LDPT kDr2stdl are
in excellent agreement, and the LDPT kDr2stdl lies nearly
a factor of 2 above the DWS kDr2stdl, as expected for
spheres with a differing by a factor of 1.9. The remaining
error of about 10% may result from coupling of the
sphere’s axial motions to the transverse LDPT voltages.
Assuming that the complex fluid can be treated as

an isotropic, incompressible continuum around a sphere,
the fluid’s viscoelastic spectrum, G̃ssd, can be calculated
from the unilateral Laplace transform of kDr2stdl using a
generalized Stokes-Einstein equation [6],

G̃ssd ≠
kBT

paskDr̃2ssdl
, (1)

where s is the Laplace frequency and kB is Boltzmann’s
constant. Equation (1) is based on a generalized Langevin
equation which describes the sphere’s motion in the
continuum (neglecting the sphere’s inertia), and it is
consistent with energy equipartition and the fluctuation-
dissipation theorem. However, Eq. (1) is also based on
the implicit assumption that Stokes drag for viscous
fluids (no-slip boundary conditions) can be generalized to
viscoelastic fluids at all s. Since this assumption may not

3283

T. G. Mason et al, PRL 
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H. Scher and E. Montroll, 
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粘弾性

平均待ち時間の発散

相関のあるノイズに駆動されるブラウン運動



目的
非再現性（エルゴード性の破れ）の起源は何か？ 

!

非再現性を示す現象を分布としてとらえたとき、
普遍分布は存在するか？そして、それは何か？

トラップモデルを例として、非再現性が本質的に
現れることを示し、その分布を明らかにする。



モデル
・RWSD (Random walk with static disorder) 
・CTRW (Continuous-time random walk) 
・SEDLF (Stored-energy-driven Levy flight)

'E

RWSD

CTRW粗視化

待ち時間はランダムだが各
サイト毎に決まっている

待ち時間は完全にランダム
（同じサイトでもランダム）

待ち時間分布はベキ分布
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CTRWと更新過程
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, ṗ = �@H

@x
.

↵0 > ↵

hl2(t; t
1

)i ⌘ 1

2

h{x(t+ t
0

+ t
1

)� x(t
0

+ t
1

)}2 + {y(t+ t
0

+ t
1

)� y(t
0

+ t
1

)}2i

h'2

(t; t
1

)i ⌘ h{~'(t+ t
0

+ t
1

)� ~'(t
0

+ t
1

)}2i

h{x(t+ t
1

)� x(t
1

)}2i ' h�x2i
A�(1 + �)

[(t+ t
1

)

� � t
1

�

]

 (⌧) / ⌧�1�↵

✓
� =

k
B

T

�E
0

◆

P (⌧) / ⌧�
3
2

hx2

t

i = D
↵

t↵ T : [0, 1] ! [0, 1] L1

(µ) f(0) = 0 for � < 1

1

n

n�1X

k=0

f � T k !
Z

1

0

fdµ (< 1) as n ! 1

⇤
Electronic address: akimoto@z8.keio.jp

：時刻 t までの総ジャンプ数

Slide

Takuma Akimoto

1, ⇤

1
Department of Mechanical Engineering, Keio University, Yokohama, 223-8522, Japan

(Dated: March 7, 2014)

�

on

(t) ⌘ 1

t

Z
t

0

I(t0)dt0

hx2

t

i = h�2ihN
t

i

8
<

:

hx
t

i = 0

hx2

t

i ' D
↵

t↵ (t ! 1)

hx(t)2i ⌘ lim

N!1

1

N

NX

k=1

{x
k

(t)� x
k

(0)}2

�2(�; t) ! hx2

�

i (t ! 1)
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FIG. 5. (Color online) (a) RSD
√

⟨D2
t ⟩c/⟨Dt ⟩ vs total measure-

ment time t for the nonequilibrium initial ensemble. Dt is calculated
from the TAMSD (δx)2(",t) by a least-square fitting over the interval
0 < " < 1. Three different values of λ are used: λ = 10−4 (circles),
10−5 (squares), and 10−6 (triangles). In addition, α, c, and L are set
as α = 0.75, c = 1, and L = 11, respectively. The lines correspond
to the theoretical predictions given by Eq. (50); the solid line is the
result for short time scales t ≪ tc, and the dashed lines are for long
time scales t ≫ tc. The intersections of the solid and dashed lines
correspond to the crossover times tc given by Eq. (51). (b) RSD√

⟨D2
t ⟩eq,c/⟨Dt ⟩eq vs total measurement time t for the equilibrium

initial ensemble. The parameter values are the same as those in the
figure (a), except that the results only for two different values of
λ are plotted for clarity: λ = 10−5 (squares) and 10−6 (triangles).
The lines correspond to the theoretical predictions given by Eq. (54).
(a), (b) The plus signs in both figures are the RSD for the case
in which the waiting time distribution is given by the exponential
distribution P (τ ) = exp(τ/⟨τ ⟩)/⟨τ ⟩ with the same mean waiting time
as that of the TSD with λ = 10−6 (triangles): ⟨τ ⟩ = cλα−1α. The
dotted-dashed line is a theoretical prediction for the exponential
distribution: R(t) = (cαλα−1/t)1/2. Note that the scales of vertical
axes of two figures are different. For comparison, the theoretical
prediction of RSD for the nonequilibrium ensemble at short time
scales is depicted by a dotted line in the figure (b).

dimensional systems [23]. Properties applicable to a general
class of observables are summarized in Appendix H.

Here, we show that the TAMSD can be approximately given
by the time average of the following observable:

h(t ′) =
∞∑

k=1

δ(t ′ − tk)hk, (55)

hk = "z2
k + 2

k−1∑

l=1

zkzlθ [" − (tk − tl)], (56)

where zk = ±1 is the displacement of the jump at time t ′ = tk ,
and θ (t) is a step function defined by

θ (t) =
{

0 (t < 0),
t (t ! 0). (57)

Let us express a trajectory of a CTRW as

x(t ′) =
∞∑

k=1

zkI (tk < t ′), (58)

where I (tk < t ′) is the indicator function defined as follows:
I (tk < t ′) = 1 if the inside of the bracket is satisfied, while
I (tk < t ′) = 0 otherwise. Then, the displacement x(t ′ + ") −
x(t ′) is given by

x(t ′ + ") − x(t ′) =
∞∑

k=1

zkI (t ′ < tk < t ′ + "). (59)

Furthermore, the squared displacement [x(t ′ + ") − x(t ′)]2 is
expressed as

[x(t ′ + ") − x(t ′)]2 =
∞∑

k=1

I (tk − " < t ′ < tk)z2
k

+2
∞∑

k=1

k−1∑

l=1

zkzlI (tk − " < t ′ < tl).

(60)

From Eqs. (60) and (1), we obtain the following approximation
for the TAMSD:

(δx)2(",t) ≈ 1
t

Nt∑

k=1

[

"z2
k + 2

k−1∑

l=1

zkzlθ (" − (tk − tl))

]

.

(61)

Now, it is clear that the rhs of Eq. (61) is equivalent to the time
average of h(t ′), defined by Eqs. (55) and (56).

1. CTRWs without reflecting boundaries

In the absence of the confinement effect [23] (i.e., without
reflecting boundaries), the relations ⟨hk⟩ = " and ⟨hkhk+n⟩ −
⟨hk⟩⟨hk+n⟩ = 0 for n ! 1 hold because of the mutual inde-
pendence of zk , ⟨zk⟩ = 0, and z2

k = 1. In addition, since zk is
independent of the initial ensemble, the same relations can be
obtained also for the equilibrium ensemble: ⟨hk⟩eq = " and
⟨hkhk+n⟩eq − ⟨hk⟩eq⟨hk+n⟩eq = 0. Then, hk [Eq. (56)] satisfies
the law of large numbers [Eq. (H2)]; therefore, we have

(δx)2(",t) ≈ 1
t

Nt∑

k=1

hk = Nt

t

1
Nt

Nt∑

k=1

hk = Nt

t
" (62)

for arbitrary ". Note that this result is independent of the
choice of the initial ensembles. Therefore, TAMSD increases
in proportion to ", and has the same statistical property as Nt .
In particular, the diffusion constant Dt is given by

Dt = Nt

t
. (63)

Furthermore, the PDF of Dt is given by Eq. (41), and the RSD
of Dt shows the asymptotics such as those given in Eq. (50).
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FIG. 5. (Color online) (a) RSD
√

⟨D2
t ⟩c/⟨Dt ⟩ vs total measure-

ment time t for the nonequilibrium initial ensemble. Dt is calculated
from the TAMSD (δx)2(",t) by a least-square fitting over the interval
0 < " < 1. Three different values of λ are used: λ = 10−4 (circles),
10−5 (squares), and 10−6 (triangles). In addition, α, c, and L are set
as α = 0.75, c = 1, and L = 11, respectively. The lines correspond
to the theoretical predictions given by Eq. (50); the solid line is the
result for short time scales t ≪ tc, and the dashed lines are for long
time scales t ≫ tc. The intersections of the solid and dashed lines
correspond to the crossover times tc given by Eq. (51). (b) RSD√

⟨D2
t ⟩eq,c/⟨Dt ⟩eq vs total measurement time t for the equilibrium

initial ensemble. The parameter values are the same as those in the
figure (a), except that the results only for two different values of
λ are plotted for clarity: λ = 10−5 (squares) and 10−6 (triangles).
The lines correspond to the theoretical predictions given by Eq. (54).
(a), (b) The plus signs in both figures are the RSD for the case
in which the waiting time distribution is given by the exponential
distribution P (τ ) = exp(τ/⟨τ ⟩)/⟨τ ⟩ with the same mean waiting time
as that of the TSD with λ = 10−6 (triangles): ⟨τ ⟩ = cλα−1α. The
dotted-dashed line is a theoretical prediction for the exponential
distribution: R(t) = (cαλα−1/t)1/2. Note that the scales of vertical
axes of two figures are different. For comparison, the theoretical
prediction of RSD for the nonequilibrium ensemble at short time
scales is depicted by a dotted line in the figure (b).

dimensional systems [23]. Properties applicable to a general
class of observables are summarized in Appendix H.

Here, we show that the TAMSD can be approximately given
by the time average of the following observable:

h(t ′) =
∞∑

k=1

δ(t ′ − tk)hk, (55)

hk = "z2
k + 2

k−1∑

l=1

zkzlθ [" − (tk − tl)], (56)

where zk = ±1 is the displacement of the jump at time t ′ = tk ,
and θ (t) is a step function defined by

θ (t) =
{

0 (t < 0),
t (t ! 0). (57)

Let us express a trajectory of a CTRW as

x(t ′) =
∞∑

k=1

zkI (tk < t ′), (58)

where I (tk < t ′) is the indicator function defined as follows:
I (tk < t ′) = 1 if the inside of the bracket is satisfied, while
I (tk < t ′) = 0 otherwise. Then, the displacement x(t ′ + ") −
x(t ′) is given by

x(t ′ + ") − x(t ′) =
∞∑

k=1

zkI (t ′ < tk < t ′ + "). (59)

Furthermore, the squared displacement [x(t ′ + ") − x(t ′)]2 is
expressed as

[x(t ′ + ") − x(t ′)]2 =
∞∑

k=1

I (tk − " < t ′ < tk)z2
k

+2
∞∑

k=1

k−1∑

l=1

zkzlI (tk − " < t ′ < tl).

(60)

From Eqs. (60) and (1), we obtain the following approximation
for the TAMSD:

(δx)2(",t) ≈ 1
t

Nt∑

k=1

[

"z2
k + 2

k−1∑

l=1

zkzlθ (" − (tk − tl))

]

.

(61)

Now, it is clear that the rhs of Eq. (61) is equivalent to the time
average of h(t ′), defined by Eqs. (55) and (56).

1. CTRWs without reflecting boundaries

In the absence of the confinement effect [23] (i.e., without
reflecting boundaries), the relations ⟨hk⟩ = " and ⟨hkhk+n⟩ −
⟨hk⟩⟨hk+n⟩ = 0 for n ! 1 hold because of the mutual inde-
pendence of zk , ⟨zk⟩ = 0, and z2

k = 1. In addition, since zk is
independent of the initial ensemble, the same relations can be
obtained also for the equilibrium ensemble: ⟨hk⟩eq = " and
⟨hkhk+n⟩eq − ⟨hk⟩eq⟨hk+n⟩eq = 0. Then, hk [Eq. (56)] satisfies
the law of large numbers [Eq. (H2)]; therefore, we have

(δx)2(",t) ≈ 1
t

Nt∑

k=1

hk = Nt

t

1
Nt

Nt∑

k=1

hk = Nt

t
" (62)

for arbitrary ". Note that this result is independent of the
choice of the initial ensembles. Therefore, TAMSD increases
in proportion to ", and has the same statistical property as Nt .
In particular, the diffusion constant Dt is given by

Dt = Nt

t
. (63)

Furthermore, the PDF of Dt is given by Eq. (41), and the RSD
of Dt shows the asymptotics such as those given in Eq. (50).
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TAMSDの振る舞い
INTRINSIC RANDOMNESS OF TRANSPORT COEFFICIENT . . . PHYSICAL REVIEW E 83, 031926 (2011)

Next, let us define two rescaled random variables Xt and Yn as

Xt ≡ Nt

tµ
(9)

and

Yn ≡ Tn

n1/µ
. (10)

Note that the PDF of Xt is the same as that of Nt except for
the difference in the scale factor, thus we derive the PDF of
Xt instead of Nt in the followings. We have the following
equation from Eqs. (8)–(10):

Prob(Xt < x) = Prob(Yn > x−1/µ), (11)

where we define x as x = nt−µ. Since the random variables
Yn can be expressed by the sum of trapping times as Yn =∑n

k=1 τk/n1/µ and τk(k = 1,2, . . .) are mutually independent
identically distributed random variables, Lévy’s generalized
central limit theorem [16,22] tells us that the right-hand side
of Eq. (11) converges to an integral of the one-sided stable
distribution lµ(y) as n → ∞ (with x being fixed):

Prob(Yn > x−1/µ) ≃
∫ ∞

x−1/µ

lµ(y)dy. (12)

Taking a derivative in terms of x in Eqs. (11) and (12), we have
the following PDF gµ(x) of the random variable Xt as

gµ(x) = lµ(x−1/µ)
µx1/µ+1

. (13)

A series expansion of the one-sided stable distribution with
the index µ is given by [23]:

lµ(y) = −1
πy

∞∑

k=1

#(kµ + 1)
k!

(−cy−µ)k sin(kπµ), (14)

where x > 0. Using Eqs. (13) and (14), we obtain the PDF
gµ(x):

gµ(x) = −1
πµx

∞∑

k=1

#(kµ + 1)
k!

(−cx)k sin(kπµ). (15)

This PDF gµ(x) is known as the ML distribution and it
is generally observed in infinite ergodic systems [19,24].
Thus, for the CTRW trajectories, the distribution of the
transport coefficient Dt obeys the ML distribution for all lattice
dimensions d. The essential point in the above derivation is
the independence of the trapping times {τ1,τ2,...}, which is not
satisfied for RWSDs.

IV. RANDOM WALK WITH STATIC DISORDER

For the RWSD model, two ensemble averages should be
taken into account [16]: the average over realizations of static
disorders (environment) of the trapping times {τ̃n|n ∈ Zd} and
the average for the trajectory (thermal history) of the particle
{nk|nk ∈ Zd ,k = 1,2, . . .}. In the following, the ensemble
average ⟨·⟩E is taken over these two kinds of randomness;
namely, a different realization in the ensemble corresponds
to a different thermal history {nk} in a different environment
{τ̃n}. The ensemble-averaged MSD of this system is obtained
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FIG. 1. (Color online) The TAMSD ⟨|r$ − r0|2⟩T of RWSDs as
a function of the time interval $ for (a) d = 1 and (b) d = 2 is
displayed by symbols. In each figure, the seven different symbols were
calculated from seven different trajectory realizations. The power law
index µ is set to µ = 0.75 in both figures, and the total measurement
time is set to (a) t = 1010 and (b) t = 2 × 108. (Insets) The ensemble
average of the diffusion coefficient ⟨Dt ⟩E versus total measurement
time t (open circles). The solid lines are the theoretical predictions
[Eq. (30)].

by renormalization group methods [20] and also by some
elementary calculations [16].

Figure 1 shows the TAMSD ⟨|r$ − r0|2⟩T for (a) d = 1 and
(b) d = 2; the TAMSD increases linearly with $, as predicted
by Eq. (6). Moreover, the slope for each trajectory, which
corresponds to the diffusion coefficient Dt , is random. Now,
we derive the PDF of Dt in a way similar to that used in the
previous section. First, note that Eq. (8) holds also for RWSD
with Tn given by

Tn =
n∑

k=1

τ̃nk
. (16)

Here, the trapping times {τ̃n1 ,τ̃n2 ,...} are not mutually indepen-
dent [16] as explained in Sec. II. To treat this correlation, we
rewrite the summation in Eq. (16) as follows:

n∑

k=1

τ̃nk
=

Sn∑

l=1

Nn,l τ̂l , (17)

031926-3
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!!"Xm − X0#2$T"N#$E %
1
N &

k=0

N−1

!!n"k;X0#$E

%
"N + m#"+1 − m"+1 − N"+1

C"" + 1#N
"17#

for N→#. We have

!!"Xm − X0#2$T"N#$E $ 'm "m % N#
m" "m & N# .

( "18#

Unlike CTRW )15*, Eq. "18# is not exact for very small m
"see the inset of Fig. 1#. This is because intracell dynamics,
which are ignored in the above approximation, affect the
TAMSD statistics when m is very small.

Distribution of diffusion coefficient. Next, we show
that the distribution of the diffusion coefficient obeys
the Mittag-Leffler distribution. TAMSD is the time
average of the observation function fm"x#+)Tm"x#−x*2:
!"Xm−X0#2$T"N#= 1

N&k=0
N−1fm)Tk"X0#*. Because fm"x#,m"2x#2z

"x→0#, fm"x# is an L+
1"'̃# function, -0

1/2fm"x#d'̃(#. By the
DKA theorem )Eq. "5#*, we have

1
aN

&
k=0

N−1

fm)T1
k"X0#* ⇒ ./

0

1/2

fm"x#d'̃0Y", "19#

where a similar reduction as in Eq. "10# is used based on the
translational symmetries of T"x# and fm"x#. Therefore, the
diffusion coefficient defined by D"N#+!"Xm−X0#2$T"N# /m is
a random variable with the Mittag-Leffler distribution for
N&1,

D"N# ⇒
aN

mN1/0

1/2

fm"x#d'̃2Y". "20#

Taking the ensemble average of Eq. "20#, we obtain the re-
lation between the averaged diffusion coefficient and the in-
finite invariant measure of the reduced map T1"x#,

!D"N#$E =
aN

mN./0

1/2

fm"x#d'̃0 . "21#

Although the exact form of the invariant density )"x# is un-
known, we can calculate the integral in Eq. "21# using the
normalized time average of fm"x#,

/
0

1/2

fm"x#d'̃ =3 lim
N!→#

1
aN!

&
k=0

N!−1

fm"T1
k"X0##4

E

. "22#

It is interesting to note that the right-hand sides of Eq. "20#
and "21# are obtained by the invariant measure of the reduced
map T1"x#, while the diffusion coefficient D"N# is defined by
a trajectory of the original map T"x#.

Linear increase of TAMSD. Finally, we derive the linear
increase of TAMSD. Because the ensemble average of
TAMSD grows linearly in time for m%N, Eq. "18#, !D"N#$E
does not depend on m for m%N. In other words, the right-
hand side of Eq. "21# does not depend on m for m%N. Be-
cause the return sequence aN does not depend on m, we have
-0

1/2fm"x#d'̃$m. It follows that TAMSD increases linearly in
time,

!"Xm − X0#2$T"N# $ m for N & m . "23#

This relation is valid except for very small m, where the
linear increase in Eq. "18# breaks down slightly.

Although the scaled TAMSD does not converge to a con-
stant as described above, the linear increase of TAMSD is
shown clearly in Fig. 1 when N is significantly large. More-
over, the larger N is, the wider the linear region of TAMSD
becomes. In Fig. 2, we simulated TAMSD for different initial
conditions, and then we calculated the diffusion coefficient
for each initial points using the least mean square method
over the time interval )0, 100*, where TAMSD grows almost
linearly in time. Even with no fitting parameter, the distribu-
tion of the diffusion coefficient clearly agrees well with the
normalized Mittag-Leffler distribution. Figure 3 shows that
the relation "21# is valid even when TAMSD does not in-
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FIG. 1. "Color online# Scaled TAMSD for the single trajectory
"x0=0.4 and z=2.25#. Symbols stand for the cases of N=103, 104,
105, 106, and 107. Inset: the scaled ensemble average of TAMSD for
N=106 "the solid line#, compared with the linear increase "the
dashed line#.
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一般化された中心極限定理
は、独立な確率変数でベキ分布に従うとする。

このとき、　　　　　　　　は安定分布に従う。
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, ṗ = �@H

@x
.

↵0 > ↵

hl2(t; t
1

)i ⌘ 1

2

h{x(t+ t
0

+ t
1

)� x(t
0

+ t
1

)}2 + {y(t+ t
0

+ t
1

)� y(t
0

+ t
1

)}2i

h'2

(t; t
1

)i ⌘ h{~'(t+ t
0

+ t
1

)� ~'(t
0

+ t
1

)}2i

h{x(t+ t
1

)� x(t
1

)}2i ' h�x2i
A�(1 + �)

[(t+ t
1

)

� � t
1

�

]

 (⌧) / ⌧�1�↵

✓
� =

k
B

T

�E
0

◆

⇤
Electronic address: akimoto@z8.keio.jp

Slide

Takuma Akimoto

1, ⇤

1
Department of Mechanical Engineering, Keio University, Yokohama, 223-8522, Japan

(Dated: March 7, 2014)

(X
1

+ · · ·+X
n

)/n1/↵

Pr(N
t

> n) = Pr(t
n

< t)

�

on

(t) ⌘ 1

t

Z
t

0

I(t0)dt0

hx2

t

i = h�2ihN
t

i

8
<

:

hx
t

i = 0

hx2

t

i ' D
↵

t↵ (t ! 1)

hx(t)2i ⌘ lim

N!1

1

N

NX

k=1

{x
k

(t)� x
k

(0)}2

�2(�; t) ! hx2

�

i (t ! 1)
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FIG. 5. (Color online) (a) RSD
√

⟨D2
t ⟩c/⟨Dt ⟩ vs total measure-

ment time t for the nonequilibrium initial ensemble. Dt is calculated
from the TAMSD (δx)2(",t) by a least-square fitting over the interval
0 < " < 1. Three different values of λ are used: λ = 10−4 (circles),
10−5 (squares), and 10−6 (triangles). In addition, α, c, and L are set
as α = 0.75, c = 1, and L = 11, respectively. The lines correspond
to the theoretical predictions given by Eq. (50); the solid line is the
result for short time scales t ≪ tc, and the dashed lines are for long
time scales t ≫ tc. The intersections of the solid and dashed lines
correspond to the crossover times tc given by Eq. (51). (b) RSD√

⟨D2
t ⟩eq,c/⟨Dt ⟩eq vs total measurement time t for the equilibrium

initial ensemble. The parameter values are the same as those in the
figure (a), except that the results only for two different values of
λ are plotted for clarity: λ = 10−5 (squares) and 10−6 (triangles).
The lines correspond to the theoretical predictions given by Eq. (54).
(a), (b) The plus signs in both figures are the RSD for the case
in which the waiting time distribution is given by the exponential
distribution P (τ ) = exp(τ/⟨τ ⟩)/⟨τ ⟩ with the same mean waiting time
as that of the TSD with λ = 10−6 (triangles): ⟨τ ⟩ = cλα−1α. The
dotted-dashed line is a theoretical prediction for the exponential
distribution: R(t) = (cαλα−1/t)1/2. Note that the scales of vertical
axes of two figures are different. For comparison, the theoretical
prediction of RSD for the nonequilibrium ensemble at short time
scales is depicted by a dotted line in the figure (b).

dimensional systems [23]. Properties applicable to a general
class of observables are summarized in Appendix H.

Here, we show that the TAMSD can be approximately given
by the time average of the following observable:

h(t ′) =
∞∑

k=1

δ(t ′ − tk)hk, (55)

hk = "z2
k + 2

k−1∑

l=1

zkzlθ [" − (tk − tl)], (56)

where zk = ±1 is the displacement of the jump at time t ′ = tk ,
and θ (t) is a step function defined by

θ (t) =
{

0 (t < 0),
t (t ! 0). (57)

Let us express a trajectory of a CTRW as

x(t ′) =
∞∑

k=1

zkI (tk < t ′), (58)

where I (tk < t ′) is the indicator function defined as follows:
I (tk < t ′) = 1 if the inside of the bracket is satisfied, while
I (tk < t ′) = 0 otherwise. Then, the displacement x(t ′ + ") −
x(t ′) is given by

x(t ′ + ") − x(t ′) =
∞∑

k=1

zkI (t ′ < tk < t ′ + "). (59)

Furthermore, the squared displacement [x(t ′ + ") − x(t ′)]2 is
expressed as

[x(t ′ + ") − x(t ′)]2 =
∞∑

k=1

I (tk − " < t ′ < tk)z2
k

+2
∞∑

k=1

k−1∑

l=1

zkzlI (tk − " < t ′ < tl).

(60)

From Eqs. (60) and (1), we obtain the following approximation
for the TAMSD:

(δx)2(",t) ≈ 1
t

Nt∑

k=1

[

"z2
k + 2

k−1∑

l=1

zkzlθ (" − (tk − tl))

]

.

(61)

Now, it is clear that the rhs of Eq. (61) is equivalent to the time
average of h(t ′), defined by Eqs. (55) and (56).

1. CTRWs without reflecting boundaries

In the absence of the confinement effect [23] (i.e., without
reflecting boundaries), the relations ⟨hk⟩ = " and ⟨hkhk+n⟩ −
⟨hk⟩⟨hk+n⟩ = 0 for n ! 1 hold because of the mutual inde-
pendence of zk , ⟨zk⟩ = 0, and z2

k = 1. In addition, since zk is
independent of the initial ensemble, the same relations can be
obtained also for the equilibrium ensemble: ⟨hk⟩eq = " and
⟨hkhk+n⟩eq − ⟨hk⟩eq⟨hk+n⟩eq = 0. Then, hk [Eq. (56)] satisfies
the law of large numbers [Eq. (H2)]; therefore, we have

(δx)2(",t) ≈ 1
t

Nt∑

k=1

hk = Nt

t

1
Nt

Nt∑

k=1

hk = Nt

t
" (62)

for arbitrary ". Note that this result is independent of the
choice of the initial ensembles. Therefore, TAMSD increases
in proportion to ", and has the same statistical property as Nt .
In particular, the diffusion constant Dt is given by

Dt = Nt

t
. (63)

Furthermore, the PDF of Dt is given by Eq. (41), and the RSD
of Dt shows the asymptotics such as those given in Eq. (50).
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FIG. 2. (Color online) Distributions of the diffusion coefficient
Dt obtained by numerical simulations of RWSDs for (a) d = 1 and
(b) d = 2 (histograms). The distributions are normalized so the
averages equal unity. The index µ is set to µ = 0.75. (a) The total
measurement time t is t = 1010 and the diffusion coefficients Dt

were obtained by least-squares fitting over the interval 0 < ! < 104.
The modified ML distribution (dashed line) [Eq. (29)] and the ML
distribution (solid line) [Eq. (15)] are also shown. (b) The total
measurement time is t = 2 × 108 and the diffusion coefficients Dt

were obtained by least-squares fitting over the interval 0 < ! < 102.
The ML distribution [Eq. (15)] is displayed by the solid line. Note
that no adjustable parameters were used to obtain these figures.

three- or higher-dimensional systems, the distribution agrees
well with the ML distribution (not shown).

V. COMPARISON OF ML AND MODIFIED ML
DISTRIBUTIONS

In this section, we compare the ML gd (x) and modified
ML g̃d,(1+µ)/2(x) distributions obtained in the previous section.
Profiles of these distributions are displayed in Fig. 3. The
Mittag-Leffler distributions gd (x), shown in Fig. 3(a), change
from a monotonically decreasing function to a unimodal shape
as µ increases. The modified ML distributions g̃d,(1+µ)/2(x)
have the similar property, but they have divergent peaks at the
origin, Dt = 0, for any values the parameter µ, as shown in
Fig. 3(b).

Now, we characterize these distributions by their standard
deviations relative to their mean values, which also quantifies
deviations from ergodicity [12]. In order to derive the standard
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FIG. 3. (Color online) (a) The Mittag-Leffler gµ(x) [Eq. (15)] and
(b) the modified Mittag-Leffler g̃µ,α(x) [Eq. (29) with α = (1 + µ)/2]
distributions for four different values of the parameter µ: µ =0.3
(solid line), 0.5 (dotted line), 0.7 (dashed line), and 0.8 (dash-dotted
line). All the distributions are normalized so the averages equal unity.

deviation, we use the Laplace transform of the PDF g̃d,α(x)
[Eq. (29)] (for a derivation, see Appendix A):

ĝµ,α(ν) ≡
∫ ∞

0
dxe−xνgµ,α(x)

= 1 +
∞∑

k=0

(−νc−1/α)k+1

αk!

$
(

k+1
α

)

$
(

k+1
α

µ + 1
) , (31)

where ν is the Laplace variable conjugate to x. A relative
standard deviation Rµ,α of the diffusion coefficient Dt is
defined by Rµ,α ≡ limt→∞ Rµ,α(t), where

Rµ,α(t) ≡

√
⟨D2

t ⟩E − ⟨Dt ⟩2
E

⟨Dt ⟩E
. (32)

This parameter Rµ,α(t) has been widely studied as an index of
ergodicity breaking [12]; if Rµ,α(t) tends to 0 as t → ∞, the
system is ergodic, otherwise the system is nonergodic since
the long-time average does not converge to a constant. (Note
that Dt is obtained from the time-averaged MSD.) Since Xt

and Dt differ only in a scale factor, we can calculate Rµ,α

031926-5
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Next, let us define two rescaled random variables Xt and Yn as

Xt ≡ Nt

tµ
(9)

and

Yn ≡ Tn

n1/µ
. (10)

Note that the PDF of Xt is the same as that of Nt except for
the difference in the scale factor, thus we derive the PDF of
Xt instead of Nt in the followings. We have the following
equation from Eqs. (8)–(10):

Prob(Xt < x) = Prob(Yn > x−1/µ), (11)

where we define x as x = nt−µ. Since the random variables
Yn can be expressed by the sum of trapping times as Yn =∑n

k=1 τk/n1/µ and τk(k = 1,2, . . .) are mutually independent
identically distributed random variables, Lévy’s generalized
central limit theorem [16,22] tells us that the right-hand side
of Eq. (11) converges to an integral of the one-sided stable
distribution lµ(y) as n → ∞ (with x being fixed):

Prob(Yn > x−1/µ) ≃
∫ ∞

x−1/µ

lµ(y)dy. (12)

Taking a derivative in terms of x in Eqs. (11) and (12), we have
the following PDF gµ(x) of the random variable Xt as

gµ(x) = lµ(x−1/µ)
µx1/µ+1

. (13)

A series expansion of the one-sided stable distribution with
the index µ is given by [23]:

lµ(y) = −1
πy

∞∑

k=1

#(kµ + 1)
k!

(−cy−µ)k sin(kπµ), (14)

where x > 0. Using Eqs. (13) and (14), we obtain the PDF
gµ(x):

gµ(x) = −1
πµx

∞∑

k=1

#(kµ + 1)
k!

(−cx)k sin(kπµ). (15)

This PDF gµ(x) is known as the ML distribution and it
is generally observed in infinite ergodic systems [19,24].
Thus, for the CTRW trajectories, the distribution of the
transport coefficient Dt obeys the ML distribution for all lattice
dimensions d. The essential point in the above derivation is
the independence of the trapping times {τ1,τ2,...}, which is not
satisfied for RWSDs.

IV. RANDOM WALK WITH STATIC DISORDER

For the RWSD model, two ensemble averages should be
taken into account [16]: the average over realizations of static
disorders (environment) of the trapping times {τ̃n|n ∈ Zd} and
the average for the trajectory (thermal history) of the particle
{nk|nk ∈ Zd ,k = 1,2, . . .}. In the following, the ensemble
average ⟨·⟩E is taken over these two kinds of randomness;
namely, a different realization in the ensemble corresponds
to a different thermal history {nk} in a different environment
{τ̃n}. The ensemble-averaged MSD of this system is obtained
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FIG. 1. (Color online) The TAMSD ⟨|r$ − r0|2⟩T of RWSDs as
a function of the time interval $ for (a) d = 1 and (b) d = 2 is
displayed by symbols. In each figure, the seven different symbols were
calculated from seven different trajectory realizations. The power law
index µ is set to µ = 0.75 in both figures, and the total measurement
time is set to (a) t = 1010 and (b) t = 2 × 108. (Insets) The ensemble
average of the diffusion coefficient ⟨Dt ⟩E versus total measurement
time t (open circles). The solid lines are the theoretical predictions
[Eq. (30)].

by renormalization group methods [20] and also by some
elementary calculations [16].

Figure 1 shows the TAMSD ⟨|r$ − r0|2⟩T for (a) d = 1 and
(b) d = 2; the TAMSD increases linearly with $, as predicted
by Eq. (6). Moreover, the slope for each trajectory, which
corresponds to the diffusion coefficient Dt , is random. Now,
we derive the PDF of Dt in a way similar to that used in the
previous section. First, note that Eq. (8) holds also for RWSD
with Tn given by

Tn =
n∑

k=1

τ̃nk
. (16)

Here, the trapping times {τ̃n1 ,τ̃n2 ,...} are not mutually indepen-
dent [16] as explained in Sec. II. To treat this correlation, we
rewrite the summation in Eq. (16) as follows:

n∑

k=1

τ̃nk
=

Sn∑

l=1

Nn,l τ̂l , (17)

031926-3
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カットオフの影響
待ち時間分布にカットオフがあるとき（多くの現象には
有限性よりカットオフがある）、TAMSDの振る舞い
（再現性）はどのようになるか？
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analytically for the case of a nonequilibrium initial ensemble
(see Sec. II for a precise definition of the nonequilibrium and
equilibrium ensembles).

Another important finite-size effect is spatial confinement.
For example, to understand the transport phenomena in cells
[5], confinements due to cell membranes should be considered.
Confinement effects in CTRWs with power-law waiting times
were studied numerically in [26] and analytically in [38];
it was found that the time-averaged MSD (TAMSD) shows
a crossover from normal diffusion at short time scales to
anomalous slow diffusion at longer time scales. They also
reported numerically the weak ergodicity breaking in TAMSD.

Recently, the CTRW model with the two finite-size effects
(i.e., waiting time cutoffs and spatial confinements) has been
used as a model for the transport of lipid granules in living
fission yeast cells [1,2], in which confinement effects are
caused by a Hookean force exerted by optical tweezers.
The model clearly explains the experimental results such
as the crossover in TAMSD and weak ergodicity breaking.
These studies mainly used numerical simulations, but a
detailed theoretical analysis has not yet been reported. Also,
they studied only nonequilibrium ensemble, and thus the
dependences of the ergodic properties on initial ensembles
are still unknown.

In this paper, we present theoretical results for CTRWs with
two finite-size effects: the effects of cutoffs in the waiting time
distribution and the confinement effects. In particular, we focus
on TAMSD as an observable, and study the crossover from
normal to anomalous diffusion in the TAMSD and ergodic
properties in terms of the scatter of diffusion constant for the
TAMSD. The TAMSD, which is often used in single-molecule
tracking experiments [1,2,5,7,20,39–41], is defined as

(δx)2(",t) ≡ 1
t − "

∫ t−"

0
|x(t ′ + ") − x(t ′)|2dt ′, (1)

where x(t ′) is the position of the particle at time t ′, t is the total
measurement time, and " is the time interval. Hereinafter, we
assume that " ≪ t . Here, we define a generalized diffusion
constant D as (δx)2(",t) ≃ D"β . In some experiments, it
has been reported that D behaves like a random variable
depending on each time series [1,2,5,7,39]. Therefore, the
scatter in TAMSD or D has been used to check the consistency
of the model with experimental data [1,2,42].

In this paper, we use the TSDs [22,33,35–37] as waiting
time distributions of CTRWs. For the TSD, it is possible to
explicitly write the convoluted waiting distributions of any
order [Eq. (5)]. Moreover, we use the numerical method for
the TSD presented in [33] and Appendix B, and study the initial
and boundary value problem of the GFFPE to understand the
confinement effect.

The rest of this paper is organized as follows. In Sec. II, we
introduce the TSDs. Then, in Sec. III, we show the crossover
from normal to anomalous diffusion in TAMSD by using
the GFFPE. In Sec. IV, ergodic properties of TAMSD are
studied using renewal theoretic analysis. Sections V and VI
are devoted to conclusion and discussion. In the Appendixes,
we summarize some technical matters, including a derivation
of GFFPE from CTRWs as well as the ergodic properties of
general observables.

II. TEMPERED STABLE DISTRIBUTION

In this paper, we consider CTRWs confined in a one-
dimensional lattice with unit lattice constant: (1,2, . . . ,L).
Jumps are permitted only to the nearest neighbor sites without
preferences, although this can be generalized to jump length
distributions with zero mean and finite variances. It is also
assumed that the particle is reflected if it goes beyond the
permitted region (for example, if the particle jumps into the site
L + 1, it is pushed back to L). This system is a continuous-time
version of the discrete-time random walks (DTRWs) with
reflecting barriers [43].

Furthermore, successive waiting times of the particle
τk (k = 1,2, . . .) between jumps are assumed to be mutually
independent and follow the TSD PTL(τk,λ). The Laplace
transform of the TSD, P̃TL(s,λ) ≡

∫ ∞
0 dτ e−sτPTL(τ,λ), is

given by

P̃TL(s,λ) = exp{−c[(λ + s)α − λα]}, (2)

where α ∈ (0,1) is the stable index, c is a scale factor, and
λ ! 0 is a parameter characterizing the smooth cutoff. Note
that when λ = 0, this is the Laplace transform of the one-sided
stable distributions. Equivalently, the characteristic function of
the TSD, eψ(s,λ) ≡

∫ ∞
−∞ dτ PTL(τ,λ)eiζ τ , is given by

eψ(ζ,λ) = exp{−c[(λ − iζ )α − λα]}. (3)

This characteristic function is a special case of the TSD
given in [22,33,35–37]. This is because τ takes only positive
values, and we need only one-sided distributions. More precise
definition of the TSD and the derivations of the above equations
are presented in Appendix A.

The TSD in real space is also derived explicitly as follows
(for a derivation, see Appendix A):

PTL(τ,λ) = −ecλα−λτ

πτ

∞∑

k=1

*(kα + 1)
k!

(−cτ−α)k sin(πkα),

(4)

where *(x) is the gamma function. When λ = 0, PTL(τ,0)
is the one-sided α-stable distribution with a power-law tail:
PTL(τ,0) ∼ 1/τ 1+α as τ → ∞ [44,45]. Therefore, the TSD
[Eq. (4)] is the one-sided stable distribution multiplied by the
exponential function e−λτ : PTL(τ,λ) ∝ e−λτPTL(τ,0). Thus,
PTL(τ,λ) behaves as PTL(τ,λ) ∼ e−λτ/τ 1+α when τ → ∞.

Moreover, the n-times convoluted PDF P n
TL(τ,λ), which

is the PDF of the sum of the successive waiting times tn ≡∑n
k=1 τk , is expressed by using PTL(τ,λ):

P n
TL(τ,λ) = n−1/αPTL

(
n−1/ατ,n1/αλ

)
. (5)

Therefore, the n-times convoluted PDF P n
TL(τ,λ) is also

explicitly derived from Eqs. (4) and (5). Using Eq. (5),
we derive transient properties of CTRWs, including various
crossovers, in the following sections.

Even though we use the TSD PTL(τ,λ) as a waiting
time distribution, we should further specify the first waiting
time τ1 or, equivalently, the initial ensemble. (Here, the first
waiting time τ1 is the time interval between the start of
the measurement and the first jump. We always assume that
measurements start at t ′ = 0.) In this paper, we consider two
kinds of initial ensembles. The first one is a typical and most
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The function f (τ,λ) is defined by [12]

f (τ,λ) =

⎧
⎪⎨

⎪⎩

0, (τ < 0)

−c
τ−1−αe−λτ

$(−α)
, (τ > 0),

(3)

where $(x) is the gamma function, c > 0 is a scale factor, and
α ∈ (0,1) is a constant. The parameter λ ! 0 characterizes the
exponential cutoff [Eq. (6)]. When λ = 0, PTL(τ,λ) is the one-
sided α-stable distribution with a power law tail PTL(τ,0) ∼
1/τ 1+α as τ → ∞ [14]. The function ψ(ζ,λ) can be expressed
as follows:

ψ(ζ,λ) = −c[(λ − iζ )α − λα]. (4)

Hence, we obtain nψ(ζ,λ) = ψ(n1/αζ,n1/αλ), where n ! 0
is an integer. Therefore, if τk (k = 1,2, . . .) are mutually
independent random variables, each following PTL(τk,λ), then
the n-times convoluted PDF P n

TL(τ,λ), i.e., the PDF of the
summation Tn =

∑n
k=1 τk , is given by

P n
TL(τ,λ) = n−1/αPTL(n−1/ατ,n1/αλ). (5)

This is an important outcome of the infinite divisibility and
makes it possible to analyze transient behavior of CTRWs.
Moreover, from Eq. (4) and the inverse transform of Eq. (1),
we obtain an explicit form of PTL(τ,λ) through the similar
calculation shown in [14]:

PTL(τ,λ) = −ecλα−λτ

πτ

∞∑

k=1

$(kα + 1)
k!

(−cτ−α)k sin(πkα).

(6)

CTRWs with truncated α-stable trapping times. Now,
we consider the time average of an observable h(t ′): ht ≡∫ t

0 dt ′h(t ′)/t , where t is the total measurement time. We
assume that h(t ′) can be expressed as

h(t ′) =
∞∑

k=1

Hkδ(t ′ − Tk), (7)

where Tk > 0 (k = 1,2, . . .) is the time when the kth jump
occurs, and Hk (k = 1,2, . . .) are random variables satisfying
⟨Hk⟩ = ⟨H ⟩ and the ergodicity with respect to the operational
time k,

1
n

n∑

k=1

Hk ≃ ⟨H ⟩ , as n → ∞. (8)

To satisfy Eq. (8), the correlation function ⟨HkHk+n⟩ −
⟨Hk⟩ ⟨Hk+n⟩ should decay more rapidly than n−γ with some
constant γ > 0 [9,15]. It follows from Eqs. (7) and (8) that

ht = 1
t

Nt∑

k=1

Hk ≃ Nt

t
⟨H ⟩, (9)

for long t , where Nt is the number of jumps until time t . From
this equation, we find that ht behaves similarly to Nt . It is
important that many time-averaged observables for CTRWs
can be defined by Eqs. (7) and (8). For example, the TAMSD

(δr)2(*,t) ≡ 1
t − *

∫ t−*

0
|r(t ′ + *) − r(t ′)|2 dt ′ (10)
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FIG. 1. (Color online) TAMSD (δx)2(*,t) vs time interval
* (log-log plot) for the one-dimensional system (d = 1). Total
measurement time t is set as t = 105 and other parameters as
λ = 10−5, α = 0.75, and c = 1. The TAMSDs are calculated for 17
different realizations of trajectories; a different symbol corresponds
to a different realization. The solid line is their ensemble average.

can be approximately obtained by the time average of h(t ′) with
Hk defined as Hk ≡ * + 2

∑k−1
l=1 (d rk · d r l)θ [* − (Tk − Tl)],

where d-dimensional vector d rk is the displacement at the
time Tk , and θ (t) is defined by θ (t) = t for t ! 0, otherwise
θ (t) = 0. It is easy to see that ⟨Hk⟩ = * and ⟨HkHk+n⟩ −
⟨Hk⟩ ⟨Hk+n⟩ = 0 for n ! 1. Using Eq. (9), we have

(δr)2(*,t) ≃ *Nt/t. (11)

From Eq. (11), we obtain a relation between Nt and the
diffusion coefficient of TAMSD as

Dt ≃ Nt/t. (12)

In Fig. 1, TAMSDs calculated from 17 different trajectories are
displayed as functions of time interval *. This figure shows
that the TAMSD grows linearly with *, and the diffusion
coefficient Dt is distributed depending on the trajectories.

PDF of time-averaged observables. In this section, we
derive the PDF of time-averaged observables ht . Because ht

and Nt have the same PDF [Eq. (12)], we can study Nt instead
of ht . We have the following relations:

G(n; t) ≡ Prob(Nt < n) = Prob(Tn > t)

= Prob

(
n∑

k=1

τk > t

)

, (13)

where Prob (·) is the probability and τk is the trapping time
between (k − 1)th and kth jumps (k = 1,2, . . .). From Eq. (13),
we obtain

G(n; t) =
∫ ∞

n−1/α t

dτ PTL(τ,n1/αλ), (14)

where we have used Eq. (5) and the fact that τk (k = 1,2, . . .)
are mutually independent. Furthermore, we change the vari-
ables from n to z as n = tαz with t being set. Then, by using
Eqs. (6), (13), and (14), we have

Prob
(

Nt

tα
< z

)
= −ec(tλ)αz

απ

∞∑

k=1

$(kα + 1)
k!k

(−cz)k

× sin(πkα)ak(t), (15)
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FIG. 5. (Color online) (a) RSD
√

⟨D2
t ⟩c/⟨Dt ⟩ vs total measure-

ment time t for the nonequilibrium initial ensemble. Dt is calculated
from the TAMSD (δx)2(",t) by a least-square fitting over the interval
0 < " < 1. Three different values of λ are used: λ = 10−4 (circles),
10−5 (squares), and 10−6 (triangles). In addition, α, c, and L are set
as α = 0.75, c = 1, and L = 11, respectively. The lines correspond
to the theoretical predictions given by Eq. (50); the solid line is the
result for short time scales t ≪ tc, and the dashed lines are for long
time scales t ≫ tc. The intersections of the solid and dashed lines
correspond to the crossover times tc given by Eq. (51). (b) RSD√

⟨D2
t ⟩eq,c/⟨Dt ⟩eq vs total measurement time t for the equilibrium

initial ensemble. The parameter values are the same as those in the
figure (a), except that the results only for two different values of
λ are plotted for clarity: λ = 10−5 (squares) and 10−6 (triangles).
The lines correspond to the theoretical predictions given by Eq. (54).
(a), (b) The plus signs in both figures are the RSD for the case
in which the waiting time distribution is given by the exponential
distribution P (τ ) = exp(τ/⟨τ ⟩)/⟨τ ⟩ with the same mean waiting time
as that of the TSD with λ = 10−6 (triangles): ⟨τ ⟩ = cλα−1α. The
dotted-dashed line is a theoretical prediction for the exponential
distribution: R(t) = (cαλα−1/t)1/2. Note that the scales of vertical
axes of two figures are different. For comparison, the theoretical
prediction of RSD for the nonequilibrium ensemble at short time
scales is depicted by a dotted line in the figure (b).

dimensional systems [23]. Properties applicable to a general
class of observables are summarized in Appendix H.

Here, we show that the TAMSD can be approximately given
by the time average of the following observable:

h(t ′) =
∞∑

k=1

δ(t ′ − tk)hk, (55)

hk = "z2
k + 2

k−1∑

l=1

zkzlθ [" − (tk − tl)], (56)

where zk = ±1 is the displacement of the jump at time t ′ = tk ,
and θ (t) is a step function defined by

θ (t) =
{

0 (t < 0),
t (t ! 0). (57)

Let us express a trajectory of a CTRW as

x(t ′) =
∞∑

k=1

zkI (tk < t ′), (58)

where I (tk < t ′) is the indicator function defined as follows:
I (tk < t ′) = 1 if the inside of the bracket is satisfied, while
I (tk < t ′) = 0 otherwise. Then, the displacement x(t ′ + ") −
x(t ′) is given by

x(t ′ + ") − x(t ′) =
∞∑

k=1

zkI (t ′ < tk < t ′ + "). (59)

Furthermore, the squared displacement [x(t ′ + ") − x(t ′)]2 is
expressed as

[x(t ′ + ") − x(t ′)]2 =
∞∑

k=1

I (tk − " < t ′ < tk)z2
k

+2
∞∑

k=1

k−1∑

l=1

zkzlI (tk − " < t ′ < tl).

(60)

From Eqs. (60) and (1), we obtain the following approximation
for the TAMSD:

(δx)2(",t) ≈ 1
t

Nt∑

k=1

[

"z2
k + 2

k−1∑

l=1

zkzlθ (" − (tk − tl))

]

.

(61)

Now, it is clear that the rhs of Eq. (61) is equivalent to the time
average of h(t ′), defined by Eqs. (55) and (56).

1. CTRWs without reflecting boundaries

In the absence of the confinement effect [23] (i.e., without
reflecting boundaries), the relations ⟨hk⟩ = " and ⟨hkhk+n⟩ −
⟨hk⟩⟨hk+n⟩ = 0 for n ! 1 hold because of the mutual inde-
pendence of zk , ⟨zk⟩ = 0, and z2

k = 1. In addition, since zk is
independent of the initial ensemble, the same relations can be
obtained also for the equilibrium ensemble: ⟨hk⟩eq = " and
⟨hkhk+n⟩eq − ⟨hk⟩eq⟨hk+n⟩eq = 0. Then, hk [Eq. (56)] satisfies
the law of large numbers [Eq. (H2)]; therefore, we have

(δx)2(",t) ≈ 1
t

Nt∑

k=1

hk = Nt

t

1
Nt

Nt∑

k=1

hk = Nt

t
" (62)

for arbitrary ". Note that this result is independent of the
choice of the initial ensembles. Therefore, TAMSD increases
in proportion to ", and has the same statistical property as Nt .
In particular, the diffusion constant Dt is given by

Dt = Nt

t
. (63)

Furthermore, the PDF of Dt is given by Eq. (41), and the RSD
of Dt shows the asymptotics such as those given in Eq. (50).
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他のモデル
・RWSD (Random walk with static disorder) 
　TAMSDは線形に増大する。 
　２次元以上では、拡散係数の分布はCTRWと同じに 
　なるが、1次元だと異なる分布になる。分布的再現性 
　の起源は同じ（平均待ち時間の発散） 
!

・SEDLF (Stored-energy-driven Levy flight) 
　ジャンプ幅と待ち時間のカップルに 
　より生じる大数の法則の破れ

T. Miyaguchi and TA, PRE 83, 031926 (2011)

TA and T. Miyaguchi, PRE 87, 062134 (2013)
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FIG. 1. (Color online) A trajectory of SEDLF (α = 0.7 and γ =
0.9). A big jump occurs when a random walker is trapped for a long
time.

γ > 0, the PDF of jump follows a power law,

l(x) =
∫ ∞

0
ψ(x,t)dt = |x|

1
γ
−1

2γ
w

(
|x|

1
γ
)

≃ c0

2γ

1
|x|1+α/γ

. (4)

Thus, the mean jump length diverges for γ ! α.
Note that the Lévy flight also has a power-law distribution

of jump length, which causes a divergence in the MSD. By
contrast, the MSD of the SEDLF is finite with the aid of the
coupling between jump lengths and trapping times as shown
below. This property makes the SEDLF a physically more
coherent model than Lévy flight.

III. THEORY

Generalized master equations for CTRWs obtained in
Ref. [22] can be utilized for our model. In general, the spacial
distribution P (x,t) of CTRWs with initial distribution P0(x)
at time zero satisfies the following equations:

P (x,t) =
∫ t

0
dt ′$(t − t ′)Q(x,t ′) + $0(t)P0(x), (5)

Q(x,t) =
∫ ∞

−∞
dx ′

∫ t

0
dt ′ψ(x ′,t ′)Q(x − x ′,t − t ′)

+
∫ ∞

−∞
dx ′ψ0(x ′,t)P0(x − x ′), (6)

where Q(x,t)dtdx is the probability of a random walker
reaching an interval [x,x + dx) just in a period [t,t + dt),
$(t) is the probability of being trapped for longer than time t ,

$(t) = 1 −
∫ ∞

−∞
dx ′

∫ t

0
ψ(x ′,t ′)dt ′ = 1 −

∫ t

0
w(t ′)dt ′, (7)

ψ0(x,t) is the joint PDF for the first jump, and $0(t) is
the probability that the first jump does not occur until time
t . Fourier-Laplace transform with respect to space and time

(x → k and t → s, respectively), defined by

P̂ (k,s) ≡
∫ ∞

−∞
dx

∫ ∞

0
dtP (x,t)eikxe−st , (8)

gives

P̂ (k,s) = P̂0(k)

1 − ψ̂(k,s)

1 − ŵ0(s) + ϕ̂0(k,s)
s

, (9)

where ϕ̂0(k,s) = [1 − ŵ(s)]ψ̂0(k,s) − [1 − ŵ0(s)]ψ̂(k,s).
In the case of the SEDLF, we obtain ψ̂(k,s) from Eq. (2) as

follows:

ψ̂(k,s) =
∫ ∞

0
e−st cos(ktγ )w(t)dt. (10)

Note that ψ̂(0,s) = ŵ(s), and the asymptotic behavior of the
Laplace transform of w(t) [Eq. (3)] is given by

1 − ŵ(s) ≃ csα (s → 0). (11)

We assume that the initial distribution P0(x) is the δ function,
P0(x) = δ(x), and w(t) = w0(t) (ordinary renewal process
[25]). As a result, we have the following generalized master
equation in the Fourier and Laplace space:

P̂ (k,s) = 1
s

1 − ŵ(s)

1 − ψ̂(k,s)
, (12)

where ψ̂(k,s) and ŵ(s) are given by Eqs. (10) and (11).
Here, we derive the asymptotic behavior of the moments

of position xt for t → ∞ using the Fourier-Laplace transform
P̂ (k,s). The Laplace transform of ⟨xt ⟩, denoted by ⟨xs⟩, is
given by

⟨xs⟩ = −i
∂P̂ (k,s)

∂k

∣∣∣∣
k=0

= 0, (13)

which means there is no drift, ⟨xt ⟩ = 0. Similarly, the Laplace
transform of the second moment, i.e., the ensemble-averaged
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FIG. 2. (Color online) Ensemble-averaged mean square displace-
ments (α = 0.5). Symbols are the results of numerical simulations for
different γ with theoretical lines. There are no fitting parameters
in the theoretical lines. We set the PDF of the trapping time as
w(t) = αt−1−α (t ! 1) in all the numerical simulations. Thus, the
jump length PDF is given by l(x) = α/2γ |x|1+α/γ from Eq. (4), and
⟨l2⟩ = α/(α − 2γ ) for 2γ < α.
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Discussion
CTRWを例として、分布的再現性が本質的に現れる事
を示した。分布的再現性の起源は、平均待ち時間が発
散する事による大数の法則の破れである。他にも、 
!

・ジャンプ幅の2次モーメントの発散 
・ジャンプ幅と待ち時間とのカップル 
・時間的にランダムに拡散係数が変化 
　する系（過渡的）

x

z y

L

表面とバルクで拡散係数が異なる
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FIG. 4. Ensemble-averaged MSDs of CMs in the discrete reptation model
for Z = 10, 20, 40, 80, and 160. a is the step size of a tube segment and τ l
is the characteristic time of the longitudinal motion of a segment along the
tube.

is 1024 for each simulation, and the initial state is sampled
from an equilibrium distribution. Because this model lacks the
CLF mechanism, the MSD of the CM becomes the following
form,23 instead of Eq. (2):

⟨[rCM(t) − rCM(0)]2⟩ ∝ t. (6)

The EAMSDs of CMs are shown in Fig. 4. All EAMSDs are
proportional to t in all the time regions, which is consistent
with Eq. (6). Therefore, in the discrete reptation model, we
cannot obtain any characteristic time scales from the EAMSD
at all.

Interestingly, even in this case, the RF of the TAMSDs
shows a clear crossover. As in the case of the slip-spring
model, an appropriate value should be chosen for " in the
RFA. Here we set "/τ l = 10. (We show the effect of " value
in Appendix A.) As shown in Fig. 5, the RF is fitted well with
Eq. (5). Unlike the case of the slip-spring model, the exponent
α is almost zero, which is different from the results of the slip-
spring model. Moreover, we observe that the crossover time
strongly depends on Z in a similar way to the case of the slip-
spring model. The crossover time τ c obtained from the RF of
the TAMSDs are shown in Fig. 6. The obtained τ c data almost
coincide with the longest relaxation time τ d or the reptation
time τrep = τlZ

3/π2. This becomes clearer if we rescale the
time t by the reptation time τrep. Figure 7 shows the RFs of
TAMSDs (the same data as Figure 5) for the rescaled time
t/τrep. Interestingly, the rescaled RF data for different Z col-
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FIG. 5. Relative fluctuations of TAMSDs of CMs in the discrete reptation
model for "/τ l = 10 (see Appendix A) and Z = 10, 20, 40, 80, and 160. The
dashed line represents a curve proportional to t−1/2. τ l is the characteristic
time of the longitudinal motion of a segment along the tube.

101

102

103

104

105

106

101 102

τ d
 / 

τ l,
 τ c

 / 
τ l

Z

τdτc

FIG. 6. The longest relaxation time τ d and crossover time τ c in the discrete
reptation model. τ d is determined from the shear relaxation modulus and τ c
is determined from the RF data of TAMSDs in the same way as Fig. 3. The
dashed line represents the reptation time τrep/τl = Z3/π2.

lapse into one master curve if Z is sufficiently large, except
the short time region.

III. DISCUSSIONS

Both the slip-spring model and the discrete reptation
model in Sec. II give qualitatively the same crossover
behavior.

However, there are some differences between the RFA
results of the slip-spring and discrete reptation models. For
example, the slip-spring model exhibits the power-law type
behavior of R(t; ") for t ! τ c while the discrete reptation
model exhibits almost constant R(t; ") for t ! τ c. We expect
that the differences reflect the detailed relaxation mechanisms
of models. (In the case of the CTRW, R(t; ") reflects some
information of traps.16)

The discrete reptation model is the simple model and
the reptation is the only relaxation mechanism in the model.
On the other hand, the slip-spring model has other relaxation
mechanisms such as the Rouse motion of subchains and the
contour length fluctuation. The incorporation of additional
relaxation mechanisms other than the reptation modulates
several dynamical behavior.1–3, 24 In the reptation model,
the dynamic equation of the CM is described by using the
end-to-end vector.23 Thus, the RFs can be also modulated
by various relaxation mechanisms, for example, through
the dynamics of the end-to-end vector. If our expectation is
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FIG. 7. Rescaled RFs of TAMSDs of CMs in the discrete reptation model for
different values of Z. The data are the same as Figure 5 but the observation
time t is rescaled by the reptation time τrep = Z3τl/π

2. All the data points
collapse into one master curve except the short time region or the small Z
data (Z = 10, in this case).
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Next, let us define two rescaled random variables Xt and Yn as

Xt ≡ Nt

tµ
(9)

and

Yn ≡ Tn

n1/µ
. (10)

Note that the PDF of Xt is the same as that of Nt except for
the difference in the scale factor, thus we derive the PDF of
Xt instead of Nt in the followings. We have the following
equation from Eqs. (8)–(10):

Prob(Xt < x) = Prob(Yn > x−1/µ), (11)

where we define x as x = nt−µ. Since the random variables
Yn can be expressed by the sum of trapping times as Yn =∑n

k=1 τk/n1/µ and τk(k = 1,2, . . .) are mutually independent
identically distributed random variables, Lévy’s generalized
central limit theorem [16,22] tells us that the right-hand side
of Eq. (11) converges to an integral of the one-sided stable
distribution lµ(y) as n → ∞ (with x being fixed):

Prob(Yn > x−1/µ) ≃
∫ ∞

x−1/µ

lµ(y)dy. (12)

Taking a derivative in terms of x in Eqs. (11) and (12), we have
the following PDF gµ(x) of the random variable Xt as

gµ(x) = lµ(x−1/µ)
µx1/µ+1

. (13)

A series expansion of the one-sided stable distribution with
the index µ is given by [23]:

lµ(y) = −1
πy

∞∑

k=1

#(kµ + 1)
k!

(−cy−µ)k sin(kπµ), (14)

where x > 0. Using Eqs. (13) and (14), we obtain the PDF
gµ(x):

gµ(x) = −1
πµx

∞∑

k=1

#(kµ + 1)
k!

(−cx)k sin(kπµ). (15)

This PDF gµ(x) is known as the ML distribution and it
is generally observed in infinite ergodic systems [19,24].
Thus, for the CTRW trajectories, the distribution of the
transport coefficient Dt obeys the ML distribution for all lattice
dimensions d. The essential point in the above derivation is
the independence of the trapping times {τ1,τ2,...}, which is not
satisfied for RWSDs.

IV. RANDOM WALK WITH STATIC DISORDER

For the RWSD model, two ensemble averages should be
taken into account [16]: the average over realizations of static
disorders (environment) of the trapping times {τ̃n|n ∈ Zd} and
the average for the trajectory (thermal history) of the particle
{nk|nk ∈ Zd ,k = 1,2, . . .}. In the following, the ensemble
average ⟨·⟩E is taken over these two kinds of randomness;
namely, a different realization in the ensemble corresponds
to a different thermal history {nk} in a different environment
{τ̃n}. The ensemble-averaged MSD of this system is obtained
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FIG. 1. (Color online) The TAMSD ⟨|r$ − r0|2⟩T of RWSDs as
a function of the time interval $ for (a) d = 1 and (b) d = 2 is
displayed by symbols. In each figure, the seven different symbols were
calculated from seven different trajectory realizations. The power law
index µ is set to µ = 0.75 in both figures, and the total measurement
time is set to (a) t = 1010 and (b) t = 2 × 108. (Insets) The ensemble
average of the diffusion coefficient ⟨Dt ⟩E versus total measurement
time t (open circles). The solid lines are the theoretical predictions
[Eq. (30)].

by renormalization group methods [20] and also by some
elementary calculations [16].

Figure 1 shows the TAMSD ⟨|r$ − r0|2⟩T for (a) d = 1 and
(b) d = 2; the TAMSD increases linearly with $, as predicted
by Eq. (6). Moreover, the slope for each trajectory, which
corresponds to the diffusion coefficient Dt , is random. Now,
we derive the PDF of Dt in a way similar to that used in the
previous section. First, note that Eq. (8) holds also for RWSD
with Tn given by

Tn =
n∑

k=1

τ̃nk
. (16)

Here, the trapping times {τ̃n1 ,τ̃n2 ,...} are not mutually indepen-
dent [16] as explained in Sec. II. To treat this correlation, we
rewrite the summation in Eq. (16) as follows:

n∑

k=1

τ̃nk
=

Sn∑

l=1

Nn,l τ̂l , (17)
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FIG. 2. (Color online) Distributions of the diffusion coefficient
Dt obtained by numerical simulations of RWSDs for (a) d = 1 and
(b) d = 2 (histograms). The distributions are normalized so the
averages equal unity. The index µ is set to µ = 0.75. (a) The total
measurement time t is t = 1010 and the diffusion coefficients Dt

were obtained by least-squares fitting over the interval 0 < ! < 104.
The modified ML distribution (dashed line) [Eq. (29)] and the ML
distribution (solid line) [Eq. (15)] are also shown. (b) The total
measurement time is t = 2 × 108 and the diffusion coefficients Dt

were obtained by least-squares fitting over the interval 0 < ! < 102.
The ML distribution [Eq. (15)] is displayed by the solid line. Note
that no adjustable parameters were used to obtain these figures.

three- or higher-dimensional systems, the distribution agrees
well with the ML distribution (not shown).

V. COMPARISON OF ML AND MODIFIED ML
DISTRIBUTIONS

In this section, we compare the ML gd (x) and modified
ML g̃d,(1+µ)/2(x) distributions obtained in the previous section.
Profiles of these distributions are displayed in Fig. 3. The
Mittag-Leffler distributions gd (x), shown in Fig. 3(a), change
from a monotonically decreasing function to a unimodal shape
as µ increases. The modified ML distributions g̃d,(1+µ)/2(x)
have the similar property, but they have divergent peaks at the
origin, Dt = 0, for any values the parameter µ, as shown in
Fig. 3(b).

Now, we characterize these distributions by their standard
deviations relative to their mean values, which also quantifies
deviations from ergodicity [12]. In order to derive the standard
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FIG. 3. (Color online) (a) The Mittag-Leffler gµ(x) [Eq. (15)] and
(b) the modified Mittag-Leffler g̃µ,α(x) [Eq. (29) with α = (1 + µ)/2]
distributions for four different values of the parameter µ: µ =0.3
(solid line), 0.5 (dotted line), 0.7 (dashed line), and 0.8 (dash-dotted
line). All the distributions are normalized so the averages equal unity.

deviation, we use the Laplace transform of the PDF g̃d,α(x)
[Eq. (29)] (for a derivation, see Appendix A):

ĝµ,α(ν) ≡
∫ ∞

0
dxe−xνgµ,α(x)

= 1 +
∞∑

k=0

(−νc−1/α)k+1

αk!

$
(

k+1
α

)

$
(

k+1
α

µ + 1
) , (31)

where ν is the Laplace variable conjugate to x. A relative
standard deviation Rµ,α of the diffusion coefficient Dt is
defined by Rµ,α ≡ limt→∞ Rµ,α(t), where

Rµ,α(t) ≡

√
⟨D2

t ⟩E − ⟨Dt ⟩2
E

⟨Dt ⟩E
. (32)

This parameter Rµ,α(t) has been widely studied as an index of
ergodicity breaking [12]; if Rµ,α(t) tends to 0 as t → ∞, the
system is ergodic, otherwise the system is nonergodic since
the long-time average does not converge to a constant. (Note
that Dt is obtained from the time-averaged MSD.) Since Xt

and Dt differ only in a scale factor, we can calculate Rµ,α
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拡散係数が観測毎に変
化する（非再現性）

拡散係数の分布は普遍
的（分布的再現性）


