自発的対称性の破れと 南部-Goldstone モード

最近の発展と話題

様々な物理状態 自発的対称性の破れ

並進対称性 U(1)ゲージ対称性 並進対称性 CC by-sa Didier Descouens ガリレイ対称性 CC by-sa Mai-Linh Doan CC by-sa Roger McLassus 並進対称性 カイラル対称性 スピン対称性 π CC by-sa Aney SU(2)xU(1) ゲージ対称性 多くの場合波をともなう

CC by-sa Elijah van der Giessen

 $lacksquare{
u}$

対称性 操作に対して形を変えない

180度回転,x軸,y軸鏡影

y軸鏡影

対称性が高いほど物理の問題は解きやすい.

単純

例えば,

複雜

対称性の種類

内部対称性

時空対称性 時間並進,空間並進,回転,ブースト

ゲージ対称性

電磁気,弱い力,強い力 U(1)xSU(2)xSU(3)

	千上	
コ目	軍刀	H
Æ	玉刀	±

H		1	
Ħ	コ目	申开	百
	Æ	ヨリ	王

= ++-
电三

保存則 $\partial_t n_a(t, \mathbf{x}) + \partial_i j_a^i(t, \mathbf{x}) = 0$ 保存電荷 $Q_a = \int d^3 x n_a(t, \mathbf{x}) \qquad \frac{d}{dt} Q_a = 0$

対称性はしばしば破れる

粒子反粒子 ゲージ対称性 カイラル対称性,...

身近では, _{利き手}

対称性の破れのパターン 陽な破れ パリティ対称性の破れ、CP対称性の破れ...

量子異常

カイラルアノマリー, ワイルアノマリー, ゲージアノマリー, パリティアノマリー,....

自発的対称性の破れ:簡単な歴史(1900~) 自発磁化 Magnetic domain理論 Weiss (1907) lsing模型 Lenz (1920) Ising (1925) Heisenberg模型 Heisenberg (1928) スピン波の導入 Bloch (1930) Bloch則 $M(T) = M(0)(1 - cT^{3/2})$ 超伝導とNGモード 超伝導発見 Onnes (1911) BCS理論 Bardeen, Cooper, Schrieffer ('57) Nambu('60), Goldstone (61), 南部, Goldstone理論 Nambu, Jona-Lasinio ('61), Goldstone, Salam, Weinberg ('62). (自発的対称性の破れ) Anderson('62), Brout, Englert ('64), Higgs ('64), Brout-Englert-Higgs 機構 Guralnik, Hagen, Kibble ('64), Migdal, Polyakov ('65)

連続対称性の自発的破れの定義

自発的対称性のやぶれは、ある電荷Q_aについて $\langle [Q_a, \phi_i(\boldsymbol{x})]
angle \equiv \mathrm{tr}
ho \left[Q_a, \phi_i(\boldsymbol{x})
ight]
eq 0$ となる局所場 Φ_i が少なくとも一つは存在することで定義

真空: $\rho = |\Omega\rangle\langle\Omega|$ 媒質中: $\rho = \frac{\exp(-\beta(H - \mu N))}{\operatorname{tr}\exp(-\beta(H - \mu N))}$

連続対称性の自発的破れ

何がうれしいか? 理論の詳細によらず様々な事が言える. 分散関係、低エネルギー定理,... Bloch T^{3/2}則, Debye T³則,...

Holtzberg, McGuire, M'ethfessel, Suits, J. Appl. Phys. 35,1033 (1964)

連続対称性の自発的破れ

並進対称性が残っている場合弾性を伴う 格子の場合

ギャップレスな励起が現れる = 南部-Goldstone(NG)モード

Nambu('60), Goldstone(61), Nambu, Jona-Lasinio('61),

南部-Goldstoneの定理

Goldstone, Salam, Weinberg('62)

Lorentz対称性を持った真空 大域的対称性の自発的破れ

破れた対称性の数=NGモード 分散関係 $\omega = c |\mathbf{k}|$

NG モードの例: 相対論

量子色力学の(近似的)対称性 $SU(2)_L \times SU(2)_R \rightarrow SU(2)_V$

破れた対称性3つ: 3つのNGモード:パイ中間子 ^{π⁺, π⁻, π⁰</sub> 分散関係:}

$$\omega = \sqrt{{m k}^2 + m_\pi^2}$$

NG モードの例: 非相対論

超流動(フォノン)

粒子数保存則の破れ 破れた1つの生成子:Q1つのフォノン $\omega \sim |\mathbf{k}|$

スピン波(マグノン)

回転対称性の破れ 破れた2つの生成子: S_x, S_y 一つのスピン波 $\omega \sim k^2$

数も分散も相対論的な場合と異なる.

NG定理の一般化 Nielsen - Chadha ('76) $N_{\rm type-I} + 2N_{\rm type-II} \ge N_{\rm BS}$ Type-1: $\omega \propto k^{2n+1}$ Type-II: $\omega \propto k^{2n}$ Schafer, Son, Stephanov, Toublan, and Verbaarschot Watanabe - Brauner ('11) $N_{\rm BS} - N_{\rm NG} \le \frac{1}{2} \operatorname{rank} \langle [Q_a, Q_b] \rangle$

Type-A 単振動 $\omega \sim \sqrt{g}$

Type-A→Type-B転移の古典模型

コマが付いた振り子

● 回転対称性は重力による陽な破れ

● z軸の周りの回転は対称性がある

) x, y軸に沿った対称性は破れている

) 破れた対称性の数は2つ

Type-A, Type-Bの古典模型

独立な2つの振り子の運動

Type-A, Type-Bの古典模型

Watanabe, Murayama ('12), YH ('12)

内部対称性の自発的破れに伴うNGモードは

2つの振動のタイプに分類できる:

NGモードとは?

電荷密度は保存則により必ず遅い

 $\partial_t n_a(t, \boldsymbol{x}) = -\partial_i j_a^i(t, \boldsymbol{x})$

例) 媒質中 $j_a^i = \Gamma \partial_i n_a$ 拡散方程式 $\partial_t n_a(t, \boldsymbol{x}) = -\Gamma \partial_i^2 n_a(t, \boldsymbol{x})$

対称性が自発的に破れると 電荷密度と弾性変数が正準共役 $\langle [iQ_a, \pi_b(\mathbf{x})] \rangle \neq 0$ ^{cf. Nambu ('04)} $\partial_t \pi_a = cn_a$ $\partial_t n_a = b \partial_i^2 \pi_a$

Type-A (B)は Type-I (II) NG モードか? Type-ANGモード 電荷密度と弾性変数が正準共役 $\langle [iQ_a, \pi_b(\boldsymbol{x})] \rangle \neq 0$ $\partial_t \pi_a = c n_a \quad \partial_t n_a = d \partial_i^2 \pi_a$ $\omega = \sqrt{cd}|m{k}| + \Gamma m{k}^2$ Type-A = Type-I Havata, YH, Hirono (14) Type-BNGモード

電荷密度と電荷密度が正準共役 (有効ラグランジアンでは1階微分の項に対応 watanabe, Murayama (12)) $\langle [iQ_a, n_b(\boldsymbol{x})] \rangle \neq 0$ $\partial_t n_a = c' \partial_i^2 n_b \quad \partial_t n_b = d' \partial_i^2 n_a$ $\omega = \sqrt{c'd'} \boldsymbol{k}^2 + \Gamma |\boldsymbol{k}|^4$ **Type-B = Type-II** Hayata, YH, Hirono (14)

Type-BNGモードの例

	$N_{\rm BS}$	$N_{\mathrm{type-A}}$	$N_{ ext{type-B}}$	$\frac{1}{2} \operatorname{rank} \langle [Q_a, Q_b] \rangle$	$N_{\rm type-A} + 2N_{\rm type-B}$
Spin wave in ferromanget O(3)→O(2)	2	0	1		2
NG modes in Kaon condensed CFL SU(2)xSU(1)	3	-1	1	1	3
Kelvin waves in vortex translation	2	0	1	1	2
nonrelativistic massive C U(1)x	2	0	1		2
$N_{\text{type-A}} + 2N_{\text{type-B}} = N_{\text{BS}} \qquad N_{\text{BS}} - N_{\text{NG}} = \frac{1}{2}$					$\frac{1}{2} \operatorname{rank}\langle [Q_a, Q_b] \rangle$

 $\overline{2}$

トポロジカルソリトンと中心拡大

並進と並進 例) 2+1D skyrmion

Watanabe, Murayama 1401.8139

 $[P_x, P_y] \propto N$

topological number

並進と内部対称性 例 domain wall in nonrelativistic massive CP¹ model $[P_z,Q]\propto N$

U(1)電荷 topological number

z並進

自発的対称対称性の破れ +小さな陽な破れ

 $H = H_0 + hV$

対称性を持った項 小さな破れの項

擬NGモード Type-A: $\omega \sim \sqrt{h}$ 例パイ中間子

Type-B: $\omega \sim h$ 例)外部磁場中のスピン波

保存量と結合した陽な破れの場合には,陽な破れの高次補正はない.

Nicolis, Piazza ('12), ('13) Watanabe, Brauner, Murayama ('13)

時空対称性の自発的破れ まだわからないことがたくさん

時空対称性の破れの例1

格子振動 ^{並進(3つ),}回転(3つ),ガリレイ(3つ) 9個破れている. しかし,NGモードは並進の3つ.

回転とガリレイ変換に対応した ギャップレスモードは? ない

時空対称性の破れの例2

例: 弦 秩序変数 $\langle \phi(x) \rangle$ 並進: $\langle [P_x, \phi] \rangle = i \partial_x \langle \phi \rangle \neq 0$ 回転: $\langle [L_z, \phi] \rangle = -iy \partial_x \langle \phi \rangle \neq 0$ 2つの破れ NGモードは一つ

回転は並進を使って書けるので独立でない.L=x imes P

Low - Manoharの議論

非自明な例:液晶

ネマティック相 空間回転 *O*(3)→*O*(2) 2つの破れた生成子 2つの弾性変数

スメクティック-A相 回転の破れ O(3)→O(2) 並進の破れ 3つの破れた生成子 **1つの弾性変数** 残り回転は重たいモードに

Inverse Higgs mechanism

Ivanov, Ogievetsky ('75), Low, Manohar ('02) Nicolis et al ('13) Endlich, Nicolis, Penco ('13) Watanabe, Brauner ('14)

$$\xi = e^{ix^{\mu}P_{\mu}}e^{iT^{a}\pi^{a}(x)}$$

Volkov ('73), Ogievetsky ('74)

Maurer-Cartan 1形式 $\alpha = -i\xi^{-1}d\xi = -ie^{-iT^{a}\pi^{a}}(d+iP_{\mu}dx^{\mu})e^{iT^{a}\pi^{a}}$ $= P_{\mu}dx^{\mu} + [T^{a}\pi, iP_{\mu}dx^{\mu} + d] + \cdots$ $= P_{\mu}dx^{\mu} + T^{a}(\partial_{\mu}\pi^{a} + f_{\mu}{}^{ba}\pi^{b})dx^{\mu}_{F[\phi]} + \cdots$

Inverse Higgs mechanism

独立な弾性変数

平らな方向が破れた対称性の数に等しくない Hayata, YH ('14)

分散関係

例)液晶 (Type-A) **ネマティック相:**回転 O(3)→O(2) $N_{\rm BS} = N_{\rm EV} = 2$ $L_i(x) = \epsilon_{ijk} x^j T^{0k}(x)$ i = 1, 2分散関係: $\omega = ak^2 + ibk^2$ Hosino, Nakano('82) 実部と虚部が同じオーダー(減衰振動) a = 0の時,過減衰 例) 表面張力波 (Type-B?) $\frac{1}{V}\langle [P_z, N] \rangle \neq 0 \quad \omega \sim k^{3/2}$

まとめ

内部対称性に関して統一的な理解が得られた SSB パターン+ 〈[Q_a,Q_b]〉の情報

独立な弾性変数の数は破れた対称性の数
 $N_{\rm BS} - N_{\rm NG} = \frac{1}{2} \operatorname{rank} \langle [Q_a, Q_b] \rangle$

• $N_{type-A} + 2N_{type-B} = N_{BS}$ • $N_{type-B} = \frac{1}{2} \operatorname{rank} \langle [Q_a, Q_b] \rangle$ Type-A (Type-I): $\omega = ak + ibk^2$ Type-B (Type-II): $\omega = ak^2 + ibk^4$

まとめ: 時空対称性の破れに関して

 独立な弾性変数の数は破れた対称性に等しくない (Inverse Higgs機構)

分散関係は系,理論のパラメータに依存.
 温度によって分散が変わる場合も.

一分散に関して一般的なルールはあるか?