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1. KPZ for surface growth

e Paper combustion, bacteria colony, crystal

growth, liquid crystal turbulence

e Non-equilibrium statistical mechanics

e Connections to integrable systems
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Simulation models

Ex: ballistic deposition
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Scaling

h(x,t): surface height at position « and at time ¢

Scaling (L: system size) = iyt "

W (L,t) = ((h(z,t) — (h(z,t)))*)"/?
— LoW(t/L?) X

Fort > o0 W(L,t) ~ L*

Fort ~0 W/(L,t) ~t° where a = 3z

In many models, « =1/2,3=1/3 1""10""1n€”I6no 7

Figure 1. Interface width W wersus time ¢ for the RS

Dynamical exponent PA— 3/2 AﬂlSOthplC Scaling {Ref. [11])in 1 + 1 dimensions, in two differsnt latice



KPZ equation

dh(x,t) = IA(Ozh(z,t))? + vd2h(z,t) + vV Dn(z,t)

where 7 is the Gaussian noise with covariance
<77($9 t)"?(w', t,)> — 5($ T CB,)(S(t T t,)

By > Ogh = v4/1 + (Ozh)?

e Dynamical RG analysis: - a =1/2,3 = 1/3(KPZ class )

e New analytic and experimental developments

. ~ v+ (v/2)(0h)% + ...



2: Limiting height distribution

ASEP = asymmetric simple exclusion process

q p q p q

o -

-3 -2 -1 0 1 2 3
o TASEP(Totally ASEP, p = 0 or g = 0)

e N(x,t): Integrated current at (x,x 4+ 1) upto time ¢

e Bernoulli (each site is independently occupied with probability

p) is stationary



Mapping to surface growth

2 initial conditions besides stationary

Flat

Wedge /\/\/\/\

Step Alternating

Integrated current N (a,t) in ASEP
< Height h(x,t) in surface growth



TASEP with step i.c.

Ast — oo
N(0,t) ~ 1t — 274/3¢1/3¢,

Here N(x = 0,t) is the integrated current of TASEP at the
origin and &2 obeys the GUE Tracy-Widom distribution;

F>(s) = Pl&2 < s] = det(1 — P;Ka;iPs)

05

where Pj: projection onto the interval [s, 00) 04
0.3;
and K aj is the Airy kernel 0l
& @) 0.1}
Kai(z,y) = / dAAL(z 4+ A)Ai(y + A) °%

0 S

Random universality in KPZ universality



Tracy-Widom distributions

Random matrix theory, Gaussian ensembles

H: N x N matrix

P(H)dH = —5TrH?

e
ZNg

GOE(real symmetric, 3 = 1), GUE(hermitian, 8 = 2).

Joint eigenvalue distribution

N
]. __B..2
PN,B(mlaw29°°°7wN):Z— H (wz_wJ)IBHe 2%
NB 1<i<j<N i—1

e Average density ... Wigner semi-circle



Largest eigenvalue distribution

Largest eigenvalue distribution of Gaussian ensembles

1

PNa[Tmax < 8] = —— H(mi—wj)ﬁ He_ng?dwl .-

ZNB (—oo,s]V i<j i

Scaling limit (expected to be universal)

lim Pngs [(azmax — \/ZN)\/§N1/6 < s] = F3(s)

N —o0

GUE (GOE) Tracy-Widom distribution
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Tracy-Widom distributions
GUE Tracy-Widom distribution

F>(s) = det(1 — Ps Ky P;)

where Ps: projection onto [s,00) and K3 is the Airy kernel

oo

Ko(x,y) = /0 dAAi(xz + M) Ai(y + )

Painlevé Il representation

F>(s) = exp [— /:o(:c — s)u(x)?*dx

where u(x) is the solution of the Painlevé Il equation
82
——u = 2u’ +zu, u(x)~ Ai(x) x— o0
ox?

11



GOE Tracy-Widom distribution
1 o @)

Fi(s) = exp |~ [ u@)de| (Fa(s))/3
GSE Tracy-Widom distribution

F4(s) = cosh [—; /:O U(m)dw] (Fa(s))'/?

Figures for Tracy-Widom distributions

Probability densities
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Step TASEP and random matrix
e Generalize to discrete TASEP with parallel update.

A waiting time is geometrically distributed.

o A :
J
(™ w;; on (2, 7): geometrically distributed
waiting time of 2th hop of jth particle
(1, 1)
z,>
e Time at which INth particle arrives at the origin

( )

B UP-righl’;r:)E:\‘Eﬁs from < o Z Wi,j > (: G(N7 N))
(191)t0(N,N) \ (7’7.7) on a path )

Zero temperature directed polymer
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LUE formula for TASEP
By RSK algorithm a matrix of size N X IN with non-negative

integer entries is mapped to a pair of semi-standard Young

tableau with the same shape A with entries from
{1,2,..., N}, with G(N,N) = A1.

When the jth particle does 2th hop with parameter |/a;b;,
the measure on A is given by the Schur measure

~ sa(@)sA()

Using a determinant formula of the Schur function and taking

the continuous time limit, one gets

1
PIN() 2 N] = /[ o @) e dar - dax
U < i
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Generalizations

Current Fluctuations of TASEP with flat initial conditions: GOE
TW distribution

More generalizations: stationary case: Fy distribution, multi-point

fluctuations: Airy process, etc
Experimental relevance?

What about the KPZ equation itself?
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Takeuchi-Sano experiments
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Figure 2 | Family-Vicsek scaling. a,b, Interface width w{l, ¢} against the length scale I at different times t for the circular (a) and flat (b} interfaces.
The four data correspond, from bottom to top, to t = 2.0 5,4.0 5, 12.0 sand 30.0 s for the panel aand to ¢ = 4.0 5, 10.0 5, 25.0 sand 60.0 s for the panel b,

The insets show the same data with the rescaled axes. ¢, Growth of the averall width W(t) =/ {[h{x.t) — {h'plz;: The dashed lines are guides for the eyes
showing the exponent values of the KPZ class.
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Figure 3 | Universal luctuations. a, Histogram of the rescaled local height 3 = [k — 2.0/ (T The blue and red solid symbals show the histograms for
the circular interfaces at ¢ = 10 s and 30 s the light Blue and purple open symbols are for the flat interfaces at ¢ = 20 3 and 80 s, respectively. The dashed
and dotted curves show the GUE and GOE TW distributions, respectively. Note that for the GOE TW distribution y is multiplied by 27" in view of
the theoretical prediction™. b, The skewness (circle) and the kurtosis (cross) of the distribution of the interface fluctustions for the circubar {blue) and flat
[red) interfaces. The dashed and dotted lines indicate the values of the skewness and the kostasis of the GUE and COE TW distributions". ¢, d, Differences
in the cumulants between the experimental data {x%). and the corresponding TW distributions {xf,: ), for the ciroclar interfaces (¢} and {pfoe)

for the flat interfaces [d). The insets show the same data for s = 1 in logarithmic scales, The dashed lines are guides for the eyes with the slope —1/3,

See Takeuchi Sano Sasamoto Spohn, Sci. Rep. 1,34(2011)
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3. Exact solution for the KPZ equation

Remember the KPZ equation

dth(x,t) = IA(Ozh(z,t))? + vd2h(z,t) + vV Dn(z,t)

e Narrow wedge initial condition
e Based on (i) the fact that the weakly ASEP is KPZ equation
( ) and (ii) a formula for step ASEP by

e The explicit distribution function for finite ¢

18



Narrow wedge initial condition

Scalings A
r — o’x, t— 2va*t, h— 2—h
v
where o = (2v)~3/2AD1/2.
We can and will do set v = %,)\ =D =1.

We consider the droplet growth with macroscopic shape

.

—x2 /2t for |x¢| < t/6,

h(x,t) = «
\(1/252)t — |x|/8 for |x| > t/6

which corresponds to taking the following narrow wedge initial

conditions: h(xz,0) = —|z|/6, 6 <K1

19



4 h(x.t)

20




Distribution
h(z,t) = —x?/2t — L3 + 1&y
where ~v; = (2t)1/3.

The distribution function of &;

& @)

Fi(s) =Pl <s]=1-— / exp [ — e%(s_'“’)]

— OO0

X(det(l — P, (Bt — Pa;)P,) — det(1 — PuBtPu))du

where Pai(x,y) = Ai(x)Ai(y), P, is the projection onto
[u, 00) and the kernel By is

o0 Ai(x + N Ai(y + A
Bt(wa y) :/ dA ( e'm?_(l )

— OO

e In the large t limit, F} tends to F5.
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Finite time KPZ distribution and TW

05
0.4 |
0.3
0.2
0.1
0.0

—: exact KPZ density F}(s) at v+ = 0.94
——: Tracy-Widom density (£ — oo limit)

o: ASEP Monte Carlo at ¢ = 0.6, t = 1024 MC steps
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Cole-Hopf transformation

If we set
Z(x,t) = exp (h(z,1))
this quantity (formally ) satisfies
0 10°%Z(z,t)
—7 ,t = — ,t Z ,t
() = D ()2 (1)

This can be interpreted as a (random) partition function for a

directed polymer in random environment 7.
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Replica method

For a system with randomness, e.g. for random Ising model,
H = Z JijSiSj
(3)
where 2 is site, s; = =1 is Ising spin, J;; is iid random

variable(e.g. Bernoulli), we are often interested in the averaged
free energy (log Z), Z = > ,, 14 e H.

In some cases, computing (log Z) seems hopeless but the
calculation of N'th replica partition function (ZV) is easier.

In replica method, one often resorts to the following identity

N A R
(log >_J\rlgao N

24



For KPZ: Feynmann-Kac and 0 Bose gas

Feynmann-Kac expression for the partition function,
Z(CB, t) = E, (ef(f n(b(s),t—S)dSZ(b(t), O))

Because 1 is a Gaussian variable, one can take the average over
the noise 1) to see that the replica partition function can be

written as (for pt-to-pt case)

(Z" (z,t)) = (z|e”"N?|0)

where Hpy is the Hamiltonian of the 0-Bose gas,

25



Remark: More generally, the IN point correlation function satisfies

g /N N
pr <H Z(wi,t)> = Hn <H Z(wz‘,t)>

1=1 =1

Remember h = log Z. We are interested not only in the average
(h) but the full distribution of h. Here we compute the
generating function G¢(s) of the replica partition function,
> (—e_'Vts)N 04
Gi(s) = NZ 7 (27 (0,1)) eV
=0

with v¢ = (¢/2)'/3. This turns out to be written as a Fredholm
determinant. We apply the inversion formula to recover the p.d.f

for h. But for the KPZ, (ZN) ~ eN”,

26



4. Stationary case

e Narrow wedge is technically the simplest.

e Flat case is a well-studied case in surface growth

e Stationary case is important for stochastic process and
nonequilibrium statistical mechanics
— Two-point correlation function
— Experiments: Scattering, direct observation

— A lot of approximate methods (renormalization,
mode-coupling, etc.) have been applied to this case.

— Nonequilibrium steady state(NESS): No principle.

Dynamics is even harder.
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Modification of initial condition

Two sided BM

.
B_(—CB), x <0,

h(x,0) =
\B_|_(:c), x > 0,

where B4 (x) are two independent standard BMs

We consider a generalized initial condition

( ~
B(— _x, 0,
h(z,0) = 4 (—x) +v_x, =<

\B(:L') — vy, x > 0,

where B(x), B(x) are independent standard BMs and v are
the strength of the drifts.

28



Result

For the generalized initial condition with v+
F,. t(s) := Prob [h(z,t) + v} /12 < 5]

—_ I‘(,U+ _I_ ’U_) [1 /00 d —ert(s—u)
— — — ue
I'(vy +v— +~, "d/ds) —oo

Here v, (w) is expressed as a difference of two Fredholm

szl:,t(u’)

determinants,
Vo, t(u) = det (1 — P, (B} — P,)P,) —det (1 — P,B/P,),

where Ps represents the projection onto (s, 00),

. 1 . 1
P,AI\;(glv 52) — A'F (619 73”—9”4—) A'F (529 77”4—7”—)
t t

29



oo

1
B{(sla 52) — / dy ! Ai; (51 + v, 7’U—9’U—I—)

oo 1 —e Y Yt

T 1
XA'r fz—l—’y,—,’l)_|_,0_ 9

Yt

and

1 .23 T (2b d
Aig(aa b) C, d) — o / dzazza{—’b? (z .z T ) ’

21 Jr I' (—ibz + ¢)
b

where I', | represents the contour from —oo to oo and, along the

way, passing below the pole at z = 2d/b.
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Height distribution for the stationary KPZ equation

1 oo
T'(1+~; 'd/ds) /-

where v ¢(u) is obtained from v, ;(u) by taking v+ — 0 limit.

(8_u)_|_e_'7t(s_u)

Fo,t(S) — VO,t(u)

0.4¢
03f
02f

0.1f

0.0k

Figure 1: Stationary height distributions for the KPZ equation for

v+ = 1 case. The solid curve is Fy.
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Stationary 2pt correlation function

C(z,t) = ((h(z,t) — <h’($9t)>)2>
g (y) = (20)72/3C ((20)*/%y, ¢)

20f V=1 - - -

0s5f

oob— o v TS =]

Figure 2: Stationary 2pt correlation function g;’(y) for v+ = 1.

The solid curve is the corresponding quantity in the scaling limit

9" (y).
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5. Further developments

Semi-discrete finite temperature directed polymer - -+ quantum
Toda lattice

Partition function

zNE) = |

o<1 <..<tny—-1<t

N
exp O <Z(Bi(ti) — Bi(ti—1)>

B;(t): independent Brownian motions

33



Macdonald process

Measure written as

~ PA(@)Q(b)
where P, Q are Macdonald polynomials.
A generalization of Schur measure
Includes Toda, Schur and KPZ as special and limiting cases

Non-determinantal but expectation value of certain

"observables’ can be written as Fredholm determinants.
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qg-TASAEP ... Rigorous replica

g-TASEP  particle ¢ hops with rate 1 — g%i—1—%i—1,

—
m m m

o0 e e 06006 e 080 O0or ‘.‘.‘.‘ ‘.‘.‘ ‘

Tg Ty Ty r3 I9 T Ye¢ Ys Y4 Y3 Y2 Y1 Yo

The dynamics of the gaps y; = ;1 — x; — 1 is a version of the
zero range process in which a particle hops to the right site with
rate 1 — q¥¢. The generator of the process can be written in

terms of " g-deformed boson”. ( )
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Defining KPZ equation without Cole-Hopf

Universality in the KPZ problems. The Cole-Hopf does not
work for most models which are expected to be in the KPZ

universality class.

Rough path and renormalization.

Coincide with the Cole-Hopf solution.

Various generalizations to other non-linear SPDE.

Proving the convergence to the KPZ equation becomes easy.
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Systems with many conserved quantities

Conjecture

For rather generic 1D systems with more than one conserved
quantities, the correlation functions for "normal modes” are

described by the single component KPZ correlation functions.

e FPU chain, hard-point particles with alternating mass,

quantum systems, etc.

e There are three conserved quantities.

37



KPZ scaling function in MC simulation of multi-species
ASEP

L=400; £=0.50; r=1.5; T=100; Runs= 20. x 10"6 L=400; £=0.50; r=1.5; T=100 ; Runs= 20. x 10"6
0.010

0.005

~0.005 -
~0.010
L=400; ¢=0.50; r=15; T=100; Runs= 20. x 10"6 L=400; £=0.50; r=1.5; T=100 ; Runs= 20. x 10"6
0.010{ 0.020
0005 0015

0.010

0.005
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Simulations in 2D

In higher dimensions, there had been several conjectures for

exponents.

There are almost no rigorous results.

New extensive Monte-Carlo simulations on the distributions.

39



o

L]
_4 = Irl: g -
iy [
: ph-pt ..,';:"u - b ) ".. 1
- z SF ] -
5= ) . £, 051 0T = -
) YT gy B o
= LT anz LW as e
_ﬁ 1 J 1 It I I i It I I
-5 -4 -3 -2 -1 0 I 2 3

FIG. 4 (color online). Universal PDFs: 2 + 1 DPRM point-
point and point-line geometries. Table inset: Distribution
moments.

New universal distributions?
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6. Summary

The KPZ equation is a well-known equation for describing
surface growth.

The KPZ universality may be applicable to wider class of
systems than previously thought. Systems with more than one
conserved quantities, quantum systems, etc...

The understanding of the convergence to the KPZ equation is
getting better.

The KPZ universality and the universality of the KPZ
equation are different.

Joooo"idooodo RKeZ000oogooogodod
000000 DbOO0O0DOOOnT8/20-23
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