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1. KPZ for surface growth

• Paper combustion, bacteria colony, crystal

growth, liquid crystal turbulence

• Non-equilibrium statistical mechanics

• Connections to integrable systems
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Simulation models

Ex: ballistic deposition
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Scaling

h(x, t): surface height at position x and at time t

Scaling (L: system size)

W (L, t) = ⟨(h(x, t) − ⟨h(x, t)⟩)2⟩1/2

= LαΨ(t/Lz) x

h

For t → ∞ W (L, t) ∼ Lα

For t ∼ 0 W (L, t) ∼ tβ where α = βz

In many models, α = 1/2, β = 1/3

Dynamical exponent z = 3/2: Anisotropic scaling
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KPZ equation

1986 Kardar Parisi Zhang

∂th(x, t) = 1
2
λ(∂xh(x, t))

2 + ν∂2
xh(x, t) +

√
Dη(x, t)

where η is the Gaussian noise with covariance

⟨η(x, t)η(x′, t′)⟩ = δ(x − x′)δ(t − t′)

∂th = v
√

1 + (∂xh)2

≃ v + (v/2)(∂xh)
2 + . . .

• Dynamical RG analysis: → α = 1/2, β = 1/3(KPZ class )

• New analytic and experimental developments
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2: Limiting height distribution

ASEP = asymmetric simple exclusion process

· · · ⇒

p
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q

⇐
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· · ·
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• TASEP(Totally ASEP, p = 0 or q = 0)

• N(x, t): Integrated current at (x, x + 1) upto time t

• Bernoulli (each site is independently occupied with probability

ρ) is stationary
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Mapping to surface growth

2 initial conditions besides stationary

Step

Droplet

Wedge

↕ ↕

Alternating

Flat

↕ ↕

Integrated current N(x, t) in ASEP

⇔ Height h(x, t) in surface growth
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TASEP with step i.c.
2000 Johansson

As t → ∞
N(0, t) ≃ 1

4
t − 2−4/3t1/3ξ2

Here N(x = 0, t) is the integrated current of TASEP at the

origin and ξ2 obeys the GUE Tracy-Widom distribution;

F2(s) = P[ξ2 ≤ s] = det(1 − PsKAiPs)

where Ps: projection onto the interval [s,∞)

and KAi is the Airy kernel

KAi(x, y) =

∫ ∞

0
dλAi(x + λ)Ai(y + λ) -6 -4 -2 0 2
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s

Random universality in KPZ universality
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Tracy-Widom distributions

Random matrix theory, Gaussian ensembles

H: N × N matrix

P (H)dH =
1

ZNβ
e−

β
2
TrH2

GOE(real symmetric, β = 1), GUE(hermitian, β = 2).

Joint eigenvalue distribution

PNβ(x1, x2, . . . , xN) =
1

ZNβ

∏
1≤i<j≤N

(xi − xj)
β

N∏
i=1

e−
β
2
x2
i

• Average density … Wigner semi-circle
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Largest eigenvalue distribution

Largest eigenvalue distribution of Gaussian ensembles

PNβ[xmax ≤ s] =
1

ZNβ

∫
(−∞,s]N

∏
i<j

(xi−xj)
β
∏
i

e−
β
2
x2
i dx1 · · · dxN

Scaling limit (expected to be universal)

lim
N→∞

PNβ

[
(xmax −

√
2N)

√
2N1/6 < s

]
= Fβ(s)

GUE (GOE) Tracy-Widom distribution
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Tracy-Widom distributions
GUE Tracy-Widom distribution

F2(s) = det(1 − PsK2Ps)

where Ps: projection onto [s,∞) and K2 is the Airy kernel

K2(x, y) =

∫ ∞

0
dλAi(x + λ)Ai(y + λ)

Painlevé II representation

F2(s) = exp

[
−
∫ ∞

s
(x − s)u(x)2dx

]
where u(x) is the solution of the Painlevé II equation

∂2

∂x2
u = 2u3 + xu, u(x) ∼ Ai(x) x → ∞
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GOE Tracy-Widom distribution

F1(s) = exp

[
−

1

2

∫ ∞

s
u(x)dx

]
(F2(s))

1/2

GSE Tracy-Widom distribution

F4(s) = cosh

[
−

1

2

∫ ∞

s
u(x)dx

]
(F2(s))

1/2

Figures for Tracy-Widom distributions
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Step TASEP and random matrix
• Generalize to discrete TASEP with parallel update.

A waiting time is geometrically distributed.

-

6

(1, 1)

(N,N)

· · ·

...

i

j

wij on (i, j): geometrically distributed

waiting time of ith hop of jth particle

• Time at which N th particle arrives at the origin

= max
up-right paths from
(1,1)to(N,N)

 ∑
(i,j) on a path

wi,j

 (= G(N,N))

Zero temperature directed polymer
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LUE formula for TASEP
• By RSK algorithm a matrix of size N ×N with non-negative

integer entries is mapped to a pair of semi-standard Young

tableau with the same shape λ with entries from

{1, 2, . . . , N}, with G(N,N) = λ1.

• When the jth particle does ith hop with parameter
√

aibj ,

the measure on λ is given by the Schur measure

1

Z
sλ(a)sλ(b)

• Using a determinant formula of the Schur function and taking

the continuous time limit, one gets

P[N(t) ≥ N ] =
1

ZN

∫
[0,t]N

∏
i<j

(xi−xj)
2
∏
i

e−xidx1 · · · dxN
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Generalizations

Current Fluctuations of TASEP with flat initial conditions: GOE

TW distribution

More generalizations: stationary case: F0 distribution, multi-point

fluctuations: Airy process, etc

Experimental relevance?

What about the KPZ equation itself?
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Takeuchi-Sano experiments
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See Takeuchi Sano Sasamoto Spohn, Sci. Rep. 1,34(2011)
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3. Exact solution for the KPZ equation

Remember the KPZ equation

∂th(x, t) = 1
2
λ(∂xh(x, t))

2 + ν∂2
xh(x, t) +

√
Dη(x, t)

2010 Sasamoto Spohn, Amir Corwin Quastel

• Narrow wedge initial condition

• Based on (i) the fact that the weakly ASEP is KPZ equation

(1997 Bertini Giacomin) and (ii) a formula for step ASEP by

2009 Tracy Widom

• The explicit distribution function for finite t
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Narrow wedge initial condition

Scalings
x → α2x, t → 2να4t, h →

λ

2ν
h

where α = (2ν)−3/2λD1/2.

We can and will do set ν = 1
2
, λ = D = 1.

We consider the droplet growth with macroscopic shape

h(x, t) =

−x2/2t for |x| ≤ t/δ ,

(1/2δ2)t − |x|/δ for |x| > t/δ

which corresponds to taking the following narrow wedge initial

conditions:
h(x, 0) = −|x|/δ , δ ≪ 1
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2λt/δ
x

h(x,t)
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Distribution

h(x, t) = −x2/2t − 1
12

γ3
t + γtξt

where γt = (2t)1/3.

The distribution function of ξt

Ft(s) = P[ξt ≤ s] = 1 −
∫ ∞

−∞
exp

[
− eγt(s−u)

]
×
(
det(1 − Pu(Bt − PAi)Pu) − det(1 − PuBtPu)

)
du

where PAi(x, y) = Ai(x)Ai(y), Pu is the projection onto

[u,∞) and the kernel Bt is

Bt(x, y) =

∫ ∞

−∞
dλ

Ai(x + λ)Ai(y + λ)

eγtλ − 1

• In the large t limit, Ft tends to F2.
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Finite time KPZ distribution and TW
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s
: exact KPZ density F ′

t (s) at γt = 0.94

−−: Tracy-Widom density (t → ∞ limit)

•: ASEP Monte Carlo at q = 0.6, t = 1024 MC steps
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Cole-Hopf transformation

If we set
Z(x, t) = exp (h(x, t))

this quantity (formally ) satisfies

∂

∂t
Z(x, t) =

1

2

∂2Z(x, t)

∂x2
+ η(x, t)Z(x, t)

This can be interpreted as a (random) partition function for a

directed polymer in random environment η.
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Replica method

For a system with randomness, e.g. for random Ising model,

H =
∑
⟨ij⟩

Jijsisj

where i is site, si = ±1 is Ising spin, Jij is iid random

variable(e.g. Bernoulli), we are often interested in the averaged

free energy ⟨logZ⟩, Z =
∑

si=±1 e
−H .

In some cases, computing ⟨logZ⟩ seems hopeless but the

calculation of N th replica partition function ⟨ZN⟩ is easier.

In replica method, one often resorts to the following identity

⟨logZ⟩ = lim
N→0

⟨ZN⟩ − 1

N
.
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For KPZ: Feynmann-Kac and δ Bose gas

Feynmann-Kac expression for the partition function,

Z(x, t) = Ex

(
e
∫ t
0 η(b(s),t−s)dsZ(b(t), 0)

)
Because η is a Gaussian variable, one can take the average over

the noise η to see that the replica partition function can be

written as (for pt-to-pt case)

⟨ZN(x, t)⟩ = ⟨x|e−HN t|0⟩

where HN is the Hamiltonian of the δ-Bose gas,

HN = −
1

2

N∑
j=1

∂2

∂x2
j

−
1

2

N∑
j ̸=k

δ(xj − xk).
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Remark: More generally, the N point correlation function satisfies

d

dt

⟨
N∏
i=1

Z(xi, t)

⟩
= HN

⟨
N∏
i=1

Z(xi, t)

⟩

Remember h = logZ. We are interested not only in the average

⟨h⟩ but the full distribution of h. Here we compute the

generating function Gt(s) of the replica partition function,

Gt(s) =
∞∑

N=0

(
−e−γts

)N
N !

⟨
ZN(0, t)

⟩
eN

γ3
t

12

with γt = (t/2)1/3. This turns out to be written as a Fredholm

determinant. We apply the inversion formula to recover the p.d.f

for h. But for the KPZ, ⟨ZN⟩ ∼ eN
3
.
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4. Stationary case

2012-2013 Imamura S

• Narrow wedge is technically the simplest.

• Flat case is a well-studied case in surface growth

• Stationary case is important for stochastic process and

nonequilibrium statistical mechanics

– Two-point correlation function

– Experiments: Scattering, direct observation

– A lot of approximate methods (renormalization,

mode-coupling, etc.) have been applied to this case.

– Nonequilibrium steady state(NESS): No principle.

Dynamics is even harder.
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Modification of initial condition

Two sided BM

h(x, 0) =

B−(−x), x < 0,

B+(x), x > 0,

where B±(x) are two independent standard BMs

We consider a generalized initial condition

h(x, 0) =

B̃(−x) + v−x, x < 0,

B(x) − v+x, x > 0,

where B(x), B̃(x) are independent standard BMs and v± are

the strength of the drifts.
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Result

For the generalized initial condition with v±

Fv±,t(s) := Prob
[
h(x, t) + γ3

t /12 ≤ γts
]

=
Γ(v+ + v−)

Γ(v+ + v− + γ−1
t d/ds)

[
1 −

∫ ∞

−∞
due−eγt(s−u)

νv±,t(u)

]
Here νv±,t(u) is expressed as a difference of two Fredholm

determinants,

νv±,t(u) = det
(
1 − Pu(B

Γ
t − PΓ

Ai)Pu

)
− det

(
1 − PuB

Γ
t Pu

)
,

where Ps represents the projection onto (s,∞),

PΓ
Ai(ξ1, ξ2) = AiΓΓ

(
ξ1,

1

γt
, v−, v+

)
AiΓΓ

(
ξ2,

1

γt
, v+, v−

)

29



BΓ
t (ξ1, ξ2) =

∫ ∞

−∞
dy

1

1 − e−γty
AiΓΓ

(
ξ1 + y,

1

γt
, v−, v+

)
× AiΓΓ

(
ξ2 + y,

1

γt
, v+, v−

)
,

and

AiΓΓ(a, b, c, d) =
1

2π

∫
Γ
i d
b

dzeiza+iz
3

3
Γ (ibz + d)

Γ (−ibz + c)
,

where Γzp represents the contour from −∞ to ∞ and, along the

way, passing below the pole at z = id/b.
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Height distribution for the stationary KPZ equation

F0,t(s) =
1

Γ(1 + γ−1
t d/ds)

∫ ∞

−∞
duγte

γt(s−u)+e−γt(s−u)
ν0,t(u)

where ν0,t(u) is obtained from νv±,t(u) by taking v± → 0 limit.

4 2 0 2 4
0.0

0.1

0.2

0.3

0.4

γt=1

γt=∞

s

Figure 1: Stationary height distributions for the KPZ equation for

γt = 1 case. The solid curve is F0.
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Stationary 2pt correlation function

C(x, t) = ⟨(h(x, t) − ⟨h(x, t)⟩)2⟩

gt(y) = (2t)−2/3C
(
(2t)2/3y, t

)

0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

y

γt=1

γt=∞

Figure 2: Stationary 2pt correlation function g′′
t (y) for γt = 1.

The solid curve is the corresponding quantity in the scaling limit

g′′(y).
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5. Further developments

O’Connell

Semi-discrete finite temperature directed polymer · · · quantum

Toda lattice

Partition function

ZN
t (β) =

∫
0<t1<...<tN−1<t

expβ

(
N∑
i=1

(Bi(ti) − Bi(ti−1)

)

Bi(t): independent Brownian motions
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Macdonald process

2011 Borodin, Corwin

• Measure written as

1

Z
Pλ(a)Qλ(b)

where P,Q are Macdonald polynomials.

• A generalization of Schur measure

• Includes Toda, Schur and KPZ as special and limiting cases

• Non-determinantal but expectation value of certain

”observables” can be written as Fredholm determinants.
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q-TASAEP · · · Rigorous replica

Borodin-Corwin-S

q-TASEP particle i hops with rate 1 − qxi−1−xi−1.

x1x2x3x4x5x6
y0y1y2y3y4y5y6

The dynamics of the gaps yi = xi−1 − xi − 1 is a version of the

zero range process in which a particle hops to the right site with

rate 1 − qyi . The generator of the process can be written in

terms of ”q-deformed boson”. (1998 Sasamoto, Wadati)
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Defining KPZ equation without Cole-Hopf

2011 Hairer

• Universality in the KPZ problems. The Cole-Hopf does not

work for most models which are expected to be in the KPZ

universality class.

• Rough path and renormalization.

• Coincide with the Cole-Hopf solution.

• Various generalizations to other non-linear SPDE.

• Proving the convergence to the KPZ equation becomes easy.
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Systems with many conserved quantities

Conjecture 2011- Beijeren, Spohn, etc

For rather generic 1D systems with more than one conserved

quantities, the correlation functions for ”normal modes” are

described by the single component KPZ correlation functions.

• FPU chain, hard-point particles with alternating mass,

quantum systems, etc.

• There are three conserved quantities.
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KPZ scaling function in MC simulation of multi-species

ASEP
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2013 Ferrari S Spohn
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Simulations in 2D

In higher dimensions, there had been several conjectures for

exponents.

There are almost no rigorous results.

2012 Halpin-Healy

New extensive Monte-Carlo simulations on the distributions.
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New universal distributions?
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6. Summary

• The KPZ equation is a well-known equation for describing

surface growth.

• The KPZ universality may be applicable to wider class of

systems than previously thought. Systems with more than one

conserved quantities, quantum systems, etc...

• The understanding of the convergence to the KPZ equation is

getting better.

• The KPZ universality and the universality of the KPZ

equation are different.

• 基研研究会”界面ゆらぎと KPZ普遍クラスに関する数学・理
論・実験的アプローチの融合”8/20-23
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