2017.3.6-7 第5回統計物理学懇談会 慶應大学

雑音のある量子ダイナミクス における量子・古典境界

KF, arXiv:1610.03632 (QIP2017) (KF-Tamate, Sci. Rep. 6 25598 (2016) Morimae-KF-Fitzsimons, PRL 112, 130502 (2014)

藤井 啓祐

東京大学 大学院 工学系研究科付属 光量子科学研究センター JST さきがけ

目次

・まとめ

はじめに

量子系の自由度は指数的に増える. →古典計算機では難しい.

"Nature isn't classical, dammit, and if you want to make a simulation of Nature, you'd better make it quantum mechanical, and by golly it's a wonderful problem, because it doesn't look so easy."

R. Feynman, Simulating Physics with Computers, Int. J. Theor. Phys. 21, 467 (1982).

→量子コンピュータ・量子シミュレータ

W. S. Bakr et al., Nature 462, 74 (2009)

はじめに

量子系の自由度は指数的に増える. →古典計算機では難しい.

"Nature isn't classical, dammit, and if you want to make a simulation of Nature, you'd better make it quantum mechanical, and by golly it's a wonderful problem, because it doesn't look so easy."

R. Feynman, Simulating Physics with Computers, Int. J. Theor. Phys. 21, 467 (1982).

→量子コンピュータ・量子シミュレータ

物理をシミュレートできる万 能な計算機は存在するのか?

古典計算機ではシミュレーショ ンが難しい領域は?

任意の量子系(離散)を 万能にシミュレート することができる計 算機は構成できるか?

N量子ビット

万能性に必要な要素

万能性に必要な要素

万能性に必要な要素

R. Feynman, Quantum mechanical computers, Opt. News, vol. 11, pp. 11-46, 1985

R. Feynman, Quantum mechanical computers, Opt. News, vol. 11, pp. 11-46, 1985

初期状態 $|\psi_{
m in}
angle|0
angle$

working space clock

R. Feynman, Quantum mechanical computers, Opt. News, vol. 11, pp. 11-46, 1985

working spaceの状態が量子計算の出力

R. Feynman, Quantum mechanical computers, Opt. News, vol. 11, pp. 11-46, 1985

working spaceの状態が量子計算の出力

KitaevによるQMA問題(NP問題の量子版)の基礎となり、 ハミルトニアン複雑性の研究へと発展・より簡単なモデルへ

様々な万能量子計算モデル

万能計算を埋め込むために利用する自由度

量子回路型	時間・空間的にハミルトニアンを変動
Feynman型	定常ハミルトニアン [4-local: Feynman'85, 2-local: Nagaj '10&12]
量子ウォーク型	定常ハミルトニアン [adjacency matrix: Childs'09,bosons&fermions: Childs-Gosset- Webb'13, and many more]
断熱型 Aharonov et al, '04 (QMA-hardness経由)	定常ハミルトニアン+断熱操作(横磁場イジングはダメ Bravyi <i>et al</i> '06) [5-local: Kitaev '02, 3-local: Kempe-Kitaev-Regev'06; 2D 2-local Oliveira-Terhal '08; 2D fermions: Schuch-Verstraete '09, 1D 2-local: Aharonov et al '09; 2D XY: Cubitt-Montanaro '13, and many more]
オートマトン型	定常並進対称ハミルトニアン+初期状態[2D local: Janzig-Wocjan '04] 定常並進対称ハミルトニアン+時間的に変動 [1D local: Raussendorf '05]

[**難しさ**] 万能量子計算モデル(量子回路モデル) へと帰着させる←すでに述べた

[**難しさ**] 万能量子計算モデル(量子回路モデ ル)へと帰着させる←すでに述べた

[**簡単さ**] 古典計算機で効率よくシミュレーション できることを示す←これから少し紹介する

[**難しさ**] 万能量子計算モデル(量子回路モデ ル)へと帰着させる←すでに述べた

[**簡単さ**] 古典計算機で効率よくシミュレーション できることを示す←これから少し紹介する

[やや難しさ] 非万能計算モデルの古典計算機によるシミュレーションが困難性を示す ←ちょっと難しい(けど量子と古典の境界に位置)

古典模倣可能なモデル

classically simulatable

(1) Clifford量子回路(Gottesman-Knill定理)

(2)離散ウィグナー関数の正値性

[Mari-Eisert '12, Vetch et al '12, Deflesse et al '15, Raussendorf et al '15]

(3)量子ディスコードのないダイナミクス

[Eastin '10, Cable-Browne '12, (Datta-Shaji-Caves '08)]

(4) Matchgate量子回路(free-fermion) [Valiant '02; Terhal-DiVincenzo '02;Knill '01; Jozsa-Miyake '08, Jozsa-Kraus-Miyake '10, and many more]

古典模倣可能なモデル

classically simulatable

(1)Clifford量子回路(Gottesman-Knill定理)

(2)離散ウィグナー関数の正値性

[Mari-Eisert '12, Vetch et al '12, Deflesse et al '15, Raussendorf et al '15]

(3)量子ディスコードのないダイナミクス

[Eastin '10, Cable-Browne '12, (Datta-Shaji-Caves '08)]

(4) Matchgate量子回路(free-fermion) [Valiant '02; Terhal-DiVincenzo '02;Knill '01; Jozsa-Miyake '08, Jozsa-Kraus-Miyake '10, and many more]

量子計算のハイゼンベルク描像

Stabilizer formalism: D. Gottesman, PhD Thesis Caltech '97

シュレーディンガー描像

量子計算のハイゼンベルク描像

Stabilizer formalism: D. Gottesman, PhD Thesis Caltech '97

量子計算のハイゼンベルク描像

Stabilizer formalism: D. Gottesman, PhD Thesis Caltech '97

{S_i}を簡単に計算できるユニタリ演算子 =Clifford演算子(パウリ群を不変にする=正規部分群にもつ) →**効率良く古典シミュレーションができる(Gottesman-Knill定理)**

(非)Clifford演算

CNOT(制御NOT) $U_{\text{CNOT}} = |0\rangle\langle 0| \otimes I + |1\rangle\langle 1| \otimes X$ $= \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$

 $U_{\rm CNOT}(X\otimes I)U_{\rm CNOT}=X\otimes X$ and so on....

(非)Clifford演算

Clifford演算

CNOT(制御NOT)

 $U_{\text{CNOT}} = |0\rangle \langle 0| \otimes I + |1\rangle \langle 1| \otimes X$ $= \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$

 $U_{\rm CNOT}(X\otimes I)U_{\rm CNOT}=X\otimes X$ and so on....

π/8演算

$$e^{-i(\pi/8)Z} = \begin{pmatrix} e^{-i\pi/8} & 0\\ 0 & e^{i\pi/8} \end{pmatrix}$$

$$e^{-i(\pi/8)Z} X e^{i(\pi/8)Z} = \frac{X+Y}{\sqrt{2}}$$

非Clifford演算

もはやパウリ演算子ではない

π/8演算

量子と古典の境界

量子と古典の境界

 $(\operatorname{Tr}[X\rho], \operatorname{Tr}[Y\rho], \operatorname{Tr}[Z\rho])$
量子と古典の境界

量子と古典の境界

古典模倣可能なモデル

(1) Clifford量子回路(Gottesman-Knill定理)

(2)離散ウィグナー関数の正値性

[Mari-Eisert '12, Vetch et al '12, Deflesse et al '15, Raussendorf et al '15]

(3)量子ディスコードのないダイナミクス

[Eastin '10, Cable-Browne '12, (Datta-Shaji-Caves '08)]

(4) Matchgate量子回路(free-fermion) [Valiant '02; Terhal-DiVincenzo '02;Knill '01; Jozsa-Miyake '08, Jozsa-Kraus-Miyake '10, and many more]

古典で効率良く模倣 できる量子系

easy

Clifford circuit [Gottesman-Knill] positive-d-Wigner function [Mari-Eisert, Vetch et al, Deflesse et al, Raussendorf et al] Matchgate (free fermion) [Valiant;Terhal-DiVincenzo;Knill; Jozsa-Miyake] Discord free dynamics 万能量子計算 =計算の自然限界 回路モデル 断熱モデル 量子ウォーク Hamiltonian Complexity QMA QSZK

(black hole firewall)

hara

Jones · Tutte polynomial [Aharonov et al]

BQP

complex-valued Ising partition functions [Cuevas et al; Iblisdir et al; Matsuo-KF-Imoto]

> scalar field theory [Jordan-Lee-Preskill, Jordan et al]

BQP-completeness of Scattering in Scalar Quantum Field Theory

Stephen P. Jordan^{1,2}, Hari Krovi³, Keith S. M. Lee⁴, and John Preskill⁵

¹National Institute of Standards and Technology, Gaithersburg, MD, USA ²Joint Center for Quantum Information and Computer Science, University of Maryland, College Park, MD, USA

³Quantum Information Processing Group, Raytheon BBN Technologies, Cambridge, MA, USA ⁴Centre for Quantum Information & Quantum Control and Department of Physics, University of Toronto, Toronto, ON, Canada

⁵Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA, USA

Abstract

Recent work has shown that quantum computers can compute scattering probabilities in massive quantum field theories, with a run time that is polynomial in the number of particles, their energy, and the desired precision. Here we study a closely related quantum field-theoretical problem: estimating the vacuum-to-vacuum transition amplitude, in the presence of spacetime-dependent classical sources, for a massive scalar field theory in (1+1) dimensions. We show that this problem is BQP-hard; in other words, its solution enables one to solve any problem that is solvable in polynomial time by a quantum computer. Hence, the vacuum-to-vacuum amplitude cannot be accurately estimated by any efficient classical algorithm, even if the field theory is very weakly coupled, unless BQP=BPP. Furthermore, the corresponding decision problem can be solved by a quantum computer in a time scaling polynomially with the number of bits needed to specify the classical source fields, and this problem is therefore BQP-complete. Our construction can be regarded as an idealized architecture for a universal quantum computer in a laboratory system described by massive ϕ^4 theory coupled to classical spacetime-dependent sources.

1 Introduction

arXiv:1703.00454v1 [quant-ph] 1 Mar 2017

古典で効率良く

できる量子系

Clifford circuit

[Gottesman-Knill]

positive-d-Wig

[Mari-Eisert, Vetch

al, Raussendorf e

Matchgate (fre

[Valiant;Terhal-Di)

Discord free d

Jozsa-Miyake]

[Eastin]

eas

QMA QSZK (black hole firewall) olynomial lued Ising ctions blisdir et al;

amiltonian

mplexity

hara

field theory Lee-Preskill, et al]

古典で効率良く模倣 できる量子系

easy

Clifford circuit [Gottesman-Knill] positive-d-Wigner function [Mari-Eisert, Vetch et al, Deflesse et al, Raussendorf et al] Matchgate (free fermion) [Valiant;Terhal-DiVincenzo;Knill; Jozsa-Miyake] Discord free dynamics 万能量子計算 =計算の自然限界 回路モデル 断熱モデル 量子ウォーク Hamiltonian Complexity QMA QSZK

(black hole firewall)

hara

Jones · Tutte polynomial [Aharonov et al]

BQP

complex-valued Ising partition functions [Cuevas et al; Iblisdir et al; Matsuo-KF-Imoto]

> scalar field theory [Jordan-Lee-Preskill, Jordan et al]

量子と古典の境界

古典で効率良く模倣 できる量子系

Clifford circuit [Gottesman-Knill] positive-d-Wigner function [Mari-Eisert, Vetch et al, Deflesse et al, Raussendorf et al] Matchgate (free fermion) [Valiant;Terhal-DiVincenzo;Knill; Jozsa-Miyake] Discord free dynamics

easy

5能量子計算 計算の自然限界	Hamiltonian complexity	hard
回路モデル	QMA	
断쬤セテル 量子ウォーク	QSZ	< .
	BQP (black	(hole all)

Jones · Tutte polynomial [Aharonov et al]

> complex-valued Ising partition functions [Cuevas et al; Iblisdir et al; Matsuo-KF-Imoto]

> > scalar field theory [Jordan-Lee-Preskill, Jordan et al]

2017.3.6-7 第5回統計物理学懇談会 慶應大学

雑音のある量子ダイナミクス における量子・古典境界

KF, arXiv:1610.03632 (QIP2017) (KF-Tamate, Sci. Rep. 6 25598 (2016) Morimae-KF-Fitzsimons, PRL 112, 130502 (2014)

藤井 啓祐

東京大学 大学院 工学系研究科付属 光量子科学研究センター JST さきがけ

目次

- ・はじめに:複雑な量子ダイナミクスを求めて
- ・どのようにして複雑さを定量化するか
- ・非万能量子計算モデルの特徴づけと問題点
- ・雑音のある量子サンプリング
- ・まとめ

非万能量子計算モデル

Boson Sampling

Aaronson-Arkhipov '13

Linear optical quantum computation

Experimental demonstrations

J. B. Spring *et al.* Science 339, 798 (2013)
M. A. Broome, Science 339, 794 (2013)
M. Tillmann *et al.*, Nature Photo. 7, 540 (2013)
A. Crespi *et al.*, Nature Photo. 7, 545 (2013)
N. Spagnolo *et al.*, Nature Photo. 8, 615 (2014)
J. Carolan *et al.*, Science 349, 711 (2015)

IQP

(commuting circuits) Bremner-Jozsa-Shepherd '11

Ising type interaction

KF-Morimae '13 Bremner-Montanaro-Shepherd '15 Gao-Wang-Duan '15 Farhi-Harrow '16

量子イジング模型

DQC1

(one-clean qubit model) Knill-Laflamme '98 Morimae-KF-Fitzsimons '14 KF et al, '16

NMR spin ensemble

非万能量子計算モデル

Boson Sampling

Aaronson-Arkhipov '13

Linear optical quantum computation

Experimental demonstrations

J. B. Spring *et al.* Science 339, 798 (2013)
M. A. Broome, Science 339, 794 (2013)
M. Tillmann *et al.*, Nature Photo. 7, 540 (2013)
A. Crespi *et al.*, Nature Photo. 7, 545 (2013)
N. Spagnolo *et al.*, Nature Photo. 8, 615 (2014)
J. Carolan *et al.*, Science 349, 711 (2015)

相互作用なしボソン

IQP

(commuting circuits) Bremner-Jozsa-Shepherd '11

Ising type interaction

KF-Morimae '13 Bremner-Montanaro-Shepherd '15 Gao-Wang-Duan '15 Farhi-Harrow '16

DQC1

(one-clean qubit model) Knill-Laflamme '98 Morimae-KF-Fitzsimons '14 KF et al, '16

NMR spin ensemble

→万能量子計算に帰着できない

事後選択を用いた計算

postselection (注:もちろん、現実世界では実行できない)

事後選択を用いた計算

postselection (注:もちろん、現実世界では実行できない)

postBQP = PPによる 古典模倣困難性の証明

事後選択という仮想の能力を仮定することによって, 古典と量子の複雑性の違いが明らかになる!!

postBQP = PPによる 古典模倣困難性の証明

事後選択という仮想の能力を仮定することによって, 古典と量子の複雑性の違いが明らかになる!!

postBQP = PPによる 古典模倣困難性の証明

事後選択という仮想の能力を仮定することによって, 古典と量子の複雑性の違いが明らかになる!!

Aaronson, Proc. of the Royal Society A: Math., Phys. and Eng. Sci. 461, 3473 (2005).

非万能量子計算モデル

Boson Sampling

Aaronson-Arkhipov '13

Linear optical quantum computation

Experimental demonstrations

J. B. Spring *et al.* Science 339, 798 (2013)
M. A. Broome, Science 339, 794 (2013)
M. Tillmann *et al.*, Nature Photo. 7, 540 (2013)
A. Crespi *et al.*, Nature Photo. 7, 545 (2013)
N. Spagnolo *et al.*, Nature Photo. 8, 615 (2014)
J. Carolan *et al.*, Science 349, 711 (2015)

IQP

(commuting circuits) Bremner-Jozsa-Shepherd '11

Ising type interaction

KF-Morimae '13 Bremner-Montanaro-Shepherd '15 Gao-Wang-Duan '15 Farhi-Harrow '16

DQC1

(one-clean qubit model)

Knill-Laflamme '98 Morimae-KF-Fitzsimons '14 KF et al, '16

NMR spin ensemble

→万能量子計算に帰着できない

DQC1

one-clean qubit model (DQC1) Knill-Laflamme, PRL **81**, 5672 (1998)

ほとんどエンタングルメントがない

(one clean qubit with three-qubit measurement)

(one clean qubit with three-qubit measurement)

Morimae-KF-Fitzsimons, PRL **112**, 130502 (2014)

KF-Kobayashi-Morimae-Nishimura-Tamate-Tani, ICALP2016 (arXiv:1509.07276)

非万能量子計算モデル

Boson Sampling

Aaronson-Arkhipov '13

Linear optical quantum computation

Experimental demonstrations

J. B. Spring *et al.* Science 339, 798 (2013)
M. A. Broome, Science 339, 794 (2013)
M. Tillmann *et al.*, Nature Photo. 7, 540 (2013)
A. Crespi *et al.*, Nature Photo. 7, 545 (2013)
N. Spagnolo *et al.*, Nature Photo. 8, 615 (2014)
J. Carolan *et al.*, Science 349, 711 (2015)

IQP

(commuting circuits) Bremner-Jozsa-Shepherd '11

Ising type interaction

KF-Morimae '13 Bremner-Montanaro-Shepherd '15 Gao-Wang-Duan '15 Farhi-Harrow '16

量子イジング模型

DQC1

(one-clean qubit model) Knill-Laflamme '98 Morimae-KF-Fitzsimons '14 KF et al, '16

NMR spin ensemble

非万能量子計算モデル

Boson Sampling

Aaronson-Arkhipov '13

Linear optical quantum computation

Experimental demonstrations

J. B. Spring *et al.* Science 339, 798 (2013)
M. A. Broome, Science 339, 794 (2013)
M. Tillmann *et al.*, Nature Photo. 7, 540 (2013)
A. Crespi *et al.*, Nature Photo. 7, 545 (2013)
N. Spagnolo *et al.*, Nature Photo. 8, 615 (2014)
J. Carolan *et al.*, Science 349, 711 (2015)

相互作用なしボソン

IQP

(commuting circuits) Bremner-Jozsa-Shepherd '11

Ising type interaction

KF-Morimae '13 Bremner-Montanaro-Shepherd '15 Gao-Wang-Duan '15 Farhi-Harrow '16

量子イジング模型

DQC1

(one-clean qubit model) Knill-Laflamme '98 Morimae-KF-Fitzsimons '14 KF et al, '16

NMR spin ensemble

→事後選択の議論で古典シミュレーションの困難性を示せる

事後選別を用いた議論の問題点

要求されるサンプリングの意味

・乗法的誤差 (or 指数的に小さい加法的誤差) $\frac{1}{c}p^{\text{ideal}}(x) < p^{\text{samp}}(x) < cp^{\text{ideal}}(x) \qquad (c > 1)$

[Bremner-Jozsa-Shepherd, '14]

事後選別を用いた議論の問題点

要求されるサンプリングの意味

- ・乗法的誤差 (or 指数的に小さい加法的誤差) $rac{1}{c}p^{ ext{ideal}}(x) < p^{ ext{samp}}(x) < cp^{ ext{ideal}}(x)$ (c > 1)[Bremner-Jozsa-Shepherd, '14]
- ・I₁-normの意味で定数加法的誤差

$$||p^{\mathrm{samp}}(x) - p^{\mathrm{ideal}}(x)||_1 = \sum_{x} |p^{\mathrm{samp}}(x) - p^{\mathrm{ideal}}(x)| < c$$

[Aaronson-Arkhipov, '11, Bremner-Montanaro-Shepherd '16]

事後選別を用いた議論の問題点

要求されるサンプリングの意味

- ・乗法的誤差 (or 指数的に小さい加法的誤差) $rac{1}{c}p^{ ext{ideal}}(x) < p^{ ext{samp}}(x) < cp^{ ext{ideal}}(x)$ (c > 1)[Bremner-Jozsa-Shepherd, '14]
- ・I₁-normの意味で定数加法的誤差

$$||p^{samp}(x) - p^{ideal}(x)||_1 = \sum |p^{samp}(x) - p^{ideal}(x)| < c$$

[Aaronson-Arkhipov, '11, Bremner-Montanaro-Shepherd '16]

各演算に無限小でも雑音のある計算モデルではこれらの 条件は決して満たされない!

目次

- ・はじめに:複雑な量子ダイナミクスを求めて
- ・どのようにして複雑さを定量化するか
- ・非万能量子計算モデルの特徴づけと問題点
- ・ 雑音のある量子サンプリング(残りのスライドは2枚)
- ・まとめ
雑音のある量子回路と事後選択によってpostBQPをシミュレートする.

雑音のある量子回路と事後選択によってpostBQPをシミュレートする.

雑音のある量子回路と事後選択によってpostBQPをシミュレートする.

雑音のある量子回路と事後選択によってpostBQPをシミュレートする.

雑音のある量子回路と事後選択によってpostBQPをシミュレートする.

clean: 万能量子計算

Topological fault-tolerance in cluster state

quantum computation

R Raussendorf¹, J Harrington² and K Goyal³

New Journal of Physics **9** (2007) 199 *Ann. Phys.* **321** 2242 (2006)

Topological fault-tolerance in cluster state

quantum computation

R Raussendorf¹, J Harrington² and K Goyal³

New Journal of Physics 9 (2007) 199 Ann. Phys. 321 2242 (2006)

clean: 万能量子計算 誤り確率のしきい値(位相緩和): 2.9-3.3% トポロジカル量子誤り訂正から決まる Wang-Harrington-Preskill,Ann. Phys. '03; Ohno *et al.*, Nuc. Phys. B '04

Topological fault-tolerance in cluster state

quantum computation

R Raussendorf¹, J Harrington² and K Goyal³

New Journal of Physics **9** (2007) 199 *Ann. Phys.* **321** *2242* (2006) clean: 万能量子計算 誤り確率のしきい値(位相緩和): 2.9-3.3%

/トポロジカル量子誤り訂正から決まる Wang-Harrington-Preskill,Ann. Phys. '03; Ohno *et al.*, Nuc. Phys. B '04

Topological fault-tolerance in cluster state

マジック

Χ

状態

quantum computation

R Raussendorf¹, J Harrington² and K Goyal³

New Journal of Physics **9** (2007) 199 *Ann. Phys.* **321** *2242* (2006)

Y

Pauli 基底の

状態の凸結合

 $\frac{1-1/\sqrt{2}}{\sqrt{2}}$

clean: 万能量子計算 誤り確率のしきい値(位相緩和): 2.9-3.3% トポロジカル量子誤り訂正から決まる Wang-Harrington-Preskill, Ann. Phys. '03; Ohno et al., Nuc. Phys. B '04 ??? $\frac{1-1/\sqrt{2}}{2}$ =14.6% マジック状態蒸留のしきい値 (スタビライザー状態の凸結合)

noisy: 古典シミュレーション可能

clean: 万能量子計算

2.9-3.3%

Topological fault-tolerance in cluster state

quantum computation

R Raussendorf¹, J Harrington² and K Goyal³

New Journal of Physics 9 (2007) 199 Ann. Phys. 321 2242 (2006)

Wang-Harrington-Preskill, Ann. Phys. '03; Ohno et al., Nuc. Phys. B '04

誤り確率のしきい値(位相緩和):

事後選択による議論から、 古典シミュレーションは困難

まとめ

・量子系のダイナミクスの複雑性に対する量子計算のアプ ローチを紹介した。

- ・量子系のダイナミクスが関係する物理現象(局在化・孤立量子 系の緩和・スクランブリング)にこのようなアプローチが使えれ ば面白いと思う。
- ・非万能量子計算モデルの特徴づけについて紹介した.
- 事後選択による古典模倣困難性の証明には堅牢性がある
 ことを示した。
- ・ 雑音のある量子回路における量子・古典の境界を鮮明に
 引くことができた。

one clean qubit

$$\rightarrow p_1 = \frac{4}{2^n} q_1 (1 - q_1)$$

→ $p_1 = \frac{4}{2^n}q_1(1 - q_1)$ (An efficient classical simulation implies PH=AM, collapse of PH to 2nd level)

arXiv:1610.03632

error syndrome

$$p(x, y, |z=0)$$

postselect the events where no error syndrome is activated

Detect any erroneous event and postselect more reliable quantum computation!

$$p(x, y, |z=0)$$

postselect the events where no error syndrome is activated

Threshold theorem for quantum supremacy

Part1: An exponentially small additive error is enough.

$$|\bar{p}(x,y) - p(x,y|z=0)| < e^{-\kappa}$$

where $\kappa = poly(n)$ the overhead is polynomial in *n*. Then, classical simulation of p(x, y, z) with a multiplicative error $1 < c < \sqrt{2}$ is hard.

Part2: The exponentially small additive error

$$|\bar{p}(x,y) - p(x,y|z=0)| < e^{-\kappa}$$

is achievable by quantum error correction under postselection.

Threshold theorem for quantum supremacy

$$|\bar{p}(x,y) - p(x,y|z=0)| < e^{-\kappa}$$

where $\kappa = poly(n)$ the overhead is polynomial in *n*. Then, classical simulation of p(x, y, z) with a multiplicative error $1 < c < \sqrt{2}$ is hard.

Part2: The exponentially small additive error

$$|\bar{p}(x,y) - p(x,y|z=0)| < e^{-\kappa}$$

is achievable by quantum error correction under postselection.

Part1: an exponential small additive error is enough

Solve a PP-complete problem (**MAJSAT**) using $\bar{p}(x|y)$ as in [Aaronson05]

 \rightarrow probability for postselection: $\bar{p}(y=0)>2^{-6n-4}$

Part1: an exponential small additive error is enough

Solve a PP-complete problem (**MAJSAT**) using $\bar{p}(x|y)$ as in [Aaronson05] \rightarrow probability for postselection: $\bar{p}(y=0) > 2^{-6n-4}$

Therefore, if $|\bar{p}(x,y) - p(x,y|z=0)| < e^{-\kappa}$ with $\kappa = \mathrm{poly}(n)$ then we have

$$|\bar{p}(x|y=0) - p(x|y=0, z=0)| < 1/2$$

arXiv:1610.03632

→ p(x, y, z) can solve the PP-complete problem under postselection.

Threshold theorem for quantum supremacy

Part1: An exponentially small additive error is enough.

$$|\bar{p}(x,y) - p(x,y|z=0)| < e^{-\kappa}$$

where $\kappa = poly(n)$ the overhead is polynomial in *n*. Then, classical simulation of p(x, y, z) with a multiplicative error $1 < c < \sqrt{2}$ is hard.

Part2: The exponentially small additive error

$$|\bar{p}(x,y) - p(x,y|z=0)| < e^{-\kappa}$$

is achievable by quantum error correction under postselection.

Using $\mathcal{N}_k = (1 - \epsilon_k)\mathcal{I} + \mathcal{E}_k$, we decompose $\mathcal{U}^{\text{noisy}}$ into $\mathcal{U}^{\text{noisy}}(\rho_{\text{ini}}) = \rho_{\text{sparse}} + \rho_{\text{faulty}}$ such that $\bar{p}(x, y) \propto \text{Tr}[P_{x,y}Q_{z=0}\rho_{\text{sparse}}]$.

Using $\mathcal{N}_k = (1 - \epsilon_k)\mathcal{I} + \mathcal{E}_k$, we decompose $\mathcal{U}^{\text{noisy}}$ into $\mathcal{U}^{\text{noisy}}(\rho_{\text{ini}}) = \rho_{\text{sparse}} + \rho_{\text{faulty}}$ such that $\bar{p}(x, y) \propto \text{Tr}[P_{x,y}Q_{z=0}\rho_{\text{sparse}}]$.

Then we can show that

arXiv:1610.03632

$$\|\bar{p}(x,y) - p(x,y|z=0)\|_1 < 2\|\rho_{\text{faulty}}\|_1/q_{z=0}$$

where $q_{z=0} \equiv \text{Tr}[Q_{z=0}\mathcal{U}^{\text{noisy}}(\rho_{\text{ini}})]$. (prob. of null syndrome measurement)

$$< 2\sum_{r\geq d} C(r) \left(\frac{\epsilon}{1-\epsilon}\right)^r \quad (\epsilon \equiv \max_k \epsilon_k)$$

Using $\mathcal{N}_k = (1-\epsilon_k)\mathcal{I} + \mathcal{E}_k$, we decompose $\mathcal{U}^{ ext{noisy}}$ into

There is a constant threshold ε_{th} below which the output $p(x, y, z) = \text{Tr}[P_{x,y}Q_z\mathcal{U}^{\text{noisy}}(\rho_{\text{ini}})]$ from the noisy quantum circuits cannot be simulated efficiently on a classical computer unless the PH collapses to the 3rd level.

 $\|\bar{p}(x,y) - p(x,y|z=0)\|_1 < 2\|\rho_{\text{faulty}}\|_1/q_{z=0}$

arXiv:1610.03632

where $q_{z=0} \equiv \text{Tr}[Q_{z=0}\mathcal{U}^{\text{noisy}}(\rho_{\text{ini}})]$. (prob. of null syndrome measurement)

$$(\epsilon \equiv \max_k \epsilon_k)$$

Outline

- Motivations
- Hardness proof by postselection
- Threshold theorem for quantum supremacy
- Applications: 3D topological cluster computation & 2D surface code
- Summary

 MBQC on a graph state of degree log(n) (corresponds to commuting circuits of depth log(n))

see also KF-Tamate '16

- MBQC on a graph state of degree log(n) (corresponds to commuting circuits of depth log(n))
- Noise: independent single-qubit dephasing w prob. ϵ (phenomenological noise model)

- MBQC on a graph state of degree log(n) (corresponds to commuting circuits of depth log(n))
- Noise: independent single-qubit dephasing w prob. ϵ (phenomenological noise model)
- Faulty part comes from either clifford operations or magic state distillation $ho_{
 m faulty} =
 ho_{
 m cl} +
 ho_{
 m magic}$

- MBQC on a graph state of degree log(n) (corresponds to commuting circuits of depth log(n))
- Noise: independent single-qubit dephasing w prob. ϵ (phenomenological noise model)
- Faulty part comes from either clifford operations or magic state distillation $\rho_{faulty} = \rho_{cl} + \rho_{magic}$

Clifford operations (counting # of self-avoiding walks: Dennis et al '02)

$$\frac{12}{5} \operatorname{poly}(n) \left(\frac{5\epsilon}{1-\epsilon}\right)^d \longrightarrow \epsilon_{\rm cl} = 0.167$$

- MBQC on a graph state of degree log(n) (corresponds to commuting circuits of depth log(n))
- Noise: independent single-qubit dephasing w prob. ϵ (phenomenological noise model)
- Faulty part comes from either clifford operations or magic state distillation $ho_{
 m faulty} =
 ho_{
 m cl} +
 ho_{
 m magic}$

Clifford operations (counting # of self-avoiding walks: Dennis et al '02)

$$\frac{12}{5} \operatorname{poly}(n) \left(\frac{5\epsilon}{1-\epsilon}\right)^d \longrightarrow \epsilon_{cl} = 0.167$$

magic state distillation $\longrightarrow \epsilon_{magic} = 0.146$ (Bravyi-Kitaev '05; Reichardt '06)

Noisy quantum circuits above standard noise threshold

Threshold theorem: if the noise strength is smaller than a certain constant threshold value, quantum computation can be done with an arbitrary accuracy poly(logarithmic) overhead.

- 2D nearest-neighbor gates on a square grid
- circuit-based depolarizing noise model: prep., meas., 1- and 2-qubit gates with probability *p*.

- 2D nearest-neighbor gates on a square grid
- circuit-based depolarizing noise model: prep., meas., 1- and 2-qubit gates with probability p.

$$\epsilon(\nu,\mu) \equiv \left(\frac{\nu}{1-\nu}\right)^{1/2} \left[\left(\frac{\nu}{1-\nu}\right) + \left(\frac{2\mu}{1-\mu}\right) \right]^{1/2}$$

v: independent error rate μ : correlated error rate $\nu = 54p/15, \mu = 6p/5$

- 2D nearest-neighbor gates on a square grid
- circuit-based depolarizing noise model: prep., meas., 1- and 2-qubit gates with probability *p*.

$$\epsilon(\nu,\mu) \equiv \left(\frac{\nu}{1-\nu}\right)^{1/2} \left[\left(\frac{\nu}{1-\nu}\right) + \left(\frac{2\mu}{1-\mu}\right) \right]^{1/2}$$

v: independent error rate μ : correlated error rate $\nu = 54p/15, \mu = 6p/5$

threshold value: p=2.84% (distillability of magic state)

- 2D nearest-neighbor gates on a square grid
- circuit-based depolarizing noise model: prep., meas., 1- and 2-qubit gates with probability p.

$$\epsilon(\nu,\mu) \equiv \left(\frac{\nu}{1-\nu}\right)^{1/2} \left[\left(\frac{\nu}{1-\nu}\right) + \left(\frac{2\mu}{1-\mu}\right) \right]^{1/2}$$

v: independent error rate μ : correlated error rate $\nu = 54p/15, \mu = 6p/5$

- threshold value: p=2.84% (distillability of magic state)
- higher than the standard threshold 0.75%