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Thermo Majorization

The	transition
𝜌, 𝜌# → 𝜎, 𝜌#

is	possible	

𝜌#:	(Gibbs)	state
𝜌, 𝜌# = 0, 𝜎, 𝜌# = 0

tr	 𝜌 − 𝑡𝜌# - ≥ tr	 𝜎 − 𝑡𝜌# -, ∀𝑡 ≥ 0

(𝜌11/𝜌#,11)1 majorizes (𝜎11/𝜌#,11)1

4(𝜌11/𝜌#,11
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) ≥4(𝜎11/𝜌#,11), ∀𝑗
5

167

𝐴 -:	positive	part	of	the	matrix	A



Thermo-Majorization :	History

The	term	first	appears	in	Horodecki,	M	+	Oppenheim,	J		(2014)

But	had	been	known	since	decades	ago:

Mathematical	Physics	:		mapping	btw.	state	families
Uhlmann,	Alberiti,	Ruch,	Schramer,	etc …

Mathematical	Statistics	:	comparison	of	“statistical	experments”	
Blackwell,	Le	Cam,	Hajek,	Torgersen,	etc …

Why	statisticians	are	bothered	with	
conversion	btw	state	families	?



Information	Spectrum	

Classical	version	:	invented	by	Te-Sun	Han	(韓太舜),	
with	Shannon	Award

A	framework	of	information	theory	free	of	stochastic	
assumptions	such	as	IID,	Markov,	etc

(version	by	Bowen-Datta)

Quantum	version	:	Hiroshi	Nagaoka	(UEC)

𝐷	({𝜌<}| 𝜎< = sup{𝑐;	 lim
<→G

tr 𝜌< − 𝑒<I𝜎< - = 1}	

𝐷K({𝜌<}| 𝜎< = inf{𝑐; 	 lim
<→G

tr 𝜌< − 𝑒<I𝜎< - = 0}	

c.f.	Renner,	Datta,	Bowen	give	alternative	representation	of	these		
by	Smooth	Renyi entropy	
Computer	science,	randomness	extraction,	privacy	amplification



tr	 𝜌 − 𝑡𝜌# - ≥ tr	 𝜎 − 𝑡𝜌# -, ∀𝑡 ≥ 0

𝐷	({𝜌<}| 𝜎< = sup{𝑏;	 lim
<→G

tr 𝜌< − 𝑒<O𝜎< - = 1}	

𝐷K({𝜌<}| 𝜎< = inf{𝑏;	 lim
<→G

tr 𝜌< − 𝑒<O𝜎< - = 0}	

Thermo-Majorization

Information	Spectrum

If	you	are	not	xxxxxx,	
Should	notice	some	relations	btw	these….	



Plan	of	the	talk:	
Comparison	of	statistical	experiments
- general	theory,	historical	contexts
- 2-states	case	
- relation	to	information	measures	
- quantum	states

Information	spectrum	(mainly	hypothesis	test)
- upper	&	lower	divergence	rate		(classical,	quantum)
- hypothesis	test		
(- resolvability)
-relation	to	smooth	Renyi entropies	

Asymptotic	2-states	conversions	
- sufficient	condition	by	information	spectrum
- characterization	of	quantum	relative	entropy	(KL-divergence)			



Comparison	of	
statistical	experiments
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Statistical	decision	problems	

Optimize	𝑑 to	maximize	the	expectation

𝐺R(𝑑,E): = 𝐸R	𝑔R 𝑑(𝑋) = ∑ 𝑔R 𝑑 𝑥 𝑝R 𝑥�
[∈X

under	various	setting	min-max/average	about	θ/constrained	

𝑥 ∈ X :		(array	of)	data	 𝑑(𝑥) ∈ D :	decision

𝑥	 obeys	probability	distribution	𝑝R 𝑥 	,		𝜃 ∈ Θ	unknown

X等は各⾃分かりやすいので考えて
（理論は極限まで⼀般化されてるが気にしないで）

𝑔R 𝑑 ∈ 𝑹:	the	gain	of	the	decision	𝑑 when	the	data	source	is		𝑝R

E = {	𝑝R; 𝜃 ∈ Θ} is	called	an		experiment	or		a	statistical		model



Some	notes	

X :	measurable	space		D	:	topological	space,	with	Bair	σ-filed,	
d:	measureable		
𝑃R:	prob measure,	may	not	be	majorized by	a	common	measure		
Θ: a	set	

Settings	are	fairly	general	

Usually,
“loss	“	is	minimized,	rather	than	“gain”	is	maximized

g is	usually	subject	to	some	reasonable	conditions		
𝑔R:	upper-semi	continuous/continuous		

+	bounded	from	above/bouded

In	general,	randomized	decision	is	also	allowed	
ここでは記述が⾯倒だから避けるが、どっか破たんしてたらごめんなさい

⼤⼈の事情があるので、ここではゲイン。



Example	of		Statistical	Decisions
𝑥 :	past/present	data	about	economics
𝜃	:		parameters	determining	the	market	price	
𝑑 :	your	strategy	of	selling/buying
𝑔R(𝑑) :	how	much	you	earn	

Ex	1

Ex	2 𝜃 ∈ 𝑹a
𝑑 :	your	estimate		of	θ
𝑔R 𝑑 = −||𝑑 − 𝜃||b :		how	close	was	your	guess

𝜃 ∈ {0,1}
𝑑 :	your	guess	about	𝜃 ∈ 0,1
𝑔R 𝑑 = 1 if	you	are	right,		otherwise	=0

Ex	3



On	arbitrariness	of		g

No	overwhelming	reason	to	prefer	square-error	to	
other	error	measures

Ex	2 𝜃 ∈ 𝑹a
𝑑 :	your	estimate	about	the	true	value	of	parameter
𝑔R 𝑑 = −||𝑑 − 𝜃||b :		how	close	was	your	guess



Statistical	Decision	Problems	:	Optimization	?
Life	is	so	hard	that	no	decision	is	uniformly	optimal	usually	:	
if		𝐺R 𝑑,E : = ∑ 𝑔R(𝑥)𝑝R 𝑥�

[ very	good,	𝐺Rc(𝑑,E) is	poor
𝜃 ∈ 0,1 					𝑑 :	your	guess	about	𝜃 ∈ 0,1
𝑔R 𝑑 = 1 if	you	are	right,		otherwise	=0

Ex	3

If	𝑑 𝑥 = 0 irrespective	of	x,		𝐺d(𝑑,E) = 1 but		𝐺7 𝑑,E = 0
1 Maximize		the	average	about	𝜃 (Bayesian	gain):

𝐺e 𝑑,	E ≔4𝜋R𝐺R(𝑑,E)
�

R

2 Maximize		the	worst	case	about	𝜃 (min-max):
𝐺(𝑑,E) = inf

R∈h
𝐺R(𝑑,E)

3 Maximize	e.g.	𝐺Ri(𝑑,E),	subject	to	the	constrain,	e.g.		
𝐺R(𝑑,E) ≥ 𝑐, ∀𝜃 ≠ 𝜃7	 And	so	on	…



“optimal	decision”	?
• depends	on	G
• depends	on	min-max	or	Bayesian	gain,	or	others

Life	is	so	hard.	
You	have	to	solve	them	one	by	one.	

But,		there	is	a	hope	….

- asymptotic	theory
LAN,		bounds	on	cloning		etc

- experimental	design	

“Comparison	of		statistical	experiments”
存在感こっちのほうが圧倒的で

でも説明しやすいのはこっちなので・・・



Experimental	design
Ek = {𝐹(𝑓R); 𝜃 ∈ Θ}

Nice	if	one	can	say		{𝐹(𝑓R); 𝜃 ∈ Θ} is	more	informative	than	
the	other

Ex

𝑓R:	l-dim	vector,							𝑥:	k-dim	vector,	k≦l,					𝐹:	k×l real	matrix		

Optimize	F	obtain	most	“informative”		𝑝R 𝑥 = 𝑁(𝐹𝑓R, 𝜎𝐼a)	

If	𝑁(𝐹𝑓R, 𝜎𝐼a)	 is	better	than	𝑁(𝐹p𝑓R, 𝜎𝐼a), use	F	rather	than	F’

Given	{𝑓R; 𝜃 ∈ Θ} ,	can	move	𝐹 (experimental	design)

𝑥 = 𝐹𝑓R + 𝜉, 𝜉 ∼ 𝑁(0, 𝜎𝐼a)



Comparison	of	statistical	experiments

E is	𝑒- defficinet relative	to		E′,	

𝑒 = 𝑒R R∈h

E ≥u Ep &			E ≤u Ep

∀𝑑p∃𝑑		∀𝜃 ∈ Θ		𝐺R 𝑑,E ≥ 𝐺R	 𝑑p,E′ −
1
2 𝑒R⇔

holds	for	any	𝑔 with		0 ≤ 𝑔R ≤ 1, on	any		D
どんなE’上のdecision	d’に対しても、それを上回るE上のdecision	dがある（e程度のマー
ジンで）。しかも、それが任意の決定空間と利得で。

（普通はεを使うが、 εほかのところでも使うので）

E ∼u E′ ⇔ E’で最適化考えても
Eと⼤体同じ

Δ E,Ep ≔ min	{𝜖	;E ∼u Ep, 𝑒R = 𝜖}

DEF

If 𝑒R = 0, ∀𝜃 ∈ Θ,	

E ≥u E′

E ≥ E′ E ∼ E′

“∼”	is	an	equivalence	relation	

“≧”	is	partial	order	

Distance	measure



Randomization	criteria	 (Blackwell,	Le	Cam)

E ≥u E′Thm

⇔

Λ 𝑝R − 𝑝Rp 7 ≤ 𝑒R∀𝜃 ∈ Θ,	
∃Λ :	transition	probability

This	is	the	reason	why	statisticians	are	interested
in	thermo-majorization-type	conditions	

⇔

sup
}
∑ 𝜋R�
R∈h 𝐺R 𝑑,E ≥ sup

}
∑ (𝜋R�
R∈h 𝐺R 𝑑,E′ −

7
b
𝑒R)

holds				for	any		𝜋R (non-zero	at	most	finitely	many	points)
for	any	𝑔 with		0 ≤ 𝑔R ≤ 1, on	any		D



Ex.	Comparison	of	linear	normal	experiments

Ex
𝑓R:	l-dim	vector,							𝑥:	k-dim	vector,	k≦l,					𝐹:	k×l real	matrix		

𝑥 = 𝐹𝑓R + 𝜉, 𝜉 ∼ 𝑁(0, 𝜎𝐼a)

Hansen,	O.		and	Torgersen,	E.	:	The	Annals	of	Statistics	1974,	Vol.	2,	No.	2,	367-373	

𝑁 𝐹𝑓R, 𝜎𝐼a ; 𝜃 ∈ Θ ≥ 𝑁 𝐹′𝑓R, 𝜎𝐼a ; 𝜃 ∈ Θ

⇔ 𝐹𝐹~ − 𝐹p𝐹p~ ≥ 0
(	if	𝜎 is	unknown,			𝑘 − 𝑘p − rank 𝐹𝐹~ − 𝐹p𝐹p~ ≥ 0,	in	addition)

many	extensions,e.g.,	about	covariance	matrix,	also	computation	of	Δ

Quantum 𝜌R: Gaussian	state	

𝜌R; 𝜃 ∈ Θ ≥� 𝜌R′; 𝜃 ∈ Θ

⇔

𝐸R tr𝜌R𝑋7, tr	𝜌R𝑃7,⋯ ) = 𝐹𝑓R,
covariance	=Σ 𝐽:matrix	defining	CCR	

∃𝐶, 𝑆, Σ� Σ� + i𝐽 ≥ 0𝐶~𝐽𝐹 = 𝐽𝐹′, 	Σp = 𝑆~Σ�𝑆 + 𝐶~Σ𝐶,

[M	2010]



[Fujiwara02]	[Fujiwara03][Sacchi05-1][Sacchi05-2][Sacchi05-3]		etc

Ex Statistical	Inference	on	Unital qubit	channels	

ΛR:	a	unital channel	with	the	unknown	parameter	θ
𝐹:	input	state	+	measurement	

Many	papers,		each	dealing	with	each	own	setting

But	all	of	them	say	maximally	entangled	state	is	optimal	

ΛR 𝐼 = 𝐼

ΛR

{ΛR⊗ 𝐼 Φ }R∈h ≥I {ΛR⊗ 𝐼 𝜌 }R∈h

Φ:	max-ent state

∀𝜌

𝜌R R∈h ≥I 𝜌′R R∈h

⇔ ∀𝑀p∃𝑀	{𝑃��
�}R∈h ≥ 	 {𝑃��p

� }R∈h

Fact

Def

[M2013]



Local	asymptotic	normality	(LAN)		𝜽 ∈ 𝑹
- Once	upon	a	time,	A.	Fisher	insisted	that	maximally	likelihood	
estimate	（MLE,最尤推定量) should	be	the	best	estimate,	and	
gave	a	proof,	using	“≒”,	“〜”	,	which	would	satisfy	most	of	us,	but	
not	mathematicians	

- Counter	example	found	out,	even	for	Gaussian	distributions	
(Hodge	estimator	etc)

- Introduction	of	regularity	conditions,	on	models	and	estimators	
- To	simplify	the	argument,	invented	was	LAN …	

log	𝑝
R- �

<�
< 𝑥< − log	𝑝R< 𝑥< ∼ 	(𝐽R)�7 ℓR<̇ 𝑥< 	ℎ + ℎb𝐽R

�7

If	𝜃 → 𝑝R(⋅)
� has	the	first derivative	(	as	a	function	onto	L^2)



Local	asymptotic	normality	(LAN)			𝜽 ∈ 𝑹

If		𝜃 → 𝑝R	(⋅)
� has	the	first derivative	(as	a	function	on	𝐿b)

Ibragimov.	Khasminskii,	Statistical	Estimation:	Asymptotic	Theory,	Springer,1981

Shiryaev,	Spokoiny,	Statistical	Experiments	and	Decisions:	Asymptotic	Theory,	World	Scientific	
2000	

ER
<: = 𝑝

R- �
<�

< 𝑥< ; ℎ ∈ 𝑹 ER: = 𝑁 ℎ, 𝐽R�7 �∈𝑹

Δ ER<,ER → 0,		uniformly		∀𝜃 in	arbitray compact	subset	of	Θ

Thm

And	some	mild	conditions	on	𝑝R

Estimation	of	𝜃 on	{𝑝R<} reduces	to	the	one	on	 𝑁 ℎ, 𝐽R�7 �∈𝑹

If	you	believe	𝑥 (∼ 𝑁 ℎ, 𝐽R�7 )	is	the	best	estimate	of	the	mean	ℎ ,		should	also	
believe	that		MLE	is	the	best	

反例は全てガウスでもなので、ガウスに落としてから排除するよう条件つける

𝜽 ∈ 𝑹



LANの面白いところ
• First	reduce	to	the	problem	to	the	estimation	of	
the	mean	of	Gaussian	random	variable,	which	is	
easy
• Gaussian	shift	model 𝑁 ℎ, 𝐽R�7 �∈𝑹𝒌 functions	as	a	
“standard	form”	of	parameter	family	

- when	not	iid,	other	“standard	forms		,	such	as	LAMN	etc
- non-parametric

こういった、「問題の帰着」は情報科学だといろんなところに現れる
計算量理論 (comparison	of	hardness	by	reduction)
量⼦情報のエンタングルメントの理論 (resource	theory)



𝚯 = 𝟐, 	E = {𝑝d, 𝑝7}

Thm
To	check	E	 ≥u E’	,	only	have	to	check	
Binary	decision	problem,	𝑑 ∈ D = {0,1}

[Torgersen70]

⇔
w.l.g.,		𝜋d = 1, 𝜋7 = 𝑡,	

holds				for	any		𝜋R
for	any	𝑔 with		0 ≤ 𝑔R ≤ 1, on	D = {0,1}

sup
}
∑ 𝜋R�
R∈h 𝐺R 𝑑,E ≥ sup

}c
∑ (𝜋R�
R∈h 𝐺R 𝑑′,E′ −

7
b
𝜋R	𝑒R)

𝑔7 𝑑 = 1 − 𝑔d 𝑑 ,



𝚯 = 𝟐, 	E = {𝑝d, 𝑝7}

Thm
To	check	E	 ≥u E’	,	one	only	have	to	check	
Binary	decision	problem,	𝑑 ∈ D = {0,1}

[Torgersen70]

⇔

holds			𝜋d = 1, 𝜋7 = 𝑡,	
for	any	𝑔 with		0 ≤ 𝑔R ≤ 1,

sup
}
∑ 𝜋R�
R∈h 𝐺R 𝑑,E ≥ sup

}c
∑ (𝜋R�
R∈h 𝐺R 𝑑′,E′ −

7
b
𝜋R	𝑒R)

sup
}
4 𝜋R

�

R∈h

𝐺R 𝑑,E

𝑔7 𝑑 = 1 − 𝑔d 𝑑 ,

≤4 𝑝d 𝑥 − 𝑡	𝑝7 𝑥 -	
�

[

+ 𝑡

= sup
}
4𝑔d 𝑑 𝑥 [𝑝d 𝑥 − 𝑡	𝑝7(𝑥)]	
�

[

+ 𝑡

“=“	if		𝑔d 0 = 𝑔7 1 = 1	



𝚯 = 𝟐, 	E = {𝑝d, 𝑝7}

Thm
To	check	E	 ≥u E’	,	one	only	have	to	check	
Binary	decision	problem,	𝑑 ∈ D = {0,1}

[Torgersen70]

E	 ≥u E’			

⇔
∀𝑡 ≥ 0		4 𝑝d 𝑥 − 𝑡	𝑝7 𝑥 -	

�

[

≥ 4 𝑝d′ 𝑥 − 𝑡	𝑝7′ 𝑥 -	
�

[

+ 𝑒d − 𝑡𝑒7

Thermo-majorization with	error	term
When	𝑒R = 0,	thermo-majorization

…	had	been	known	since	almost	half-a-century	ago	



Relation	to	f-divergence	

sup
}(⋅)

4 𝜋R

�

R6d,7

𝐺R 𝑑,E = sup
}(⋅)

4 𝜋R4𝑔R 𝑑 𝑥 𝑝R(𝑥)
�

[

�

R6d,7

= sup
}(⋅)

4 4 𝜋R𝑔R 𝑑 𝑥
�

R6d,7

�

[

𝑝R(𝑥) =4sup
}

4 𝜋R𝑔R 𝑑 𝑝R(𝑥)
�

R6d,7

�

[

𝑓(𝑧) ≔ sup
}

𝜋d𝑔d 𝑑 𝑧 + 𝜋7𝑔7(𝑑)

=4𝑝7 𝑥 𝑓
𝑝d 𝑥
𝑝7 𝑥

	
�

[

=: 𝐷� (𝑝d| 𝑝7

f	is	convex	and	lower	semi-continuous	
Any	such	f	can	be	written	in	above	form	(use	Legendre	transform)	

𝑓(𝑧) = 𝑧logz	 :			KL-divergence	(or	relative	entropy)
𝑧¡	 :	Tsalis-Renyi-like	quantity

|1 − 𝑧| :	L1-norm

1 − 𝑡𝑧 - :		Thermo-Majorization



Relation	to	f-divergence	

sup
}(⋅)

4 𝜋R

�

R6d,7

𝐺R 𝑑,E = 𝐷�(𝑝d| 𝑝7 : =4𝑝7 𝑥 𝑓(𝑝d 𝑥 /𝑝7 𝑥 )	
�

[

Any	lower-semicontinuous convex	f		can	be	:
𝑓 𝑧 = 𝑎 + 𝑏𝑧 + ∫ 𝑧 − 𝑡 -𝑑𝜇(𝑡)

Lem

Thm For	any	g	and	π,	there	is	f	s.t.

And	vice	versa	!	
Any	f-divergence	is	optimized	Bayes	gain

E	 ≥u E’			

⇔

𝐷�(𝑝d| 𝑝7 ≥ 𝐷�(𝑝d′| 𝑝7′

holds	for	any	lower	semicont.	convex	function	f

Combination	of	above	facts	leads	to	another	proof	of	Thermo-Majorization

[CohenKempermanZbaganu98]

Λ
(i)	𝐷�(𝑡𝑝d| 𝑡𝑝7 = 𝑡𝐷�(𝑝d| 𝑝7fact
(ii)	 𝑝d, 𝑝7 → 𝐷�(𝑝d| 𝑝7 is	convex

(iii)	𝐷�(𝑝d| 𝑝7 ≥ 𝐷�(Λ(𝑝d)| Λ(𝑝7) Λ:	transition	probability



Quantum	version	I
E = 𝜌R R∈h 𝐺R Λ,E ≔ tr𝑔RΓ(𝜌R)

𝑔R:	bounded	self-adjoint,	on	𝐻§
Γ:	Completely	positive	trace	preserving	map

E is	𝑒- defficinet relative	to		E′,	

∀Γp∃Γ		∀𝜃 ∈ Θ		𝐺R Γ,E ≥ 𝐺R	 Γp,E′ −
1
2 𝑒R⇔

holds	for	any	𝑔 with		0 ≤ 𝑔R ≤ 𝐼, on	any	𝐻§

DEF E ≥u
� E′

E ≥u E′Thm

⇔

Λ 𝑝R − 𝑝Rp 7 ≤ 𝑒R∀𝜃 ∈ Θ,	

∃Λ :	CPTP	map

⇔sup
¨
∑ 𝜋R�
R∈h 𝐺R Γ,E ≥ sup

¨
∑ (𝜋R�
R∈h 𝐺R Γ,E′ −

7
b
𝑒R)

holds				for	any		𝜋R (non-zero	at	most	finitely	many	points)
for	any	𝑔 with		0 ≤ 𝑔R ≤ 𝐼, on	any	𝐻§

[M10]



Quantum	version	II

⇔ ∀𝑀p∃𝑀	{𝑃��
�}R∈h ≥u 	 {𝑃��p

� }R∈h

Def

Fact

E ≥uI E′

E ≥uI E′ ⇐
Λ 𝑝R − 𝑝Rp 7 ≤ 𝑒R∀𝜃 ∈ Θ,	

∃Λ :	positive	(may	not	be	CP)	trace	preserving	map

⇒ is	not	true.	Counter	example	by			[M13]

E ≥uI E′ ⇐ E ≥u
� E′

∀Ed		E⊗ Ed ≥I E′ ⊗ Ed ⇔ E ≥� E′

No	good	necessary	and	sufficient	condition	for	≥uI

The	opposite	not	true.	But	if	e=0,	some	good	relation.

[Buscemi 12]Thm



Quantum	local	asymptotic	normality	(LAN)

It	had	been	noted	that	𝜌R
⊗< and	its	tangent	space	can	be	approximated	by

Gaussian	states,	showing	the	achievable	lower	bound	to	asymptotic	error	
bound	of	asymptotically	unbiased	estimators
[M	98]	[HayashiM 2002]	[Hayashi	2002]

ER
<: = 𝜌

R- �
<�

⊗< ; ℎ ∈ 𝑹a ER: Gaussian	shift	(multi-mode)

Δ ER<,ER → 0,		uniformly		∀𝜃

Thm

ℎ ∈ 𝑹a

[Kahn	Guta 2005]	 dim	𝐻 < ∞



𝚯 = 𝟐, 	E = {𝜌d, 𝜌7}

Thm [AlbertiUhlmann85]

E	 ≥� E’			 ⇔

∀𝑡 ≥ 0,			tr 𝜌d − 𝑡	𝜌7 -≥			tr 𝜌d′ − 𝑡	𝜌7′ -

Suppose	dim𝐻 = 2

E	 ≥I E’			

⇔

E	 ≥uI E’			
[M10]	[Jencova10] Suppose	 𝜌d, 𝜌7 = 0⇔

∀𝑡 ≥ 0,			tr 𝜌d − 𝑡	𝜌7 -≥ 			tr 𝜌d′ − 𝑡	𝜌7′ -−
1
2 (𝑒d − 𝑡𝑒7)



Relation	to	quantum	divergence	

𝐷­ 𝜌d||𝜌7 ≔ sup
¨
∑ 𝜋Rtr𝑔RΓ(𝜌R)�
R6d,7 satisfies

(i)	𝐷­(𝑡𝜌d| 𝑡𝜌7 = 𝐷­(𝑡𝜌d| 𝑡𝜌7

(ii)	 𝜌d, 𝜌7 → 𝐷­(𝜌d| 𝜌7 is	convex

(iii)	𝐷­(𝜌d| 𝜌7 ≥ 𝐷­(Λ(𝜌d)| Λ(𝜌7) , 		Λ:	CPTP

If		restricted	to	commutative	ops,	𝐷­ 𝑝d||𝑝7 = 𝐷�(𝑝d||𝑝7),	for	some	f

Also,	any	function	satisfying	above	three	is	written	in	the	RHS	form	

𝐷�®¯° 𝜌d||𝜌7 ≥ 𝐷­ 𝜌d||𝜌7 ≥ 𝐷�®±²(𝜌d||𝜌7),	

Fact E	 ≥� E’			

⇔

𝐷­(𝜌d| 𝜌7 ≥ 𝐷­(𝜌d′| 𝜌7′ holds	for	all	 𝐷­ with	above	conditions

𝐷­: quantum	version	of	f-divergence



Classical	and	Quantum Information	Spectrum,

Especially	on	divergence	rate



Classical		Information	Spectrum	

As	such,	if	you	want	to	appreciate	its	full	value,	have	
to	learn	various	aspects	of	information	theory.

Founded	by	Te-Sun	Han	(韓太舜）
Novel	frame	work	of	information	theory	:

no	need	to	assume	iid,	memoryless,	Markov,	Ergodic	etc.	

What	is	done:	
Rewrite	the	solutions	of	information	theoretic	problems	into	“spectrum	formulas”,	
which	is	still	abstract.
Thus,		if	more	concrete	form	is	necessary,	have	to	evaluate	them	further.
Yet,		information	theoretic	part	finishes	at	this	stage:	the	rest	of	the	job	is	mathematical.

Also,		abstract	“spectrum	formulas”			help	understanding	relations	btw	various	
information	theoretic	problems.

Here		treat	only	hypothesis	test	



Hypothesis	test	and	divergence	rate

E< = {𝑝d,<𝑝7<} :		Guess	which	from	the	data	𝑥< ∼ 𝑝R<

𝑃< 1	 0}:	Prob	of	choosing	1 while	0	is	true
𝑃<{0|1}:		Prob of	choosing	0	while	1	is	true

Make	𝑃<{0|1}	 small,	while	keeping	𝑃<{1|0} reasonably	small

𝑒�<O ∼ 𝑃< 0	 1} , 𝑏 = limsup	
<→G

1
𝑛 log	𝑃

<{0,1}

2.	sup	{𝑏	; limsup	𝑃< 1 0 < 1}	

1.	sup	{𝑏	; 𝑃< 1 0 → 0}	



Divergence	rate	and	hypothesis	test

𝑒�<O ∼ 𝑃< 0	 1} , 𝑏 = limsup	
<→G

1
𝑛 log	𝑃

<{0,1}

sup	 𝑏	; limsup	𝑃< 1 0 < 1 = 𝐷( 𝑝d< ||{𝑝7<})

sup	 𝑏	; 𝑃< 1 0 → 0 = 𝐷( 𝑝d< ||{𝑝7<})

1
𝑛 	log

𝑝7< 𝑥<

𝑝d< 𝑥<

Prob	
(𝑥<	obeys	𝑝d<)

𝐷( 𝑝d< ||{𝑝7<}) 𝐷( 𝑝d< ||{𝑝7<})

When	iid 1
𝑛4log

𝑝7 𝑋1
𝑝d 𝑋1

�

�

→ 4𝑝d(𝑥)
�

[

log
𝑝d 𝑥
𝑝7 𝑥

= 𝐷(𝑝d||𝑝7)



Quantum	version
By	Hirohoshi Nagaoka（⻑岡浩司）in	about	1998

普通、log	p/q	のオペレーター版を考えたくなるが、そこにハマらなかった

𝐷	({𝜌d<}| 𝜌7< = sup{𝑏;	 lim
<→G

tr 𝜌d< − 𝑒<O𝜌7< - = 1}	

𝐷K({𝜌d<}| 𝜌7< = inf{𝑏;	 lim
<→G

tr 𝜌d< − 𝑒<O𝜌7< - = 0}	

仮説検定の最適化の途中経過で何がポイントかを考えた。「⽐の⾮可換版」

1.	When	commutative,	coincide	with	classical	version

2.		equals	error	exponent,	just	as	its	classical	version	

3.	If		𝜌R< = 𝜌R
⊗< both	𝐷K and	𝐷 coincide	with	𝐷(𝜌d| 𝜌7 ≔ tr𝜌d	 log𝜌d − log𝜌7

sup	 𝑏	; limsup	𝑃< 1 0 < 1 = 𝐷( 𝜌d< ||{𝜌7<})
sup	 𝑏	; 𝑃< 1 0 → 0 = 𝐷( 𝜌d< ||{𝜌7<})

𝐷(𝜌d| 𝜌7 = sup	 𝑏	; 𝑃< 1 0 → 0 = sup 𝑏; limsup	𝑃< 1 0 < 1

Had	been	known	[⽇合Petz 80] was	not	known	[OgawaNagaoka 00]	



Another	representation	of	𝑫:	smooth	Renyi

In	fact,	spectrum-like	quantity	have	been	also	used	in	computer	science,	for	
analysis	of	random	number	generation,	security	of	cryptography	
(randomness	extractor)

Its	quantum	version	by	R.	Renner

𝐷®¯°	(𝜌d| 𝜌7 = min{𝑏; 𝜌d ≤ 𝑒O𝜌7}

𝐷®¯°¸ 	(𝜌d| 𝜌7 = min{𝐷®¯°	(𝜌d′| 𝜌7 ; 𝜌dp − 𝜌7 ≤ 𝜖}

lim
¸↓d
	limsup
<→G

7
<
	𝐷®¯°¸ 	(𝜌d<| 𝜌7< = 𝐷( 𝜌d< ||{𝜌7<})

[RennarDatta 05]		



Yet	some	more	representations	…

lim
¸↓d
	limsup
<→G

7
<
	𝐷®¯°¸ 	(𝜌d<| 𝜌7< = 𝐷( 𝜌d< ||{𝜌7<})

[RennarDatta 05]		

lim
¸↓d
	limsup
<→G

7
<
	𝐷º¸	(𝜌d<| 𝜌7< = 𝐷( 𝜌d< ||{𝜌7<})

𝐷®¯°¸ 	(𝜌d| 𝜌7 = min{𝐷®¯°	(𝜌d′| 𝜌7 ; 𝜌dp − 𝜌7 ≤ 𝜖}

𝐷º¸	(𝜌d| 𝜌7 = min{𝐷º	(𝜌d′| 𝜌7 ; 𝜌dp − 𝜌7 ≤ 𝜖}

𝐷º	(𝜌d| 𝜌7 = any	CPTP-monotone	quantum	version	of	α-Renyi relative	entropy					
(α>1)

e.g.	 7
7�º

log	tr𝜌d7�º𝜌7º



on		“n”	

“n”	is	merely	an	index.	Can	be	any	number	
may	not	be	system	size….

It	could	be	size	of	reservoir,		for	example



When		𝐷K and	𝐷º	(𝜌d′| 𝜌7 coincide	with	D?

• Obviously,	if	iid.
• In	classical	case,	when	n	is	the	system	size,	and	the	
system	is	Markovian	etc,	
(Maybe,	when	the	systems	are	not	globally	
correlated)	

1
𝑛 	log

𝑝7< 𝑥<

𝑝d< 𝑥<

Probability

𝐷( 𝑝d< ||{𝑝7<}) 𝐷( 𝑝d< ||{𝑝7<})



An	application	:	resolvability	[Ogawa	M]

7
»¼
∑ 𝜌[½¼

<»¼
167 will	be	very	close	to		𝐸<𝜌[i¼

< if	𝐿< is	large	enough.	

𝑥7², 𝑥b² ⋯𝑥»¼
< ∼ 𝑝<

How	large	is	enough	large	?

𝐸²
1
𝐿<
4𝜌[½¼

<
»¼

167

− 𝐸<𝜌[i¼
<

7

→ 0

holds	if		limsup
²→G

7
<
log	𝐿< ≥ sup

[¼
	𝐷K({𝜌[¼

< }||{𝐸<𝜌[i¼
< })



Putting	altogether	:	

Divergence	rate	and	Thermo-Majorization



Classical	case:	 𝚯 = 𝟐, 	 E< = {𝑝d<, 𝑝7<}

E< ≥u¼ E
p<

⇔

∀𝑏		4 𝑝d< 𝑥 − eO<	𝑝7< 𝑥
-
	

�

[

≥ 4 𝑞d< 𝑥 − eO<	𝑞7< 𝑥
-
	

�

[

+ 𝑒<,d

lim	𝑒<,d = 0, 𝑒<,7 = 0

By	Thermo-Majorization with	error	

もしも寝ていなければ以下が⾒える筈

𝐷	({𝜌d<}| 𝜌7< = sup{𝑏;	 lim
<→G

tr 𝜌d< − e<O𝜌7< - = 1}	

𝐷	({𝑝d<}| 𝑝7< ≥ 𝐷K({𝑞d<}| 𝑞7<⇐

𝐷K({𝜌d<}| 𝜌7< = inf{𝑏;	 lim
<→G

tr 𝜌d< − e<O𝜌7< - = 0}	

(Λ 𝑝d< ≈ 𝑞d<,			Λ 𝑝7< = 𝑞7<)

⇒ 𝐷K({𝑝d<}| 𝑝7< ≥ 𝐷K({𝑞d<}| 𝑞7<

𝐷({𝑝d<}| 𝑝7< ≥ 𝐷({𝑞d<}| 𝑞7<

Thm

E< = {𝑝d<, 𝑝7<} ≥u¼ E
p< = {𝑞d<, 𝑞7<}



Classical	case:	 𝚯 = 𝟐, 	 E< = {𝑝d<, 𝑝7<}

⇔

liminf	𝑒<,d < 2, 𝑒<,7 = 0

𝐷	({𝜌d<}| 𝜌7< = sup{𝑏;	 lim
<→G

tr 𝜌d< − e<O𝜌7< - = 1}	

𝐷K({𝑝d<}| 𝑝7< ≥ 𝐷({𝑞d<}| 𝑞7<

𝐷K({𝜌d<}| 𝜌7< = inf{𝑏;	 lim
<→G

tr 𝜌d< − e<O𝜌7< - = 0}	

Fact
E< = {𝑝d<, 𝑝7<} ≥u¼ E

p< = {𝑞d<, 𝑞7<}

Λ 𝑝d< − 𝑞d< 7 < 2,			

Λ 𝑝7< = 𝑞7<

完全に区別できるほどには悪くない



Standard	form:	 𝚯 = 𝟐, 	 E< = {𝜌d<,	𝜌7< }
古典のときみたいに安直じゃないので頭捻る

Standard	form	of	binary	experiments	(dichotomies)	

{𝑟d<, 𝑟7<} :	probability	distributions	over	{0,1}	

lim	𝑟d< 0 = 1

lim	𝑟7< 0 = 0,	and	exponentially
0 1

hypothesis	test	=	conversion	from	E< = {𝜌d<,	𝜌7< } to	{𝑟d<, 𝑟7<}

𝑟7< 0 ∼ e�<O

Among	various	conversions,	
Choose	the	one	maximizing	b

max 𝑏 =𝐷( 𝜌d< | 𝜌7<



Standard	form:	 𝚯 = 𝟐, 	 E< = {𝜌d<,	𝜌7< }

It	is	natural	to	consider	conversion	from {𝑟d<, 𝑟7<} to	E< = {𝜌d<,	𝜌7< }

There	is	a	CPTP	map	Λ< with	

𝜏d − 𝜌d< 7 ≤ 𝜖 𝑐𝜏d + (1 − 𝑐)𝜏7 = 𝜌7<⇔

If	𝑐 = exp(−𝐷®¯°¸ 	(𝜌d<||𝜌7<) , There	is	a	states	𝜏d, 𝜏7 withLem

By	mixing	𝜏d, 𝜏7 with	probability	𝑟R<(0) ,	𝑟R<(1),	 obtain	𝜌d<,	𝜌7<strategy

Proof	:	obvious	from	the	def. 𝐷®¯°	(𝜌d| 𝜌7 = min{𝑏; 𝜌d ≤ 𝑒O𝜌7}

𝐷®¯°¸ 	(𝜌d| 𝜌7 = min{𝐷®¯°	(𝜌d′| 𝜌7 ; 𝜌dp − 𝜌7 ≤ 𝜖}

	 Λ< 𝑟d< − 𝜌d< 7→ 0,	Λ< 𝑟7< = 𝜌7<

If		𝑟d< 0 → 0,			𝑟7< 0 = 𝑒�<O,

Thm

	𝑏 > lim
¸↓d
	limsup
<→G

1
𝑛𝐷®¯°

¸ 	(𝜌d<| 𝜌7< = 𝐷K({𝜌d<}| 𝜌7<



𝚯 = 𝟐, 	 E< = {𝜌d<,	𝜌7< }

{𝑟d<, 𝑟7<}E< = {𝜌d<,	𝜌7< } E′< = {𝜎d<,	𝜎7< }→ →

lim	𝑒<,d = 0, 𝑒<,7 = 0
(Λ 𝜌d< ≈ 𝜎d<,			Λ 𝜌7< = 𝜌7<)

E< ≥u¼ E
p<

E< ≥u¼ E
p<

𝐷	({𝜌d<}| 𝜌7< ≥ 𝐷K({𝜎d<}| 𝜎7<⇐

⇒ 𝐷K({𝜌d<}| 𝜌7< ≥ 𝐷K({𝜎d<}| 𝜎7<

𝐷({𝜌d<}| 𝜌7< ≥ 𝐷({𝜎d<}| 𝜎7<

Thm

If	𝐷 = 𝐷K = 𝐷,			only	have	to	compare	D

Can	prove	uniqueness	of	quantum	extension	of	
relative	entropy,	which	is	“smooth”	and	CPTP	monotone



Stability	

おしまい

𝐷(𝜌||𝜎) = 𝑐lim
¸↓d
	 lim
<→G

1
𝑛 	inf	{	𝐷

­ 𝜌′ ∥ 𝜎⊗< ;	 𝜌p − 𝜌⊗<
7 ≤ 𝜖	}

Thm If		𝐷­(Λ(𝜌)| Λ 𝜎 ≤ 	𝐷­ (𝜌| 𝜎


