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Thermo Majorization

pc: (Gibbs) state
[p'pG] = 0, [O-HDG] =0

The transition

{p’ pG} - {O', pG}
is possible

)  (pii/pg,i)i majorizes (0yi/pg,ii)i
j j
Z(pii/pG,ii) = Z(Uii/pG,ii)» Vj
i=1 =1
@) tr(p—tpg)s = tr (6 — tpg)s, Yt = 0

(A),: positive part of the matrix A



Thermo-Majorization : History

The term first appears in Horodecki, M + Oppenheim, J (2014)

But had been known since decades ago:

Mathematical Physics : mapping btw. state families
Uhlmann, Alberiti, Ruch, Schramer, etc ...

) Mathematical Statistics : comparison of “statistical experments”
Blackwell, Le Cam, Hajek, Torgersen, etc ...

Why statisticians are bothered with
conversion btw state families ?



Information Spectrum

A framework of information theory free of stochastic
assumptions such as |ID, Markov, etc

Classical version : invented by Te-Sun Han (5 K %=),

with Shannon Award
Quantum version : Hiroshi Nagaoka (UEC)

D({p"}Il{o™) = inf{c; lim tr(p" — e™a™), = 0}

D ({p"}Il{o"}) = sup{c; lim tr(p™ —e™0o™), =1}
Nn—>00
(version by Bowen-Datta)

c.f. Renner, Datta, Bowen give alternative representation of these
by Smooth Renyi entropy

Computer science, randomness extraction, privacy amplification



Thermo-Majorization

tr(p —tpg)y =tr(oc—tps);, VE =0
Information Spectrum
D((p™)Il{o™) = inf{b; lim tr(p" — e™™), = 0}
D ({p"}{o™}) = sup{b; lim tr(p" —e"’c™) =1}

If you are not xxxxxx,
Should notice some relations btw these....



Plan of the talk:

Comparison of statistical experiments
- general theory, historical contexts
- 2-states case
- relation to information measures
- quantum states

Information spectrum (mainly hypothesis test)
- upper & lower divergence rate (classical, quantum)
- hypothesis test
(- resolvability)
-relation to smooth Renyi entropies

Asymptotic 2-states conversions
- sufficient condition by information spectrum
- characterization of quantum relative entropy (KL-divergence)



Comparison of
statistical experiments
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Statistical decision problems

x € X : (array of) data d(x) € D : decision
x obeys probability distribution pg(x), 8 € © unknown
Jo(d) € R: the gain of the decision d when the data source is pg

X FHIZZBEDHYRPT VD TEZT
CERHIIBEE TC— ML SN TEAKICLAEWNT)

E = {pg; 0 € O}is called an experiment or a statistical model

Optimize d to maximize the expectation

Go(d,E):=Eg go(d(X)) =X .x 9o (d(x))pe(x)
under various setting min-max/average about 6/constrained



Some notes

Settings are fairly general

X : measurable space D : topological space, with Bair o-filed,

d: measureable

Py: prob measure, may not be majorized by a common measure
®: aset

g is usually subject to some reasonable conditions

Jg: upper-semi continuous/continuous
+ bounded from above/bouded

In general, randomized decision is also allowed
CCTIFRAELPEEZZA DRI DD, EoDWIcA LTI ZHAKRET WL

Usually,
“loss “ is minimized, rather than “gain” is maximized

AANDODEEFEINHDLDODT, ZZTIETA >,



Example of Statistical Decisions

Ex 1 X :past/present data about economics
0 : parameters determining the market price
d :your strategy of selling/buying
Jo(d) : how much you earn

Ex2 6 € R"

d :your estimate of 0

go(d) = —||d — 0]|? : how close was your guess
Ex3 6 €{01}

d : your guess about 8 € {0,1}
go(d) = 1if you are right, otherwise =0



On arbitrariness of g

Ex 2 6O € R*
d :your estimate about the true value of parameter
go(d) = —||d — 0]|? : how close was your guess

No overwhelming reason to prefer square-error to
other error measures



Statistical Decision Problems : Optimization ?

Life is so hard that no decision is uniformly optimal usually :
if Gg(d,E):= Y go(x)pg(x) very good, Gy/(d,E) is poor
Ex3 60 €{0,1} d:yourguessaboutd € {0,1}
Jo(d) = 1if you are right, otherwise =0
If d(x) = 0 irrespective of x, Gy(d,E) =1 but G;(d,E) =0
Maximize the average about 6 (Bayesian gain):
Gn(d, E) = z Tlg Gg (d, E)

6

E Maximize the worst case about 8 (min-max):
G(d,E) = infGy(d, E)

B Maximize e.g. Gy, (d, E), subject to the constrain, e.g.
Gg(d,E) > c,V0 # 91

And so on ...



“optimal decision” ?

* depends on G
* depends on min-max or Bayesian gain, or others

Life is so hard.
You have to solve them one by one.

But, thereis a hope ....

» “Comparison of statistical experiments”

- asymptotic theory #H#Rz-50135»EEKT
LAN, bounds on cloning etc
- experimental design
THHALPTLDIEZ 2B DT - - -



Experimental design

Ep = {F(fg); 0 € 0}
Given {fg; 8 € 0}, can move F (experimental design)

Nice if one can say {F(fg); @ € O} is more informative than
the other

EX oy Ff+E £~ N0l

fo:l-dim vector,  x:k-dim vector, k=I, F:kXIreal matrix

Optimize F obtain most “informative” pg(x) = N(Ffy, ol})
If N(Ffg,0l,) is better than N(F'fy,cal}), use F rather than F’



Comparison of statistical experiments
e = (eg)oeo (BBlzeZES N, elFHhDETATHEI DT)
m E is e- defficinet relativeto E’, E >, E’

1
vd'3d Vo6 € 0 Gg(d, E) > Gy (d',E") —589
holds forany g with 0 < gg < 1,onany D

EATRE EDdecisiond’ IZX L TH, #N% ERIBEEDdecisiondh b (ef2ED~ —
DVUT) o LD, ENHAEBDOREZEM EFBE T,

E~,EF ©@E>,E & E<,E FCTRBEILZATY
E& RIKRE L

feg =0,v6 €0, E=>E E~F

l( ”

is an equivalence relation

Distance measure A(E,E’) = min{e;E ~, E',eg = €}

“=" s partial order



Randomization criteria (Blackwell, Le Cam)

<  3A :transition probability
Vo € 0, [|IA(pg) —pglli < eg

, 1
< S 2.9co o Go(d,E) = Sup 20c0(Tg Go(d,E) — > eg)

holds for any my (non-zero at most finitely many points)
forany g with 0 < gg <1, onany D

This is the reason why statisticians are interested
in thermo-majorization-type conditions



Ex. Comparison of linear normal experiments

EX x=Ffy+¢, ¢ ~N(0,al)
fo: I-dim vector, x: k-dim vector, k=1, F: k X real matrix
Hansen, O. and Torgersen, E. : The Annals of Statistics 1974, Vol. 2, No. 2, 367-373
{N(Ffg,0l); 0 € 0} 2 {N(F'fy,0l}); 0 € 6}

© FFT—-FFT>0
(if ¢ is unknown, k — k' —rank(FFT — F'F'T) > 0, in addition)

many extensions,e.g., about covariance matrix, also computation of A

m Pg: Gaussian state  Eg(trpgXy,tr pgPy,-++)) = Ffp,

B A58 covariance =X  J:matrix defining CCR
{pg; 0 € 0} =29 {py'; 0 € 6}
& 3¢,s,%, CTJF=JF', ' =S8T%,S+CTsC, Z,+1=0



EX statistical Inference on Unital qgubit channels
Ag: a unital channel with the unknown parameter 0 Ag(l) =1
F: input state + measurement :_,m ->
Many papers, each dealing with each own setting —V.
[Fujiwara02] [Fujiwara03][Sacchi05-1][Sacchi05-2][Sacchi05-3] etc

But all of them say maximally entangled state is optimal

Def {patoco =€ {p'9}oco
s VM'IM {Ppﬂg}GEG = {Ppﬂgl}BEQ

Fact QT

d: max-ent state
Vp {Ag@ I(DP)}geo = {Ao® I(p)}oeco



Local asymptotic normality (LAN) @ € R

- Once upon a time, A. Fisher insisted that maximally likelihood
estimate (MLE,EE_ﬁ?EEE) should be the best estimate, and

gave a proof, using “=", “~", which would satisfy most of us, but
not mathematicians

- Counter example found out, even for Gaussian distributions
(Hodge estimator etc)

- Introduction of regularity conditions, on models and estimators

- To simplify the argument, invented was LAN ...

logp™ n (x™) —log ph(x™) ~ (Jo) L €%(x™) h + h?J5?

0+—=

Vn
If 8 — /pg(-) has the first derivative ( as a function onto L"2)



Local asymptotic normality (LAN) 0 € R

0= {pn n(x™);he R} Eg:= {N(h,]gl)}heR 0 cR

N If 8 > /pg (1) has the first derivative (as a function on L?)

And some mild conditions on pg

A(E3,Eg) — 0, uniformly V8 in arbitray compact subset of 0

Estimation of 8 on {py} reduces to the one on {N(h,]gl)}heR

If you believe x (~ N(h,]g_l)) is the best estimate of the mean h, should also
believe that MLE is the best

REETHIATHEED T, ATRIZEELTHOERBRTAESOEHE DTS

Shiryaev, Spokoiny, Statistical Experiments and Decisions: Asymptotic Theory, World Scientific
2000

Ibragimov. Khasminskii, Statistical Estimation: Asymptotic Theory, Springer,1981



* First reduce to the problem to the estimation of
the mean of Gaussian random variable, which is
easy

* Gaussian shift model {N(h,J5 ")}, .. functions as a
“standard form” of parameter family

- when not iid, other “standard forms , such as LAMN etc
- non-parametric

ZoWolo, [HEDRE] RIBERBRIFELEVWASALEIAIIEND
sTE =% (comparison of hardness by reduction)
SEFBEHBRBDI VXTIV X ~DIEHH (resource theory)



O] =2, E = {pg,p1}

To check E =, E’, only have to check
Binary decision problem, d € D = {0,1}

! ' 1
< sup 2oeo g Gg(d,E) = Sup 2oeo(Tg Go(d',E) — -1 eg)

holds forany mg
forany g with 0 < gg <1, onD = {0,1}

ng, T[(_) — 1; 77:1 — t; gl(d) — 1 T gO(d))



®] =2, E = {po,p1}

[Torgersen70]

To check E =, E’, one only have to check
Binary decision problem, d € D = {0,1}

! ' 1
< sup 2oeo g Gg(d,E) = Sup 2oeo(Tg Go(d',E) — -1 eg)

holds Ty = 1, T = L,
foranyg with 0<gg <1, g4(d)=1-—g,(d),

sup z mg Gg(d,E) = Sgpz 9o(d())[po(x) —t p1(x)] +t

CISC) X
= Z(Po(x) —t Pl(x))+ Tt “="if go(0) = g,(1) =1



O] =2, E = {pg,p1}

[Torgersen70]

To check E =, E’, one only have to check
Binary decision problem, d € D = {0,1}
E >, E <

vVt =0 z(Po(x) —t P1(x))+ = z(Po'(x) —t P1’(x))+ + ey — teq

Thermo-majorization with error term
When ey = 0, thermo-majorization

... had been known since almost half-a-century ago



Relation to f-divergence

sup mg Gg(d,E) = Sup 7 Tg 7 9o (d(x))pe(x)

ac) 6=0,1 ) = 0,1

= i‘gl))z 2 e ge(d(x)) pa(x) = zsup z 9 9o (d)pg (x)

x 06=0,1

(x)
- 2 P COf (2" (i)) =Dy (polIp2)

f(z) = Sgp{ﬂogo(d)z + 1m191(d)}

f is convex and lower semi-continuous
Any such f can be written in above form (use Legendre transform)

f(z) = zlogz : KL-divergence (or relative entropy)
® : Tsalis-Renyi-like quantity

|1 — z| : L1-norm

(1 — tz), : Thermo-Majorization



Relation to f-divergence

For any g and m, there is f s.t.

sup > 1 Go(d, E) = Dp(pollp)i= ) pr()f (@o(@)/pr ()

2y 6=0,1

And vice versa !
Any f-divergence is optimized Bayes gain

E2E < Dr(pollp1) = Dr(po'llps")

holds for any lower semicont. convex function f

Tyl [CohenKempermanZbaganu98]

Any lower-semicontinuous convex f can be :
f(2)=a+bz+ [ (z—t),du(t)

Combination of above facts leads to another proof of Thermo-Majorization
m (i) D¢ (tpolltp1) = tDs(pollp1)

(i) (Po, P1) = Ds(pollp1) is convex
(iii) Df(p0||P1) = Df(A(po)”A(pl)) A: transition probability



Quantum version |

E = {pgloco Go(AE) = trgel'(pg)
Jp: bounded self-adjoint, on Hj,

[': Completely positive trace preserving map

m E 22 E’ Eis e- defficinet relative to E/,

vI'3alr v € ® G4(T,E) = Gy (I'',E) L
PN e\l, = Ug ) 260

holds for any g with 0 < gy < I, on any Hp

PN 3A : CPTP map
vo €0, lIA(ps) —pglly < eg

N1
= U 2gco Ty Gg(I,E) = SE 2geco(Tp Go (I, E) — ~ep)

holds for any mg (non-zero at most finitely many points)
forany g with 0 < gg <1, onany Hp



Quantum version |l

B

& VM'IM {Ppﬂg}eee Ze {Ppﬂg,}ee@

m E > E' « 3A:positive (may not be CP) trace preserving map
vo €0, llA(ps) —polly < eq

= is not true. Counter example by [M13]
No good necessary and sufficient condition for >¢

E>¢E cEng’

The opposite not true. But if e=0, some good relation.

[Buscemi 12]

VE, EQEy,>° EE®E, e E=>?F



Quantum local asymptotic normality (LAN)

It had been noted that pgbn and its tangent space can be approximated by
Gaussian states, showing the achievable lower bound to asymptotic error

bound of asymptotically unbiased estimators
[M 98] [HayashiM 2002] [Hayashi 2002]

Eg: Gaussian shift (multi-mode)
h € R

Thm [Kahn Guta 2005] dim H < o0

A(EZ,Eg) — 0, uniformly V6



0| =2, E = {po,p1}

[AlbertiUhmanngs]  susoose dim H = 2

E>'FE & E=°F
& VE=0, tr(pg—tp)s= tr(pe’ —tp )y

[M10] [JencovalO]  Suppose [pg, p1] = 0
E>FE &

1
Vvt =0, tr(pg —tp)s= tr(py’ —tpr')y —5(6’0 —teq)



Relation to quantum divergence

D?(pollp1) = 5‘1{p 2ig=0,1Totrgel'(pg) satisfies

(i) D9 (tpolltpr) = DO (tpolltpr)
(ii) (po, p1) = D% (pollp1) is convex
(iii) D9 (po|1p1) = DC(A(po)IIA(p1)), A: CPTP

Also, any function satisfying above three is written in the RHS form

If restricted to commutative ops, D9(p,||p,) = D¢ (pollp1), for some f

D?: quantum version of f-divergence

D™ (pollp1) = D% (pollp1) = DF*™ (pollp1),

m E>"F &

D% (pollp1) = D2 (py'|lp1") holds for all D? with above conditions



Classical and Quantum Information Spectrum,

Especially on divergence rate



Classical Information Spectrum

Founded by Te-Sun Han (88 K %=%)
Novel frame work of information theory :
no need to assume iid, memoryless, Markov, Ergodic etc.

What is done:

Rewrite the solutions of information theoretic problems into “spectrum formulas”,
which is still abstract.

Thus, if more concrete form is necessary, have to evaluate them further.
Yet, information theoretic part finishes at this stage: the rest of the job is mathematical.

Also, abstract “spectrum formulas” help understanding relations btw various
information theoretic problems.

As such, if you want to appreciate its full value, have
to learn various aspects of information theory.

Here treat only hypothesis test



Hypothesis test and divergence rate

E™ = {pgp} : Guess which from the data x™ ~ pgy

P™{1 |0}: Prob of choosing 1 while 0 is true
P™0|1}: Prob of choosing 0 while 1 is true

Make P™{0|1} small, while keeping P™"{1|0} reasonably small

1
e ™0 ~ P10 |1}, b = limsup Elog P™{0,1}

n—>00

1.sup {b; P*{1]|0} - 0}

2. sup {b ;limsup P*{1|0} < 1}



Divergence rate and hypothesis test

Prob
(x™ obeys pg)

1 log p1 (x™)
| e pg(x™)

D({p3}1{phH D({p3}I{pDH

Wheniid 1 p1 (X;)
EZ log (po (Xi)>

po(x)
1(3() - D(p0||p1)

1
e ™ ~ P00 |1}, b =limsup Elog P™{0,1}

n—->0oo

sup {b ; P*{1]0} - 0} = D({pg }I{r1'})
sup {b ; limsup P"{1]0} < 1} = D({pg }||{p]'})



Quantum version

By Hirohoshi Nagaoka (&[S ) in about 1998

L. logp/qDARL —R—IRZZZT-KLBH, £\ lLh o7
REIEE D@t DERPIEE TRIIARA >V b EZEZT-, [LLDIERTHERR |

D({pg}II{pT} = inf{b; lim tr(pf —e™p"), = 0}
D ({p3}{p1}) = sup{b; lim tr(pg —e™p}') =1}
1. When commutative, coincide with classical version

2. equals error exponent, just as its classical version

sup {b ; P"{1]0} - 0} = D({pg}|{p1})
sup {b ; limsup P"{1|0} < 1} = D({pg }I{p1})

3.1f p = p&™ both D and D coincide with D (po||py) = trp, (logp, — logp;)

D(pollp1) = sup {b; P*{1]0} - 0} =1 sup{b; limsup P"*{1|0} < 1}
t

Had been known [H&Petz80]  was not known [OgawaNagaoka 00]



Another representation of D: smooth Renyi

In fact, spectrum-like quantity have been also used in computer science, for
analysis of random number generation, security of cryptography
(randomness extractor)

Its quantum version by R. Renner
Dmax (,00||,01) = min{b; py < ebpl}
Dfax (P0||,01) = min{Dp,x (polllpl); ||,0(’) - pl” < €}

. 1 =
lim llmsupg Dfax (pollpt) = D{po }HI{pT})

€0 noowo
[RennarDatta 05]



Yet some more representations ...

) ) 1 Y
lim limsup = Dmax (o llp1) = D({po 31{p1'})

€0 pnoow
[RennarDatta 05]

Drenax (,00||P1) — min{Dmax (polllpl); ”,0(’) T pl” < E}

) ) 1 FaY
lim limsup~ Dg (pg1lp1) = D({pg }I{p1}H)

€0 poo

D& (pollp1) = min{Dy (po'|lp1); llpg — p1ll < €}

D, (pollp1) = any CPTP-monotone quantum version of a-Renyi relative entropy
(a>1)

1 _
e.g. —log trpd "% pt



o ”n

on n

o 7’

n” is merely an index. Can be any number
may not be system size....
It could be size of reservoir, for example



When D and D, (po'|lp1) coincide with D?

* Obviously, if iid.

* In classical case, when n is the system size, and the
system is Markovian etc,

(Maybe, when the systems are not globally
correlated)

T Probability

1 | pr (x™)
— 10
| oSG

D({p3 {1 D({p3}I{phH




An application : resolvability [Ogawa M]

n n n n
xl,xz ...an ~ p

—Zl 1,0xn will be very close to E"pxn if L,, is large enough.

How large is enough large ?

1
L0, Eel

holds if limsup - log L, > Sup D({pxn}”{E”pxn})

n—>00

-0
1




Putting altogether :

Divergence rate and Thermo-Majorization



Classical case: |®| = 2, E™ = {pZ, p}}}

By Thermo-Majorization with error
E" = {pg,pr'} Ze, E™ = {q0,qr} limeng =0y, =0

(A(pg) = q¢, A(p1) = q7)

— Vb z (p(’}(x) — ebn p{l(x))+ = z (qg(x) — el CI?(?C))Jr + enpo
HELBETWERITNIZLUTHARZ BE
LR & D (MM = DUaIED

E" >, E™ _ B
D({po}Il{p1') = D({qo}Il{ar})
D({pa}{pT}) = D({qq 3} {qa1])

D((pE}I{pF)) = inf(b; lim tr(pf — e™p}), = 0)
D (o3 I{pT}) = sup(b; lim tr(pf — e™pl), =13



Classical case: |®@| = 2, E" = {p@, p}"}

E™ = {pg,p1} =¢, E™ =1{q0,q91} liminfe,, <2,e,; =0

<  D({po}{r1'D) = D({qqa3}Il{arD)

IA(py) — g0l <2, TAICXBITEZIZFEICIEEL AL

A(p!) = qf

D({p33}I1{p1"D) = inf{b; lim tr(pg —e"’p7'), = 0}
D ({p3}{p1'D) = sup{b; lim tr(pg —e"’p), =1}



Standard form: |®| = 2, E™ = {p{, p1'}

HHOEZTATZWIIRE L » WD TEEIRS
Standard form of binary experiments (dichotomies)

{rg', r{'} : probability distributions over {0,1}

limr'(0) =1 I 1

lim r{*(0) = 0, and exponentially = I
r*(0) ~ e 0 1
hypothesis test = conversion from E™ = {pZ, p1} to {r{}, r*}

Among various conversions,
Choose the one maximizing b

max b =D ({pg }{p1})



Standard form: |®@| = 2, E™ = {p{, p1'}

It is natural to consider conversion from {rg', "} to E™ = {p{, p1'}

If c = exp(—Dfax (05 ]1pT), There is a states 1, T; with

& g —pblli <€ cto+ (1 —c)ty = p1

Proof : obvious from the def, Dmax (Pollp1) = min{b; py < ebpl}

Drilax (,00||,01) — min{Dmax (p0'||,01); “p6 _ pl” < E}

By mixing Ty, T; with probability ' (0) , ' (1), obtain pg, pt

LN Thereis a CPTP map A, with  ||A, (1) — p&lli—= 0, A, (") = pT
If r2(0) = 0, r*(0) = e ",

1 _
b > lim limsup — Drax (po llp1) = D({po311{pr D)

€0 pnooo



0] =2, E" = {pg, pi'}

E" >, E™ lime,o=0,e,; =0
(A(pg) = a3, A(pT) = p)

E™ ={po, 1} > 13> E™ = {0, o'}

< D {ps3I{ptH) = Do }I{al})
B2 BT D@ = DUsdliterd
D{p{pTD) = Do I{alD)
If D =D = D, onlyhave to compare D

Can prove uniqueness of quantum extension of
relative entropy, which is “smooth” and CPTP monotone



Stability

it D2(A(P)I|A) < D2 (pllo)

D(p||o) = cllm lim — L inf { D2(p" | a®™); ||p" — ,D‘X’"”1 <e}

€l0 nHooon

HLEW



