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• symmetry breaking 
• phase transition 
• collective excitations: 

magnon (boson)

magnetic order

Fate of magnets
paramagnet

long-range 
order?

YES

NO

spin 
freezing?NO

YES
spin glass
• randomness 
• replica symmetry 

breaking

quantum spin liquid (QSL)
• no symmetry breaking down to 

zero temperature 
• no conventional order parameter



Quantum spin liquid

hard to identify experimentally 
- no symmetry breaking down to zero temperature 
- no conventional order parameter 
➡ alibi (proof of absence) is impossible to prove

para (gas)

“frustration”

QSL 
(liquid)

long-range order 
(solid)

te
m

pe
ra

tu
re



topological order/degeneracy 
usually well-defined only at zero temperature 
not local but global (long-range quantum entanglement)  
➡ not easy to detect experimentally…

fractionalized excitations 
fractionalized quasiparticles have their own energy scales 
➡ clear fingerprints on spin dynamics and thermodynamics?

Proof positive of QSL?

How does the fractionalization show up in QSLs? 
How can we observe the signatures in real compounds?



Breakthrough
Kitaev model (A. Kitaev, 2006) 

exact solution for the ground state 
• exact quantum spin liquids 
• analytical expression for spin fractionalization 

experimental realization in spin-orbit Mott insulators 
(G. Jackeli and G. Khaliullin, 2009) 

• 4d and 5d electrons systems

explosive development in both theory and experiment 
during the past decade



Kitaev model
A. Kitaev, Ann. Phys. 321, 2 (2006)

honeycomb S=1/2 model with bond-dependent interactions

severe frustration: macroscopic degeneracy in the classical case
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Majorana representation
A. Kitaev, Ann. Phys. 321, 2 (2006)

NB1. The Majorana representation extends the Hilbert space; a projection to 
the original physical subspace is needed. 

NB2. Majorana representation of spins is not unique. 
• by three Majorana (Tsvelik, 1992; Shastry and Sen, 1997; Biswas et al., 2011) 
• by two Majorana (Chen and Hu, 2007; Feng, Chang, and Xiang, 2007; Chen and Nussinov, 2008) 
✴We adopt the “two Majorana” representation in our numerical simulations.

~� = (�x,�y,�z)

�� = ib�c

c

four Majorana fermions

S=1/2 spin

bybx

bz
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Majorana representation
A. Kitaev, Ann. Phys. 321, 2 (2006)

itinerant 
Majorana 
fermions

ci

localized 
Z2 fluxes

conserved quantity: Wp = ±1

[H,Wp] = 0, W 2
p = 1, [Wp1 ,Wp2 ] = 0



Majorana representation
A. Kitaev, Ann. Phys. 321, 2 (2006)

S=1/2 model Majorana fermions moving 
on localized Z2 fluxes
one-body problem

➡ exact ground state is available 
as the flux free state: all Wp=+1

NB. The exact solution is limited to the cases 
to which the Lieb theorem is applicable.

quantum many-body problem
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Ground state
A. Kitaev, Ann. Phys. 321, 2 (2006)

(J
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z

= 1)
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1

Jx

Jy

QSLs in the entire parameter space 
G. Baskaran, S. Mandal, and R. Shanker, PRL 98, 247201 (2007)

Majorana excitations can be gapless or 
gapped depending on the parameters, 
while flux excitations are always gapped.

A

B

A

A
Dirac-like linear dispersion

Majorana spectrum

gapped

Majorana spectrum



Experimental relevance

spin-orbit Mott insulator with Jeff=1/2 
Kramers doublet (e.g., Ir4+, Ru3+)

interference between d-p-d perturbations 
(e.g., edge-sharing octahedra)

two requisites for realizing the Kitaev-type anisotropic interactions                
G. Jackeli and G. Khaliullin, Phys. Rev. Lett. 102, 017205 (2009)

!ð!Þ was obtained by using Kramers-Kronig (KK) trans-
formation. The validity of KK analysis was checked by
independent ellipsometry measurements between 0.6 and
6.4 eV. XAS spectra were obtained at 80 K under vacuum
of 5# 10$10 Torr at the Beamline 2A of the Pohang Light
Source with !h" ¼ 0:1 eV.

Here we propose a schematic model for emergence of a
novel Mott ground state by a large SO coupling energy #SO
as shown in Fig. 1. Under the Oh symmetry the 5d states
are split into t2g and eg orbital states by the crystal field
energy 10Dq. In general, 4d and 5d TMOs have suffi-
ciently large 10Dq to yield a t52g low-spin state for

Sr2IrO4, and thus the system would become a metal with
partially filled wide t2g band [Fig. 1(a)]. An unrealistically
large U & W could lead to a typical spin S ¼ 1=2 Mott
insulator [Fig. 1(b)]. However, a reasonable U cannot lead
to an insulating state as seen from the fact that Sr2RhO4

is a normal metal. As the SO coupling is taken into
account, the t2g states effectively correspond to the orbital

angular momentum L ¼ 1 states with  ml¼'1 ¼ (ðjzxi'
ijyziÞ=

ffiffiffi
2

p
and  ml¼0 ¼ jxyi. In the strong SO coupling

limit, the t2g band splits into effective total angular mo-
mentum Jeff ¼ 1=2 doublet and Jeff ¼ 3=2 quartet bands
[Fig. 1(c)] [17]. Note that the Jeff ¼ 1=2 is energetically
higher than the Jeff ¼ 3=2, seemingly against the Hund’s
rule, since the Jeff ¼ 1=2 is branched off from the J5=2
(5d5=2) manifold due to the large crystal field as depicted in
Fig. 1(e). As a result, with the filled Jeff ¼ 3=2 band and

one remaining electron in the Jeff ¼ 1=2 band, the system
is effectively reduced to a half-filled Jeff ¼ 1=2 single band
system [Fig. 1(c)]. The Jeff ¼ 1=2 spin-orbit integrated
states form a narrow band so that even small U opens a
Mott gap, making it a Jeff ¼ 1=2Mott insulator [Fig. 1(d)].
The narrow band width is due to reduced hopping elements
of the Jeff ¼ 1=2 states with isotropic orbital and mixed
spin characters. The formation of the Jeff bands due to the
large #SO explains why Sr2IrO4 (#SO ) 0:4 eV) is insulat-
ing while Sr2RhO4 (#SO ) 0:15 eV) is metallic.
The Jeff band formation is well justified in the LDA and

LDAþU calculations on Sr2IrO4 with and without in-
cluding the SO coupling presented in Fig. 2. The LDA
result [Fig. 2(a)] yields a metal with a wide t2g band as in
Fig. 1(a), and the Fermi surface (FS) is nearly identical to
that of Sr2RhO4 [12,13]. The FS, composed of one-
dimensional yz and zx bands, is represented by holelike
$ and %X sheets and an electronlike %M sheet centered at
", X, and M points, respectively [12]. As the SO coupling
is included [Fig. 2(b)], the FS becomes rounded but retains
the overall topology. Despite small variations in the FS
topology, the band structure changes remarkably: Two
narrow bands crossing EF are split off from the rest due

FIG. 1. Schematic energy diagrams for the 5d5 (t52g) configu-
ration (a) without SO and U, (b) with an unrealistically large U
but no SO, (c) with SO but no U, and (d) with SO and U.
Possible optical transitions A and B are indicated by arrows.
(e) 5d level splittings by the crystal field and SO coupling.
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FIG. 2 (color online). Theoretical Fermi surfaces and band
dispersions in (a) LDA, (b) LDAþ SO, (c) LDAþ SOþU
(2 eV), and (d) LDAþU. In (c), the left panel shows topology
of valence band maxima (EB ¼ 0:2 eV) instead of the FS.
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for the symmetry of the intersite interactions. Namely, the
very form of the exchange Hamiltonian depends on bond
geometry through a density profile of Kramers states, as we
demonstrate below.

Exchange couplings of neighboring Kramers states.—
We consider the limit of the strong spin-orbit coupling, i.e.,
when ! is larger than exchange interaction between the
isospins. The exchange Hamiltonians for isospins are then
obtained by projecting the corresponding superexchange
spin-orbital models onto the isospin states Eq. (1). First, we
present the results for the case of cubic symmetry (! ¼ 0,
sin" ¼ 1=

ffiffiffi
3

p
), and discuss later the effects of a tetragonal

distortion. We consider two common cases of TM-O-TM
bond geometries: (A) a 180"-bond formed by corner-
shared octahedra as in Fig. 2(a), and (B) a 90"-bond
formed by edge-shared ones, Fig. 2(b).

(A) A 180" bond: For this geometry, the nearest-
neighbor t2g hopping matrix is diagonal in the orbital space
and, on a given bond, only two orbitals are active, e.g., jxyi
and jxzi orbitals along a bond in x-direction [Fig. 2(a)].
The spin-orbital exchange Hamiltonian for such a system
has already been reported: see Eq. (3.11) in Ref. [12]. After
projecting it onto the ground state doublet, we find an
exchange Hamiltonian for isospins in a form of

Heisenberg plus a pseudodipolar interaction,

H ij ¼ J1 ~Si # ~Sj þ J2ð ~Si # ~rijÞð~rij # ~SjÞ; (2)

where ~Si is the S ¼ 1=2 operator for isospins (referred to as
simply spins from now on), ~rij is the unit vector along the
ij bond, and J1ð2Þ ¼ 4

9#1ð2Þ. Hereafter, we use the energy
scale 4t2=U where t is a dd-transfer integral through an
intermediate oxygen, and U stands for the Coulomb re-
pulsion on the same orbitals. The parameters #1ð2Þ control-
ling isotropic (anisotropic) couplings are given by
#1 ¼ ð3r1 þ r2 þ 2r3Þ=6 and #2 ¼ ðr1 ' r2Þ=4, where
the set of rn characterizing the multiplet structure of the
excited states depends solely on the ratio $ ¼ JH=U of
Hund’s coupling and U [24]. At small $, one has #1 ’ 1
and #2 ’ $=2. Thus, we find a predominantly isotropic
Hamiltonian, with a weak dipolarlike anisotropy term.
While the overall form of Eq. (2) could be anticipated
from symmetry arguments, the explicit derivation led us
to an unexpected result: In the limit of strong SO coupling,
the magnetic degrees are governed by a nearly Heisenberg
model just like in the case of small !, and, surprisingly
enough, its anisotropy is entirely due to the Hund’s cou-
pling. This is opposite to a conventional situation: typi-
cally, the anisotropy corrections are obtained in powers of
! while the Hund’s coupling is not essential.
(B) A 90" bond: There are again only two orbitals active

on a given bond, e.g., jxzi and jyzi orbitals along a bond in
the xy-plane. However, the hopping matrix has now only
nondiagonal elements, and there are two possible paths for
a charge transfer [via upper or lower oxygen, see Fig. 2(b)].
This peculiarity of a 90" bond leads to an exchange
Hamiltonian drastically different from that of a 180" ge-
ometry. Two transfer amplitudes via upper and lower oxy-
gen interfere in a destructive manner and the isotropic part
of the Hamiltonian exactly vanishes. The finite, anisotropic
interaction appears, however, due to the JH-multiplet struc-
ture of the excited levels. Most importantly, the very form
of the exchange interaction depends on the spatial orienta-
tion of a given bond. We label a bond ij laying in the %&
plane perpendicular to the 'ð¼ x; y; zÞ axis by a (')-bond.
With this in mind, the Hamiltonian can be written as

H ð'Þ
ij ¼ 'JS'i S

'
j ; (3)

with J ¼ 4
3#2. Remarkably, this Hamiltonian is precisely a

quantum analog of the so-called compass model. The latter,
introduced originally for the orbital degrees of freedom in
Jahn-Teller systems [5], has been the subject of numerous
studies as a prototype model with protected ground state
degeneracy of topological origin (see, e.g., Ref. [25]).
However, to our knowledge, no magnetic realization of
the compass model has been proposed so far.
Implementing the Kitaev model in Mott insulators.—The

Kitaev model is equivalent to a quantum compass model on
a honeycomb lattice [26]. It shows a number of fascinating
properties such as anyonic excitations with exotic frac-

isospin up spin up, lz=0 spin down, lz=1

+=

FIG. 1 (color online). Density profile of a hole in the isospin
up state (without tetragonal distortion). It is a superposition of a
spin up hole density in jxyi-orbital, lz ¼ 0 (middle), and spin
down one in ðjyziþ ijxziÞ state, lz ¼ 1 (right).

pyxy xy

pzxz xz

180o

(a)

pz

pz

(b)

xz yz

yz xz

o90

FIG. 2 (color online). Two possible geometries of a TM-O-TM
bond with corresponding orbitals active along these bonds. The
large (small) dots stand for the transition metal (oxygen) ions.
(a) A 180"-bond formed by corner-shared octahedra, and (b) a
90"-bond formed by edge-shared octahedra.
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Candidate materials
2D honeycomb

Na2IrO3, Li2IrO3,...
M. J. O’Malley et al., 2008  
Y. Singh and P. Gegenwart, 2010 
Y. Singh et al., 2012, ...

V. Todorova and M. Jansen, 2011  
Y. Luo et al., 2013, …

K. Plumb et al., 2014 
Y. Kubota et al., 2015, ...α-RuCl3

Li2RhO3

3D extensions
β-Li2IrO3 (hyper-honeycomb)

γ-Li2IrO3 (stripy-honeycomb)

K. A. Modic et al., 2014
H3LiIr2O6 K. Kitagawa et al., 2018

T. Takayama et al., 2015



Candidate materials
2D honeycomb

Na2IrO3, Li2IrO3,...
M. J. O’Malley et al., 2008  
Y. Singh and P. Gegenwart, 2010 
Y. Singh et al., 2012, ...

V. Todorova and M. Jansen, 2011  
Y. Luo et al., 2013, …

K. Plumb et al., 2014 
Y. Kubota et al., 2015, ...α-RuCl3

Li2RhO3

3D extensions
β-Li2IrO3 (hyper-honeycomb)

γ-Li2IrO3 (stripy-honeycomb)

K. A. Modic et al., 2014
H3LiIr2O6 K. Kitagawa et al., 2018

T. Takayama et al., 2015

Unfortunately, most of the candidates show AF order at low T, 
indicating the existence of non-Kitaev interactions

➡ dead end?
No: there are several indications for the dominant Kitaev-type 
interactions (X-ray, first-principles calculations, …)

➡ signatures of the fractionalized excitations in the paramagnetic state 
above the critical temperature



Anticipated phase diagram

paramagnet

Kitaev model

long-range order

T

T = 0

non-Kitaev interactions

exact QSL

candidate 
materials

⇠ JKitaev

~10 K

“textbook example” of 
fingerprints of 

fractional excitations

comparison with experiments: 
fractional excitations in real compounds?

~100-200 K



How to compute T>0

S=1/2 model itinerant Majorana fermions + localized Z2 fluxes

one-body problemquantum many-body problem

+
-

-

+

- +

-
+

+
++ -

+

--
-

- -

๏ Conventional numerical techniques 
suffer from the negative sign problem 
due to severe frustration.

Our solution:  
avoid the negative sign problem by 
using a Majorana representation

NB. We adopt the “two Majorana” representation 
via the Jordan-Wigner transformation.



Methods

free from biased approximations: numerically exact within 
the statistical errors 
NB. We employed the maximum entropy method for analytical continuation of the 

dynamical quantities. 

free from finite-size effects: applicable to large enough 
clusters up to ~103 sites

quantum Monte Carlo (QMC) 
- MC sampling on the gauge fields + exact diagonalization 

- MC sampling on the gauge fields + Green function based kernel 
polynomial method 

QMC + continuous-time QMC

J. Nasu, M. Udagawa, and YM, PRL 113, 197205 (2014)

P. A. Mishchenko, Y. Kato, and YM, PRB 96, 125124 (2017)

J. Yoshitake, J. Nasu, and YM, PRL 117, 157203 (2016) 
J. Yoshitake, J. Nasu, and YM, PRB 96, 064433 (2017)



We have computed …
specific heat and entropy 

magnetic susceptibility 

equal-time spin-spin correlation 

NMR relaxation rate 1/T1 

dynamical spin structure factor S(q,ω) 

magnetic Raman scattering intensity 

thermal conductivity κxx and κxy

➡ thermal fractionalization

dichotomy between 
static and dynamical 
spin correlations}

} itinerant fermionic 
excitations

All the quantities exhibit peculiar T and ω dependences 
➡ smoking guns for fractional spin excitations !



Specific heat and entropy

two crossovers: two-step release of the spin entropy

T ⇤(high) ⇠ O(J)T ⇤(low) ⇠ O(10�2J)

J. Nasu, M. Udagawa, and Y. Motome, Phys. Rev. B 92, 115122 (2015) 

(low) (high)
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Thermal fractionalization

J. Nasu, M. Udagawa, and Y. Motome, Phys. Rev. B 92, 115122 (2015) 
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Thermal fractionalization

J. Nasu, M. Udagawa, and Y. Motome, Phys. Rev. B 92, 115122 (2015) 
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Thermal fractionalization

J. Nasu, M. Udagawa, and Y. Motome, Phys. Rev. B 92, 115122 (2015) 

T . J/100T = 0

Majorana w/ disordered fluxesMajorana w/ no flux
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fermionic itinerant nature will be observable
Dirac-type semimetal
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broad hump at high T in the specific heat, and step-like shoulder 
in the entropy around (1/2)log2

Specific heat and entropy: exp.

K. Mehlawat, A. Thamizhavel, and Y. Singh, PRB 95, 144406 (2017)

KAVITA MEHLAWAT, A. THAMIZHAVEL, AND YOGESH SINGH PHYSICAL REVIEW B 95, 144406 (2017)

II. EXPERIMENTAL

Polycrystalline samples of A2IrO3 were synthesized using a
solid-state reaction method starting with high-purity chemicals
and heating the pelletized mixtures between 900 and 1000 ◦C
in 50 ◦C steps. The stepwise heating instead of going directly
to 1000 ◦C was found to be essential for the formation of high-
quality samples. Powder x-ray diffraction on crushed pieces of
the samples confirmed the formation of single phase samples
with lattice parameters which agree with previously reported
values [8].

The magnetic susceptibility χ versus temperature data were
measured in the temperature range T = 2 to 400 K using the
vibrating sample magnetometer (VSM) option of a physical
property measurement system from Quantum Design (QD-
PPMS). The χ (T ) data between T = 300 and 1000 K were
measured using the VSM oven option of the QD-PPMS. The
heat-capacity C data were measured in the temperature range
2–155 K using a QD-PPMS. The C data from 75 mK to 3 K
were measured using the dilution refrigerator (DR) option of
a QD-PPMS.

III. MAGNETIC SUSCEPTIBILITY

Figure 1 shows the χ versus T data for A2IrO3 between
2 and 1000 K. The two separate measurements, between 2
and 400 K and between 300 and 1000 K, for each sample
match quite well. Sharp anomalies were observed at TN ≈
15 K for both samples in agreement with previous reports [8].
The new data are the ones above T = 400 K. These data are
plotted as 1/χ (T ) in the inset of Fig. 1. Data for Na2IrO3 are
approximately linear in this temperature range. The data above
T ≈ 750 K were fit by the expression χ (T ) = χ0 + C

T −θ
, with

χ0, C, and θ as fit parameters. Here χ0 is a T independent
term, C is the Curie constant, and θ is the Weiss temperature.
The fit gave the values χ0 = 2.66(3) × 10−5 cm3/mol, C =
0.395(1) cm3 K/mol, and θ = −127(4) K. These values are

FIG. 1. Magnetic susceptibility χ vs temperature T for A2IrO3

(A = Na, Li) measured between T = 2 and 1000 K in a magnetic
field of H = 1 T. Inset: The 1/χ (T ) data above T = 300 K. The
solid curves through the data are fits of the high-temperature data to
the Curie-Weiss expression (see text for details).

close to those found by fitting the χ (T ) data for T ! 300 K
[3,8]. In particular, the value of θ , which gives the overall scale
of the magnetic interactions, comes out to be very close to the
value −125(6) K found previously for Na2IrO3 [8].

For Li2IrO3 the 1/χ (T ) data shown in the inset of Fig. 1
show a prominent downward curvature. This suggests a large
and positive χ0. The large curvature also means that to
obtain a reliable value of θ one needs to be well in the
paramagnetic state. The fit to the data above T = 700 K gave
the values χ0 = 1.45(3) × 10−4 cm3/mol, C = 0.403(2) cm3

K/mol, and θ = −105(2) K. The value of χ0 is slightly larger
than obtained previously. This suggests a large Van Vleck
paramagnetic contribution for Li2IrO3. The most conspicuous
difference between the low-temperature and high-temperature
fit parameters is the value of θ = −105(2) K, which is about a
factor of 3 larger in magnitude compared to the value −33 K
obtained previously [8]. This indicates that, in contrast to what
was believed previously based on previous estimates of θ ,
magnetic energy scales in both materials might be similar.

IV. HEAT CAPACITY

Figure 2(a) shows the heat capacity divided by temperature
C/T versus T data for Na2IrO3 between T = 75 mK and

FIG. 2. (a) Heat capacity divided by temperature C/T vs T for
Na2IrO3. The lattice contribution to the heat capacity is shown as the
solid curve. (b) Magnetic contribution to the heat capacity Cmag and
the magnetic entropy Smag in units of Rln2 vs T for Na2IrO3. The
horizontal dash-dotted line is the value 1

2 Rln2.
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155 K. A sharp λ-type anomaly near 15 K confirms the
antiferromagnetic transition for Na2IrO3 [3,8]. This anomaly
is much sharper than observed for previous polycrystalline
samples [8], indicating the high quality of the sample used
in the current paper. The data at lower temperatures show an
upturn below about 1 K which we will return to later. We
also show in Fig. 2(a) the approximate lattice contribution
obtained by measuring the heat capacity of the isostructural
nonmagnetic analog Na2SnO3 and then rescaling the data to
account for the molecular mass difference between Na2IrO3
and Na2SnO3. By subtracting this lattice contribution from
the total C(T ) one can obtain the magnetic contribution Cmag
shown (in the units Rln2) in Fig. 2(b). In addition to the
low-temperature anomaly we find another broad peak centered
around ≈110 K. Such a two-peak structure has been predicted
recently for a generalized Kitaev-Heisenberg Hamiltonian for
parameters placing the material in the magnetic state proximate
to Kitaev’s QSL [22]. A two-peak structure is, however, not
uncommon in frustrated and/or low-dimensional magnetic
materials where the high-temperature anomaly occurs when
short-ranged magnetic correlations start to develop while the
low-temperature peak occurs on the development of long-
ranged correlations [23]. However, the definitive signature
for closeness to Kitaev’s QSL has been predicted to be the
T dependence of the entropy Smag which must show a half
plateau pinned at or close to the value 1

2 Rln2 between the two
heat-capacity peaks [21,22].

We present the T dependence of Smag in units of Rln2
in Fig. 2(b). We note that there is a distinct shoulder in
Smag(T ) between the two heat-capacity peaks and that the
value of Smag between the peaks is close to the predicted value
1
2 Rln2 shown as the horizontal dashed line in Fig. 2(b). Smag
reaches 90% Rln2 at the highest T of our measurements. The
high-temperature peak in Cmag is quite broad and one can see
a tail extending to even higher temperatures. It is evident that
the full Rln2 entropy will be recovered at a slightly higher
temperature. The two-peak structure in heat capacity, the T
dependence of Smag with a shoulder between the peaks, and
its numerical value = 1

2 Rln2 are in excellent agreement with
theoretical predictions and provide direct evidence which leads
to the inference that Na2IrO3 is situated close to Kitaev’s QSL.

We now turn to heat-capacity data on Li2IrO3. The C/T
versus T data for Li2IrO3 are shown in Fig. 3(a) between
T = 90 mK and 120 K. The lattice contribution, estimated by
measuring the heat capacity of the isostructural nonmagnetic
material Li2SnO3 and rescaling the data to account for the
difference in molecular masses of Li2IrO3 and Li2SnO3,
is also shown in Fig. 3(a). The 15 K anomaly signaling
the onset of long-ranged zig-zag magnetic order is clearly
visible as is a weak shoulder around 7 K. This shoulder
below the main magnetic anomaly has been observed for all
previous polycrystalline samples as well [8,24]. This second
anomaly is most likely associated with disorder as its relative
magnitude compared to the 15-K anomaly can be suppressed
by improving the quality of the samples [24]. It must be
noted, however, that the second anomaly cannot be completely
suppressed even for the best samples (including single crystals
[25]) and our current sample is at least as good as the
best polycrystalline samples produced thus far [8,24]. As for

FIG. 3. (a) Heat capacity divided by temperature C/T vs T for
Li2IrO3. The lattice contribution to the heat capacity is shown as the
solid curve. (b) Magnetic contribution to the heat capacity Cmag and
the magnetic entropy Smag in units of Rln2 vs T for Li2IrO3. The
horizontal dash-dotted line is the value 1

2 Rln2.

Na2IrO3, the low-T data for Li2IrO3 show an abrupt upturn
below about 1 K. We will discuss the low-temperature data for
A2IrO3 separately later.

The Cmag data for Li2IrO3 obtained by subtracting the lattice
part from the total C(T ) are shown in Fig. 3(b). Although there
is more scatter in the obtained data compared to Na2IrO3, the
two-peak structure in Cmag(T ) is clearly visible for Li2IrO3
too. The two peaks occur at 15 K and ∼90 K, respectively. The
magnetic entropy Smag shown in Fig. 3(b) also shows a shoulder
between the two peaks although the quantitative match with
predictions is not as strong as for Na2IrO3. Specifically, the
Smag value between the two heat-capacity peaks reaches only
about 35% Rln2 and the value 1

2 Rln2 is reached only close to
the start of the high-temperature peak. The value of Smag at
120 K is only about 65% Rln2 and it seems unlikely that the
rest will be recovered under the tail of the high-temperature
peak beyond 120 K. The possibility that Li2SnO3 is not a
good approximation for the lattice heat capacity for Li2IrO3
presents itself. Nevertheless, the Cmag(T ) data with the two-
peak structure and the Smag(T ) with a shoulder between the two
peaks are qualitatively consistent with predictions for materials
close to Kitaev’s QSL [22].

We finally discuss the low-temperature behaviors of C(T )
for A2IrO3 and show that they follow qualitatively different
T dependences. Figure 4(a) shows the C versus T data for
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broad hump at high T in the specific heat, step-like shoulder in 
the entropy around (1/2)log2, and T-linear in mid T?
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Figure 2 | Thermodynamic signatures of spin fractionalization.
a, Temperature-dependent static magnetic susceptibility of ↵-RuCl3 plotted
in a semi-log scale for Hkab. The susceptibility deviates from the
Curie–Weiss behaviour (solid red line) below T = 140 K. The
low-temperature kink at TN =6.5 K indicates a zigzag-type AFM order.
b, Magnetic specific heat CM obtained by subtracting the lattice
contribution in a semi-log scale (see Supplementary Information). Besides
the AFM peak at TN, the broad bumps in TN .T.50 K and around
T =TH ' 100 K (vertical bar) are associated with excitations of localized
and itinerant Majorana fermions, respectively. CM exhibits a T-linear
dependence in the intermediate temperature 50 K.T.TH, as shown in
the inset, reflecting metal-like density of states of the itinerant Majorana
fermions. The spike at 165 K is due to a structural phase transition.
c, Magnetic entropy change, integrated CM, in the temperature range
2 K<T <200 K. The horizontal solid lines represent the expected total
entropy change Rln2 and its half value (R/2)ln2. The solid red line is a sum
of two phenomenological function fits based on the theoretical simulation,
indicating that the entropy release is decomposed into two fermionic
components (yellow and green shadings), as described in the
Supplementary Information.

(see Supplementary Information). Stot(Q, !) displays an hour-
glass shape spectrum centred at the 0-point extending to about
20meV with strong low-energy excitations around the 0-point

and high-energy Y-shaped excitations. Similar features are repro-
duced in the simulated spectra of the isotropic Kitaev model
with a FM Kitaev interaction JK = �16.5 meV by using the
CDMFT + continuous-time QMC method14 (see Fig. 3b). It is
worth noting that the spectral centre would move to the M-point
for an AFM JK (>0) (ref. 14). The low-energy feature represents
the quasielastic responses associated with the flux excitations, and
the Y-shaped Q-! dependence in the high-energy region reflects
the dispersive itinerant Majorana fermions extending to ! ⇠ |JK|
(refs 11,14). Both features are also clearly observable in the constant-
energy cuts Stot(Q), which also agree well with the theoretical calcu-
lations (Fig. 3c). According to the simulation, the excitation energy
of the itinerantMF at the K- andM-points corresponds to Kitaev JK.
Stot(Q) data (Fig. 3d) are again compared with the simulated values
(Fig. 3e) in 2D reciprocal space (Fig. 3f). The overall features are
well reproduced by the simulations, except the hexagram-shaped
Q-dependence of the low-energy Stot(Q) (! . 6meV), indicating
that the key character of the Majorana fermions is rather robust.
The hexagram-shaped Q-dependence is considered to be induced
by the second nearest-neighbour Kitaev interactions28 and/or sym-
metric anisotropy exchange interactions29,30 involving direct Ru–Ru
electron hopping, both of which are not considered in the pure Ki-
taev model. These interactions are weak, but become important at
low energies and temperatures.

Figure 4a,b presents the thermal evolution of the experimental
and simulated Smag(Q,!) (see Methods), respectively. At T =16K,
the hour-glass shape spectrum is maintained with minor reduction
in the overall intensity. Upon heating up to TH ⇠ 100 K (Kitaev
paramagnetic phase), the low-energy intensity involving localized
Majorana fermions is significantly reduced while the high-energy
intensity from itinerant Majorana fermions is almost maintained,
although the dichotomic feature becomes smeared with increasing
thermal fluctuations. Further heating across TH causes the high-
energy intensity to begin to decrease considerably. Well above
TH(T = 240 K), Smag(Q, !) exhibits only a featureless low back-
ground as in conventional paramagnets. The evolution of localized
and itinerant Majorana fermions with temperature are visualized in
the temperature–energy contour plots of Smag around the 0-point,
as presented in Fig. 4c (experiment) and 4d (simulation). The low-
energy excitations below ! ⇡ 4 meV appear at T . TH while the
high-energy excitations extend out to !⇠ |JK|. This is also evident
from the Smag(0, !) plots in Fig. 4e, which are consistent with
the simulations.

The quantitative agreement between the experiment and the
simulation is also excellent in the INS intensities for the low-
and high-energy excitations in an overall temperature range, as
shown in Fig. 4f,g, presenting the temperature dependences of the
corresponding integrations

R
Smag(0, !)d!. Meanwhile, one also

notices that the experiment deviates somewhat from the simu-
lation below ⇠50K only in the integration involving the low-
energy excitations (Fig. 4f). This is probably due to the presence
of the additional perturbing magnetic interactions in the real sys-
tem, whose influence might be apparent in the low-energy scale
to be detrimental to the low-energy flux excitations at low tem-
perature. Those perturbing interactions contribute the hexagram-
shaped Q-dependence in the low-energy Smag(Q) (see Fig. 3d),
which becomes isotropic above ⇠50K, as expected in the Kitaev
model (see Supplementary Information).

Tracing the magnetic entropy and evolution of the spin
excitations as a function of temperature, energy, and momen-
tum, we provide strong evidence for thermal fractionalization to
Majorana fermions of spin excitations. ↵-RuCl3 is well described
in the ferromagnetic Kitaev model and is proximate to the Kitaev
QSL. The key features of the thermal fractionalization predicted in
the pure Kitaev model are reproduced well in the thermodynamic
and spectroscopic results, although AFM order is developed below
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4
. (5)

These eigenvalues are shown in Fig. 12 as a function of δ/λ′.
When the temperature T is much lower than λ′ ≃ 1000 cm−1

[26], i.e., T <100 K, the magnetic property is determined by
the lowest Kramers doublet with E = E−

q . The eigen-states of
the lowest Kramers doublet are expressed as

ψ± = c1| ± 1,∓1/2⟩ + c2|0,±1/2⟩, (6)

where |ml,mS⟩ denotes the state with lz = ml and Sz = mS .
Coefficients c1 and c2 are given by

c1 = 1√
2

√

1 − A√
A2+1

, c2 = − 1√
2

√

1 + A√
A2+1

, (7)
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A = 2(δ/λ′) − 1

2
√
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Within the lowest Kramers doublet, we have

⟨ψ±|Sz|ψ±⟩ = ∓ 1
2

(
c2

1 − c2
2

)
,

⟨ψ+|S+|ψ−⟩ = ⟨ψ−|S−|ψ+⟩ = c2
2.

(9)

Using these relations, we can replace the true spin S with
S = 1/2 by the spin-1/2 operator s given by

Sx = c2
2s

x, Sy = c2
2s

y, Sz = −
(
c2

1 − c2
2

)
sz. (10)

We assume that the exchange interaction between true
spins Si and Sj is described by the Heisenberg model
Hex = J Si · Sj . Substituting Eq. (10) into Hex, we obtain the
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FIG. 12. (Color online) Energy levels of El and E±
q as a function
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Raman scattering at low T
anomalous incoherent component up to ~3JKitaev: signature of 
fractionalized excitations in the Kitaev QSL?

L. J. Sandilands et al., PRL 114, 147201 (2015)

experiment for α-RuCl3

Lehmann representation. To this end, we introduce a basis
jλi of many-body eigenstates of the Hamiltonian Ĥ0 þ V̂r.
We denote the corresponding energy as Eλ and the ground-
state energy of Ĥ0 as E0, and obtain

IxxH;zðωÞ ¼ 2π
X

λ

δðω − ΔλÞjhM0jλij2;

IxyH;zðωÞ ¼ 2π
X

λ

δðω − ΔλÞhM0jλihλjĉA;rĉB;rjM0i; ð8Þ

where Δλ ¼ Eλ − E0. Note that nonvanishing contributions
arise only from the excited states jλi having the same parity
as the ground state jM0i of matter fermions. We evaluate
numerically the dominant contributions I½0&H ðωÞ; I½2&H ðωÞ
arising from the zero and two-particle processes; details
are relegated to the Supplemental Material [37].
Results.—The Raman response, shown in Fig. 2, is

markedly different from known strongly polarization-
dependent behavior seen in the two-magnon response of
antiferromagnetically ordered systems [20–23]. In fact, the
characteristic features of the overall weakly polarization-
dependent response IðωÞ can be related either to the flux, or
to the Majorana fermion sector: First, a strong polarization-
independent Kitaev contribution IKðωÞ reflects the

Majorana fermion density of states in the ground state
flux sector; see Fig. 1(b). It shows a linear onset at low
energies, a sharp band edge at 12JK , and a dip at 4JK due to
the van Hove singularity. Second, a weaker Heisenberg
contribution is related to flux excitations, e.g., IHðωÞ ¼ 0
for ω < ΔF with the flux gap ΔF which is the difference in
ground-state energy of the zero- and four-flux sector. It has
a characteristic polarization dependence with a simple
overall intensity dependence on the relative angle θ
between incoming and outgoing photons as shown in the
inset of Fig. 2. It arises because the Heisenberg perturbation
belongs to a different irreducible representation of the
lattice translation group than both the Kitaev Hamiltonian
and its QSL ground state [28]. A striking feature is a sharp
peak at the energy of the four-flux gap ΔF ¼ 0.446JK
originating from the zero-particle contribution (the overlap
between ground states); see Eq. (8). This is a clear signature
of the flux excitation in the isotropic gapless QSL
(JxK ¼ JyK ¼ JzK). Note that usually sharp lines in Raman
scattering are attributed to optical phonons that appear at
different energy scales [20]. In addition, IHðωÞ has a broad
response in energy reflecting the two-particle density of
states of matter fermions propagating in the background of
four fluxes.
Our analysis of Raman response relies on the stability of

the Kitaev QSL with respect to the addition of small
Heisenberg exchanges (note that the latter is believed to be
small in the proposed Kitaev model realizations in iridates).
We expect that for small Heisenberg couplings, the features
which we find are robust, being only somewhat renormal-
ized by nonlocal fluctuations, such as the ones originating
from the dynamics of the fluxes generated by the
Heisenberg exchange (or disorder, which is present in real
materials). Crucially, there is a window of parameters
where the features which we find should be observable,
thus making Raman scattering an important experimental
tool for diagnosing Kitaev QSLs.
Discussion.—The calculation of the Heisenberg

contribution IHðωÞ to the Raman response is equivalent
to a nonequilibrium problem with a sudden insertion of four
fluxes. The Raman vertex of the Kitaev model does not
change the flux sector, but the integrability breaking
contribution due to Heisenberg interactions does. The latter
takes the form of a quantum quench which generates an
unusual sharp δ-function component in the response.
In general, we expect that for Kitaev-like models the

calculation of the correlation functions hÔðtÞÔð0Þi, whose
operators Ô change the flux sector, can be mapped to a
local quantum quench for Majorana fermions by exploiting
selection rules and by eliminating flux degrees of freedom
as pioneered for the spin correlation function in the original
Kitaev model [32]. This is true, for example, for the
calculation of spin correlations in generalizations of the
honeycomb model to higher dimensions [5–8,12] (or
possibly even to different classes [2–4]). At low

FIG. 2 (color online). The Raman response IðωÞ (black curve)
and its separate contributions (here JK ¼ 10JH). The Kitaev
contribution IKðωÞ, shown in green, is independent of the photon
polarization and shows characteristic features of the matter
fermion density of states, including the linear onset at low
energies and the band edge at 12JK , note an additional factor
of 2 in Eq. (6). The van Hove singularity at 2JK is seen as a small
dip at 4JK (due to a discontinuity of the derivative). The zero and
two-particle responses, I½0&H ðωÞ and I½2&H ðωÞ, of the Heisenberg
contribution are shown in blue and red (dashed line), respectively.
A δ-function peak occurs at the four flux gap ΔF ¼ 0.446JK ,
while the frequency dependence of the two-particle contribution
reflects the local two-particle density of states in the presence of
four fluxes. The overall polarization dependence of IHðωÞ on the
relative angle θ between incoming and outgoing photons is
shown in the inset. Accordingly, IKðωÞ only has contributions
from the doublet Eg-symmetry component, while IHðωÞ has both
A1g and Eg.
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Raman scattering: experiment
anomalous incoherent component, whose T dependence 
is not explained by bosonic contributions

L. J. Sandilands et al., PRL 114, 147201 (2015)

interaction in α-RuCl3 [24,25]. Scattering from fractional-
ized spin excitations is therefore an appealing interpretation
for the magnetic continuum. Indeed, a recent theoretical
work identified a broad Eg continuum, extending up to 3Jk
(where Jk is the Kitaev interaction defined earlier), as the
Raman signature of the Kitaev spin liquid [8]. Equating 3Jk
with the experimental upper cutoff of continuum scattering
of 20–25 meV yields JK ≈ 8 meV. On a more general,
empirical level, the broad line shape and temperature
dependence of the continuum in α-RuCl3 are reminiscent
of the behavior found in the putative spin liquid materials
herbertsmithite [6,37] and Cs2CuCl4 [7,38]. In these
compounds, the continuum scattering gains intensity as
spin liquid correlations develop. Cs2CuCl4 also orders at
low temperatures. Similar to α-RuCl3, the continuum
scattering in Cs2CuCl4 displays a minimal change upon
entering the ordered state, with well-defined magnons only
evident at very low energies and involving a small portion
of the total spectral weight [7]. Finally, a recent Raman
study of ðNa1−xLixÞ2IrO3 also reported a broad continuum
that was interpreted in terms of Kitaev QSL physics [39].
A second parallel between α-RuCl3 and herbertsmithite is

the presence of quasielastic scattering (QES) [6]. As can be
seen in Fig. 1(d), a QES component emerges in α-RuCl3 at
high temperatures in the A1g channel. Such scattering is
observed in a variety of low-dimensional magnetic systems
[28] and is usually assigned to fluctuations in the magnetic
energy density. In Fig. 2(c), we plot the A1g intensity IA1g

∼
Ixx − Ixy for select temperatures. This QES intensity
decreases down to 100 K, signifying a gradual evolution
of the low-energy spin dynamics, at which point it becomes
difficult to resolve in our data. This trend is borne out in the
A1g spectral weight, integrated from 4 to 17 meV, shown in
Fig. 2(d) [40]. This could be due to a reduction in the
intensity or scattering rate of the quasielastic fluctuations,
but we cannot discriminate between these two possibilities
with our experimental cutoff. Similar to the continuum
scattering, the QES displays a strong temperature

dependence far above the ordering temperature, as expected
for a low-dimensional, frustrated magnet [28].
In systems with moderate spin-phonon coupling, the

lattice dynamics provide an additional probe of the mag-
netic degrees of freedom. Indeed, the Fano line shape of
the Eg phonons is a signature of spin-phonon coupling in
α-RuCl3. The spectral region depicted in Fig. 3(a) is well
fitted at 5 K by a function consisting of the sum of two Fano
line shapes and a constant background term (see the
Supplemental Material [31]). In Figs. 3(b) and 3(c), we
show the linewidth (Γ) and mode frequency (ωo) for the
20 meV phonon. As shown in Fig. 3(c), the linewidth ΓðTÞ
displays a nonmonotonic temperature dependence. It
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continuum decreases as temperature is reduced to 100 K before increasing. This is more clearly resolved in the spectral weights shown in
(b) and (d). The behavior of the Eg continuum is at odds with the temperature dependence of the thermal factors expected for one
[nðωÞ þ 1] and two [ðnðωÞ þ 1Þ2] particle scattering and signals a change in the magnetic excitations near 100 K.

PRL 114, 147201 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

10 APRIL 2015

147201-3



Raman scattering: theory

mid energy: dominated by pair creation/annihilation ~(1-f)2 
low energy: dominated by creation & annihilation ~f(1-f) 

     ➡ Both reflect fermionic excitations of Majonaras

0

2

4

6

A
B

L=12
L=20

0

2

4

6

10
-2

10
-1

10
0

10
110

-2
10

-1
10

0
10

1
0.0

0.5

1.0

1.5

2.0

2.5

3.0

0

1

2

3

4

5

6

7

ω
/J

T/J

b

a

T* T**

T/J

T* T**

I l
o
w

I m
id

c

d

f (1-f )

(1-f )2

×10-3

×10-4

×10-3

Figure 3 Calculated Raman intensity for finite temperatures. a, ω dependences of

the Raman spectra I(ω) at several T . b, contour map of the Raman spectrum I(ω) in

the T -ω plane. c, integrated spectral weights Imid for 0.5 < ω/J < 1.5, and d, Ilow for

0.0 < ω/J < 0.25, whose energy ranges are indicated by the hatched and shaded areas

in Fig. 3a, respectively. Green dashed lines represent fits with aM [1 − f(ε∗M)]2 + bM for c

with ε∗M/J = 0.62; and aLf(ε∗L)[1− f(ε∗L)] + bL for d with ε∗L/J = 0.42 (see Supplementary

information). Here, f(ε) = (1 + eβε)−1 is the Fermi distribution function with zero chemical

potential. Horizontal dashed-dotted lines represent the values of Ilow and Imid at T = 0 7,23.

The red and blue areas in c and d highlight the contributions to the integrated Raman

intensities from the processes (A) and (B), respectively. Vertical dotted lines indicate two

crossover temperatures, T ∗ and T ∗∗.

17

(T=0) J. Knolle et al. (2014)

B. Perreault et al. (2015)

NATURE PHYSICS DOI: 10.1038/NPHYS3809 LETTERS

0

2

4

6

10−2 10−1 100 101
0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0
0

2

4

I(
) (

×1
0−3

)
ω

/Jω

/J
ω

6

8

0.5 1.0 1.5

T/J = 0

T/J = 0.0375

T ∗

T ∗∗

T/J = 0.75

T/J = 7.32.0 2.5 3.0

0

1

2

3

4

5

6

7

T/J
10−2 10−1 100 101

T/J

b

a

T∗ T∗∗ T∗ T∗∗

I m
id

 (×
10

−3
)

I lo
w

 (×
10

−4
)

c

d

(1 − f)2

f(1 − f)

0

2

4 A
B

L = 12
L = 20

(×10
−3)

Figure 3 | Calculated Raman intensity for finite temperatures. a, ! dependences of the Raman spectra I(!) at several T. b, Contour map of the
Raman spectrum I(!) in the T–! plane. c,d, Integrated spectral weights Imid for 0.5<!/J< 1.25 (c) and Ilow for 0.0<!/J<0.25 (d), whose energy
ranges are indicated by the hatched and shaded areas in Fig. 3a, respectively. Green dashed lines represent fits using aM[1� f("⇤

M)]2 +bM with
"⇤
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L )]+bL with "⇤
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is dominated by the process (A), which supports the scaling with
(1� f )2 (see Supplementary Information).

Meanwhile, the results presented in Fig. 3d covering the
low-energy window, Ilow for 0.0 < !/J < 0.25 (see the shaded
region in Fig. 3a), have a di�erent T -dependence. The increase
around T ⇤ is because the Dirac semimetallic dip in the itinerant
fermion system is filled in due to thermal fluctuations of the flux
fermions9. Moreover, with increasing T , Ilow saturates around the
high-T crossover T ⇤⇤. As shown in Fig. 3d, above T/J ⇠0.1, Ilow is
dominated by the process (B), indicating that the T dependence is
well fitted by f (1� f ). However, the intensity Ilow, is one order of
magnitude smaller than Imid.

Discussion
The striking T dependence of the Raman intensity observed in
experiments can be naturally attributed to the response from
fractionalized fermionic Majorana excitations, dominantly from
pairs of creation and annihilation of matter fermions. The T
dependence is qualitatively di�erent from that of conventional
insulating magnets which show bosonic Raman spectra from two-
magnon scattering24. It is important to note that here we are dealing
with a two-dimensional magnet13–15. In one dimension, there is no
such crisp distinction between Bose and Fermi statistics, as in the
absence of true exchange processes, bosons with hardcore repulsion

are rather similar to fermions obeying the Pauli principle; and on
the other hand the roles of topology and order in two dimensions
are quite distinct from a one-dimensional case25.

We note that the behaviour below and around Tc is non-
universal, as indicated by the strong sample dependence of Tc
(ref. 13,15). All features connected to the long-range ordering
quickly disappear above Tc, and the universal aspect related with
the dominant Kitaev interaction appears in a wide T range. In fact,
a recent exact diagonalization study presents evidence of fractional
excitations above Tc (ref. 26).

The crucial observation here is that the unexpected fermionic
contribution is clearly observed over a remarkably wide T range,
more than an order of magnitude higher than the transition
temperature into the incidental low-temperature Néel order. This
approach is distinct from the conventional quest for exotic
properties of QSLs, where the experimental hallmark of fermionic
excitations has mainly been pursued in asymptotic T behaviour—
for example, in the T -linear specific heat for temperatures much
lower than the interaction energy. However, the low-T analyses
of such thermodynamic quantities are further complicated by
the need to distinguish between QSLs, glassy behaviour, spurious
order, and other low-energy contributions typified, for example, by
nuclear spins. Our finding provides a direct way of identifying QSL
behaviour, and in particular, the presence of fermionic excitations.
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around T ⇤ is because the Dirac semimetallic dip in the itinerant
fermion system is filled in due to thermal fluctuations of the flux
fermions9. Moreover, with increasing T , Ilow saturates around the
high-T crossover T ⇤⇤. As shown in Fig. 3d, above T/J ⇠0.1, Ilow is
dominated by the process (B), indicating that the T dependence is
well fitted by f (1� f ). However, the intensity Ilow, is one order of
magnitude smaller than Imid.

Discussion
The striking T dependence of the Raman intensity observed in
experiments can be naturally attributed to the response from
fractionalized fermionic Majorana excitations, dominantly from
pairs of creation and annihilation of matter fermions. The T
dependence is qualitatively di�erent from that of conventional
insulating magnets which show bosonic Raman spectra from two-
magnon scattering24. It is important to note that here we are dealing
with a two-dimensional magnet13–15. In one dimension, there is no
such crisp distinction between Bose and Fermi statistics, as in the
absence of true exchange processes, bosons with hardcore repulsion

are rather similar to fermions obeying the Pauli principle; and on
the other hand the roles of topology and order in two dimensions
are quite distinct from a one-dimensional case25.

We note that the behaviour below and around Tc is non-
universal, as indicated by the strong sample dependence of Tc
(ref. 13,15). All features connected to the long-range ordering
quickly disappear above Tc, and the universal aspect related with
the dominant Kitaev interaction appears in a wide T range. In fact,
a recent exact diagonalization study presents evidence of fractional
excitations above Tc (ref. 26).

The crucial observation here is that the unexpected fermionic
contribution is clearly observed over a remarkably wide T range,
more than an order of magnitude higher than the transition
temperature into the incidental low-temperature Néel order. This
approach is distinct from the conventional quest for exotic
properties of QSLs, where the experimental hallmark of fermionic
excitations has mainly been pursued in asymptotic T behaviour—
for example, in the T -linear specific heat for temperatures much
lower than the interaction energy. However, the low-T analyses
of such thermodynamic quantities are further complicated by
the need to distinguish between QSLs, glassy behaviour, spurious
order, and other low-energy contributions typified, for example, by
nuclear spins. Our finding provides a direct way of identifying QSL
behaviour, and in particular, the presence of fermionic excitations.
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is dominated by the process (A), which supports the scaling with
(1� f )2 (see Supplementary Information).

Meanwhile, the results presented in Fig. 3d covering the
low-energy window, Ilow for 0.0 < !/J < 0.25 (see the shaded
region in Fig. 3a), have a di�erent T -dependence. The increase
around T ⇤ is because the Dirac semimetallic dip in the itinerant
fermion system is filled in due to thermal fluctuations of the flux
fermions9. Moreover, with increasing T , Ilow saturates around the
high-T crossover T ⇤⇤. As shown in Fig. 3d, above T/J ⇠0.1, Ilow is
dominated by the process (B), indicating that the T dependence is
well fitted by f (1� f ). However, the intensity Ilow, is one order of
magnitude smaller than Imid.
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The striking T dependence of the Raman intensity observed in
experiments can be naturally attributed to the response from
fractionalized fermionic Majorana excitations, dominantly from
pairs of creation and annihilation of matter fermions. The T
dependence is qualitatively di�erent from that of conventional
insulating magnets which show bosonic Raman spectra from two-
magnon scattering24. It is important to note that here we are dealing
with a two-dimensional magnet13–15. In one dimension, there is no
such crisp distinction between Bose and Fermi statistics, as in the
absence of true exchange processes, bosons with hardcore repulsion

are rather similar to fermions obeying the Pauli principle; and on
the other hand the roles of topology and order in two dimensions
are quite distinct from a one-dimensional case25.

We note that the behaviour below and around Tc is non-
universal, as indicated by the strong sample dependence of Tc
(ref. 13,15). All features connected to the long-range ordering
quickly disappear above Tc, and the universal aspect related with
the dominant Kitaev interaction appears in a wide T range. In fact,
a recent exact diagonalization study presents evidence of fractional
excitations above Tc (ref. 26).

The crucial observation here is that the unexpected fermionic
contribution is clearly observed over a remarkably wide T range,
more than an order of magnitude higher than the transition
temperature into the incidental low-temperature Néel order. This
approach is distinct from the conventional quest for exotic
properties of QSLs, where the experimental hallmark of fermionic
excitations has mainly been pursued in asymptotic T behaviour—
for example, in the T -linear specific heat for temperatures much
lower than the interaction energy. However, the low-T analyses
of such thermodynamic quantities are further complicated by
the need to distinguish between QSLs, glassy behaviour, spurious
order, and other low-energy contributions typified, for example, by
nuclear spins. Our finding provides a direct way of identifying QSL
behaviour, and in particular, the presence of fermionic excitations.
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Figure 2 | Comparison between the numerical results and the
experimental data for ↵-RuCl3. Main panel: blue circles represent QMC
data for a L=20 cluster for the integrated Raman intensity Imid shown in
Fig. 3c. The errors evaluated by the standard deviation of the MC samplings
are su�ciently smaller than the symbol size. Red squares are the experi-
mental data in the energy window from 5 to 12.5 meV (ref. 4), from which
the non-magnetic background is subtracted (see text). Green dashed lines
represent the fitting by aM[1� f("⇤

M)]2 +bM (see caption of Fig. 3). We take
J= 10 meV in calculating Imid. Inset: red squares show the experimental raw
data and the orange curve indicates the bosonic background. Note that the
assignment of the bosonic background is slightly di�erent from that in
ref. 4. Details of the fitting procedure are given in Methods.

Jx = Jy = Jz = J ; a small anisotropy plausible in real materials does
not alter our main conclusions (see Supplementary Information).
The thermodynamic behaviour exhibits two characteristic crossover
T -scales originating from fractionalization at T ⇤/J ⇠ 0.012 and
T ⇤⇤/J ⇠ 0.38: the former is related to the condensation of flux
Majorana fermions, set by the flux gap ⇠0.06J (ref. 2), whereas
the latter arises from the formation of matter Majorana fermions
at much higher T , set by their bandwidth ⇠1.5J .

Figure 3a shows the QMC data for the Raman spectrum I(!)
at several T . At T = 0, it exhibits !-linear behaviour in the
low-energy region, due to a linear Dirac dispersion of matter
Majorana fermions7. With increasing T above T ⇤, the low-energy
part increases and the ! = 0 contribution becomes nonzero, as
shown in the figure for T/J = 0.0375. At higher T , the broad peak

in the intermediate energy range at !/J ⇠ 1 is suppressed above
T ⇠ T ⇤⇤. Indeed, the Raman spectrum at T/J = 0.75 shows no
substantial energy dependence for 0<!/J .2, as shown in Fig. 3a.
For higher T , the intermediate-to-high-energy weight gradually
decreases. The T and ! dependence of the Raman spectrum is
summarized in Fig. 3b. The result clearly shows that the broad peak
structure is slightly shifted to the low-energy side above T ⇤ and the
spectrum becomes featureless above T ⇤⇤.

For further understanding of the T dependence of the Raman
spectra, it is helpful to work in a basis of complex matter
fermions constructed as a superposition of real Majorana fermions
(see Methods). These elementary excitations determine the
T -dependence because their occupation (in a fixed background
of fluxes) is given by the Fermi distribution function. In detail,
one needs to analyse two di�erent processes contributing to
Raman scattering23: one consists of creation or annihilation of
a pair of fermions (process (A)), with the other a combination
of the creation of one fermion and the annihilation of another
(process (B)) (see Methods for details). Process (A) is proportional
to [1� f ("1)][1� f ("2)]�(!�"1 �"2), where ! is the Raman
shift, and "1 and "2 are the energies of fermions (see Fig. 1b).
Process (B) is proportional to f ("1)[1� f ("2)]�(! + "1 � "2) and
vanishes at T = 0 due to the absence of matter fermions in the
ground state (see Fig. 1c). Because of their di�erent frequency
dependence—for example, (A) vanishes for !!0 at low T—their
distinct T -behaviour can be extracted by looking at di�erent
frequency windows.

Figure 3c shows the T dependence of the integrated spectral
weight in the intermediate energy window, Imid for 0.5<!/J <1.25
(see the hatched region in Fig. 3a). The same is used in Fig. 2 in
accordance with the frequency window for the experimental data
with J = 10meV. We emphasize that the value of J is consistent
not only with the spectral width and peak position of the Raman
continuum at the lowest T (ref. 4), but also with the inelastic
neutron scattering in ↵-RuCl3 (ref. 15). As shown in Fig. 3c, Imid
has a non-monotonic change as a function of T : it grows around
T ⇤ with increasing T , but turns over to decrease above T/J ⇠ 0.1,
yielding the shift of the peak structure in I(!) to the low-energy side
shown in Fig. 3b. Note that the decrease persists up to temperatures
much higher than J due to thermal fluctuations of the itinerant
Majorana fermions. We also highlight the contributions from the
processes (A) and (B) in Fig. 3c. The result clearly indicates that Imid
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Figure 2 | Comparison between the numerical results and the
experimental data for ↵-RuCl3. Main panel: blue circles represent QMC
data for a L=20 cluster for the integrated Raman intensity Imid shown in
Fig. 3c. The errors evaluated by the standard deviation of the MC samplings
are su�ciently smaller than the symbol size. Red squares are the experi-
mental data in the energy window from 5 to 12.5 meV (ref. 4), from which
the non-magnetic background is subtracted (see text). Green dashed lines
represent the fitting by aM[1� f("⇤

M)]2 +bM (see caption of Fig. 3). We take
J= 10 meV in calculating Imid. Inset: red squares show the experimental raw
data and the orange curve indicates the bosonic background. Note that the
assignment of the bosonic background is slightly di�erent from that in
ref. 4. Details of the fitting procedure are given in Methods.

Jx = Jy = Jz = J ; a small anisotropy plausible in real materials does
not alter our main conclusions (see Supplementary Information).
The thermodynamic behaviour exhibits two characteristic crossover
T -scales originating from fractionalization at T ⇤/J ⇠ 0.012 and
T ⇤⇤/J ⇠ 0.38: the former is related to the condensation of flux
Majorana fermions, set by the flux gap ⇠0.06J (ref. 2), whereas
the latter arises from the formation of matter Majorana fermions
at much higher T , set by their bandwidth ⇠1.5J .

Figure 3a shows the QMC data for the Raman spectrum I(!)
at several T . At T = 0, it exhibits !-linear behaviour in the
low-energy region, due to a linear Dirac dispersion of matter
Majorana fermions7. With increasing T above T ⇤, the low-energy
part increases and the ! = 0 contribution becomes nonzero, as
shown in the figure for T/J = 0.0375. At higher T , the broad peak

in the intermediate energy range at !/J ⇠ 1 is suppressed above
T ⇠ T ⇤⇤. Indeed, the Raman spectrum at T/J = 0.75 shows no
substantial energy dependence for 0<!/J .2, as shown in Fig. 3a.
For higher T , the intermediate-to-high-energy weight gradually
decreases. The T and ! dependence of the Raman spectrum is
summarized in Fig. 3b. The result clearly shows that the broad peak
structure is slightly shifted to the low-energy side above T ⇤ and the
spectrum becomes featureless above T ⇤⇤.

For further understanding of the T dependence of the Raman
spectra, it is helpful to work in a basis of complex matter
fermions constructed as a superposition of real Majorana fermions
(see Methods). These elementary excitations determine the
T -dependence because their occupation (in a fixed background
of fluxes) is given by the Fermi distribution function. In detail,
one needs to analyse two di�erent processes contributing to
Raman scattering23: one consists of creation or annihilation of
a pair of fermions (process (A)), with the other a combination
of the creation of one fermion and the annihilation of another
(process (B)) (see Methods for details). Process (A) is proportional
to [1� f ("1)][1� f ("2)]�(!�"1 �"2), where ! is the Raman
shift, and "1 and "2 are the energies of fermions (see Fig. 1b).
Process (B) is proportional to f ("1)[1� f ("2)]�(! + "1 � "2) and
vanishes at T = 0 due to the absence of matter fermions in the
ground state (see Fig. 1c). Because of their di�erent frequency
dependence—for example, (A) vanishes for !!0 at low T—their
distinct T -behaviour can be extracted by looking at di�erent
frequency windows.

Figure 3c shows the T dependence of the integrated spectral
weight in the intermediate energy window, Imid for 0.5<!/J <1.25
(see the hatched region in Fig. 3a). The same is used in Fig. 2 in
accordance with the frequency window for the experimental data
with J = 10meV. We emphasize that the value of J is consistent
not only with the spectral width and peak position of the Raman
continuum at the lowest T (ref. 4), but also with the inelastic
neutron scattering in ↵-RuCl3 (ref. 15). As shown in Fig. 3c, Imid
has a non-monotonic change as a function of T : it grows around
T ⇤ with increasing T , but turns over to decrease above T/J ⇠ 0.1,
yielding the shift of the peak structure in I(!) to the low-energy side
shown in Fig. 3b. Note that the decrease persists up to temperatures
much higher than J due to thermal fluctuations of the itinerant
Majorana fermions. We also highlight the contributions from the
processes (A) and (B) in Fig. 3c. The result clearly indicates that Imid
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Figure 2 | Comparison between the numerical results and the
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Jx = Jy = Jz = J ; a small anisotropy plausible in real materials does
not alter our main conclusions (see Supplementary Information).
The thermodynamic behaviour exhibits two characteristic crossover
T -scales originating from fractionalization at T ⇤/J ⇠ 0.012 and
T ⇤⇤/J ⇠ 0.38: the former is related to the condensation of flux
Majorana fermions, set by the flux gap ⇠0.06J (ref. 2), whereas
the latter arises from the formation of matter Majorana fermions
at much higher T , set by their bandwidth ⇠1.5J .

Figure 3a shows the QMC data for the Raman spectrum I(!)
at several T . At T = 0, it exhibits !-linear behaviour in the
low-energy region, due to a linear Dirac dispersion of matter
Majorana fermions7. With increasing T above T ⇤, the low-energy
part increases and the ! = 0 contribution becomes nonzero, as
shown in the figure for T/J = 0.0375. At higher T , the broad peak

in the intermediate energy range at !/J ⇠ 1 is suppressed above
T ⇠ T ⇤⇤. Indeed, the Raman spectrum at T/J = 0.75 shows no
substantial energy dependence for 0<!/J .2, as shown in Fig. 3a.
For higher T , the intermediate-to-high-energy weight gradually
decreases. The T and ! dependence of the Raman spectrum is
summarized in Fig. 3b. The result clearly shows that the broad peak
structure is slightly shifted to the low-energy side above T ⇤ and the
spectrum becomes featureless above T ⇤⇤.

For further understanding of the T dependence of the Raman
spectra, it is helpful to work in a basis of complex matter
fermions constructed as a superposition of real Majorana fermions
(see Methods). These elementary excitations determine the
T -dependence because their occupation (in a fixed background
of fluxes) is given by the Fermi distribution function. In detail,
one needs to analyse two di�erent processes contributing to
Raman scattering23: one consists of creation or annihilation of
a pair of fermions (process (A)), with the other a combination
of the creation of one fermion and the annihilation of another
(process (B)) (see Methods for details). Process (A) is proportional
to [1� f ("1)][1� f ("2)]�(!�"1 �"2), where ! is the Raman
shift, and "1 and "2 are the energies of fermions (see Fig. 1b).
Process (B) is proportional to f ("1)[1� f ("2)]�(! + "1 � "2) and
vanishes at T = 0 due to the absence of matter fermions in the
ground state (see Fig. 1c). Because of their di�erent frequency
dependence—for example, (A) vanishes for !!0 at low T—their
distinct T -behaviour can be extracted by looking at di�erent
frequency windows.

Figure 3c shows the T dependence of the integrated spectral
weight in the intermediate energy window, Imid for 0.5<!/J <1.25
(see the hatched region in Fig. 3a). The same is used in Fig. 2 in
accordance with the frequency window for the experimental data
with J = 10meV. We emphasize that the value of J is consistent
not only with the spectral width and peak position of the Raman
continuum at the lowest T (ref. 4), but also with the inelastic
neutron scattering in ↵-RuCl3 (ref. 15). As shown in Fig. 3c, Imid
has a non-monotonic change as a function of T : it grows around
T ⇤ with increasing T , but turns over to decrease above T/J ⇠ 0.1,
yielding the shift of the peak structure in I(!) to the low-energy side
shown in Fig. 3b. Note that the decrease persists up to temperatures
much higher than J due to thermal fluctuations of the itinerant
Majorana fermions. We also highlight the contributions from the
processes (A) and (B) in Fig. 3c. The result clearly indicates that Imid
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Raman scattering
similar (1-f)2 behavior was observed also in 3D iridium oxides

define a dynamic Raman susceptibility using Kramers–Kronig
relation wdyn ¼ limo!0wðk ¼ 0;oÞ $ 2

p

R1
0

w00ðoÞ
o do, that is, by

first extrapolating the data from the lowest energy measured down
to 0 meV and then integrating up to 200 meV. It is noteworthy to
mention that wdyn is in the dynamic limit of wstatic¼ limk-0w
(k,o¼ 0)36. Figure 2g,h plots the temperature dependence of
wdyn(T) of b- and g-Li2IrO3. Irrespective of polarization and
composition, wdyn(T) shows a similar variation with temperature.
On heating above TN, wdyn(T) increases rapidly and then saturates
for temperatures above T*¼ 220% 260 K. Remarkably, the energy
corresponding to T* is comparable to the Kitaev exchange inter-
action of Jz¼ 17 meV. We further note that the 2D Heisenberg–
Kitaev material a-RuCl3 exhibits also a drastic change of magnetic
dynamics through TBJz¼ 100–140 K (ref. 15). For temperatures
below T*, the power law gives a reasonable description of
wdyn(T)BTa with a¼ 1.58±0.05 and 2.64±0.09 in the respec-
tive (cc) and (ab) polarization for b-Li2IrO3 and a¼ 1.77±0.06 for
g-Li2IrO3. As discussed in Supplementary Fig. 3 and Supple-
mentary Note 3, wdyn(T) is temperature independent in the
paramagnetic phase as paramagnetic spins are uncorrelated.
This is contrasted to the power-law dependence of wdyn(T) in a
spin liquid. This power-law is associated with slowly decaying
correlations inherent to a spin liquid37 and the onset temperature
T* heralds a thermal fractionalization of Kitaev spins9.

We now compare the dynamic Raman susceptibility with the
static spin susceptibility given by SQUID magnetometry. As
evident from Fig. 2g,h, they behave in an opposite way. This
discrepancy indicates that a large number of correlated spins are
present in the limit o-0.

Fano resonance of optical phonon and magnetic specific heat.
The phonon Raman spectra unveil a strongly asymmetry lineshape

at 24 meV in b-Li2IrO3 (see Fig. 3a) that is well fitted by a Fano
profile I(o)¼ I0(qþ e)2/(1þ e2) (ref. 38). The reduced energy is
defined by e¼ (o%o0)/G where o0 is the bare phonon frequency,
G the linewidth and q the asymmetry parameter. In Fig. 3b,c, we
plot the resulting frequency shift, the linewidth and the Fano
asymmetry as a function of temperature. The errors are within a
symbol size. Based on lattice dynamical calculations (see
Supplementary Note 1), this phonon is assigned to an Ag sym-
metry mode, which involves contracting vibrations of Ir atoms
along the c axis (see the sketch in the inset of Fig. 3a). Therefore,
the observed anomalies could shed some light on the thermal
evolution of Kitaev physics, because a Fano resonance has its root
in strong coupling of phonons to a continuum of excitations.

With decreasing temperature, the Fano asymmetry, 1/|q|,
increases continuously and then becomes constant below the
magnetic ordering temperature. As clearly seen from Fig. 3b, the
temperature dependence of 1/|q| follows the two-fermion scattering
form (1% f (o))2, which gives a nice description of the temperature
dependence of the integrated I(o) (see Fig. 2c,d). It is striking
that the magnitude of the Fano asymmetry parallels a thermal
damping of the fermionic excitations. In a Kitaev honeycomb
system, spins are thermally fractionalized into the itinerant
Majorana spinons9. As a result, the continuum stemming from
the spin fractionalization strongly couples to lattice vibrations that
mediate the Kitaev interaction. It is noteworthy that the 24 meV
mode involves the contracting motion of the bridging bonds
between consecutive zigzag chains along the c axis. In addition,
a-RuCl3 shows a Fano resonance of a phonon, which reinforces our
assertion that the Fano asymmetry is an indicator of the thermal
fractionalization of spins into the Majorana fermions15.

As the temperature is lowered, phonon modes usually increase
in energy and narrow in linewidth due to a suppression of
anharmonic phonon–phonon interactions. Indeed, as shown in
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Figure 2 | Raman spectra and Raman conductivity v0 0(x)/x of b- and c-Li2IrO3 as a function of temperature. (a,b) Temperature dependence of the
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(see Supplementary Fig. 2 and Supplementary Note 2 for details).
Similar trends are observed in the polarization dependence of the
scattering intensity; the (ac) polarization spectrum has a much
stronger intensity than the (ab) polarization spectrum, being in
line with the theoretical calculations8. However, the low-energy
spectrum does not open an excitation gap in the (ab) scattering
channel and the fine spectral features anticipated in the bare
two-Majorana spinon density of states do not show up. There is
not much difference in the polarization dependence for the case
of g-Li2IrO3, which possesses three Majorana spinon bands and is
at the anisotropic point with JxaJyaJz (see Supplementary Fig. 2
and Supplementary Note 2 for the local bond geometry).
The absence of the sharp spectral features and polarization-
dependent spectral widths is ascribed to the unwanted
spin-exchange terms including Heisenberg, off-diagonal and
longer-range interactions. These subdominant terms on the one
hand lead to a weak confinement of Majorana spinons, rendering
the smearing out of the van-Hove singularities and the softening
of spectral weight. On the other hand, they give rise to a bosonic
(magnon) contribution to the magnetic continuum at low
energies. In this regard, the excitation gap in g-Li2IrO3
corresponds to an energy gap in the low-energy spin waves. As
the pseudospin s¼ 1/2 has a negligible single ion anisotropy, the
anisotropic Kitaev interactions of g-Li2IrO3 are responsible for
opening the large gap. Notably, no obvious energy gap is present
in the low-energy excitations of b-Li2IrO3 with nearly isotropic
Kitaev interactions.

Before proceeding, we estimate the Kitaev exchange interaction
Jz¼ 17 meV from the upper cutoff energy of the magnetic
continuum. The extracted value is almost two times bigger than
Jz¼ 8 meV of a-RuCl3 (ref. 15), being consistent with larger
spatial extent of Ir orbitals.

Evolution of fermionic excitations. The temperature dependence
of the Raman spectra was measured for both b- and g-Li2IrO3 in the
(cc) and (ac) scattering symmetries, respectively. The representative
spectra are shown in Fig. 2a,b. The broad magnetic continuum
marked with pink shading develops progressively into a quasi-elastic
response at low energies on heating through TN. The low-energy
magnetic scattering grows more rapidly in b- than g-Li2IrO3,
because the latter has the large excitation gap. The magnetic Raman
scattering at finite temperatures arises from dynamical spin fluc-
tuations in a quantum paramagnetic state and can provide a good
measure of the thermal fractionalization of quantum spins. The
integrated Raman intensity in the energy range of 1.5 Jzo‘oo3 Jz
is plotted as a function of temperature in Fig. 2c,d. The temperature
dependence of the integrated I(o) is well fitted by a sum of the Bose
and the two-fermion scattering contribution (1" f(o))2 with the
Fermi distribution function f ðoÞ ¼ 1=ð1þ e‘o=kBTÞ (ref. 35). The
Bose contribution describes bosonic excitations such as magnons,
whereas the two-fermion contribution is related to the creation
or annihilation of pairs of fermions. The deduced energy
‘o¼ 0.76" 79 Jz of fermions for b- and g-Li2IrO3 validates the
fitting procedure adopting a Fermi distribution function. Here we
stress that the thermal fluctuations of fractionalized fermionic
excitations are a Raman spectroscopic evidence of proximity to a
Kitaev spin liquid. Essentially the same fermionic excitations were
inferred from the T-dependence of the integrated spectral weight in
a-RuCl3 (ref. 35).

Figure 2e,f shows the Raman conductivity w00(o)/o versus
temperature. The Raman conductivity features a pronounced
peak centred at o¼ 0. The low-energy Raman response
exhibits a strong enhancement with increasing temperature. The
intermediate-to-high energy w00(o)/o above 30 meV dampens
hardly with temperature. From the Raman conductivity we can
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Figure 1 | Crystal structure of b- and c-Li2IrO3 and their Raman responses v0 0(x) in two different scattering channels. (a) Hyperhoneycomb lattice in
b- and g-Li2IrO3. Purple, red and grey balls are iridium, oxygen and lithium atoms, respectively. In b-Li2IrO3, the alternating blue and orange sticks depict the
twisted zigzag chains and the green sticks are the bond connecting the zigzag chains. In g-Li2IrO3, two iridium hexagons are arranged in an alternating way
along the c axis. (b,c) Polarization dependence of the Raman response w0 0(o) of b- and g-Li2IrO3 in (ac) and (ab) scattering channels measured at T¼6 K.
A magnetic continuum in (ab) polarization is painted with green shading. An additional magnetic excitation seen in (ac) polarization is highlighted with
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peaks. The arrows mark the local maximum of the spectral weight and the D symbol indicates an energy gap.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12286 ARTICLE

NATURE COMMUNICATIONS | 7:12286 | DOI: 10.1038/ncomms12286 | www.nature.com/naturecommunications 3

(see Supplementary Fig. 2 and Supplementary Note 2 for details).
Similar trends are observed in the polarization dependence of the
scattering intensity; the (ac) polarization spectrum has a much
stronger intensity than the (ab) polarization spectrum, being in
line with the theoretical calculations8. However, the low-energy
spectrum does not open an excitation gap in the (ab) scattering
channel and the fine spectral features anticipated in the bare
two-Majorana spinon density of states do not show up. There is
not much difference in the polarization dependence for the case
of g-Li2IrO3, which possesses three Majorana spinon bands and is
at the anisotropic point with JxaJyaJz (see Supplementary Fig. 2
and Supplementary Note 2 for the local bond geometry).
The absence of the sharp spectral features and polarization-
dependent spectral widths is ascribed to the unwanted
spin-exchange terms including Heisenberg, off-diagonal and
longer-range interactions. These subdominant terms on the one
hand lead to a weak confinement of Majorana spinons, rendering
the smearing out of the van-Hove singularities and the softening
of spectral weight. On the other hand, they give rise to a bosonic
(magnon) contribution to the magnetic continuum at low
energies. In this regard, the excitation gap in g-Li2IrO3
corresponds to an energy gap in the low-energy spin waves. As
the pseudospin s¼ 1/2 has a negligible single ion anisotropy, the
anisotropic Kitaev interactions of g-Li2IrO3 are responsible for
opening the large gap. Notably, no obvious energy gap is present
in the low-energy excitations of b-Li2IrO3 with nearly isotropic
Kitaev interactions.

Before proceeding, we estimate the Kitaev exchange interaction
Jz¼ 17 meV from the upper cutoff energy of the magnetic
continuum. The extracted value is almost two times bigger than
Jz¼ 8 meV of a-RuCl3 (ref. 15), being consistent with larger
spatial extent of Ir orbitals.

Evolution of fermionic excitations. The temperature dependence
of the Raman spectra was measured for both b- and g-Li2IrO3 in the
(cc) and (ac) scattering symmetries, respectively. The representative
spectra are shown in Fig. 2a,b. The broad magnetic continuum
marked with pink shading develops progressively into a quasi-elastic
response at low energies on heating through TN. The low-energy
magnetic scattering grows more rapidly in b- than g-Li2IrO3,
because the latter has the large excitation gap. The magnetic Raman
scattering at finite temperatures arises from dynamical spin fluc-
tuations in a quantum paramagnetic state and can provide a good
measure of the thermal fractionalization of quantum spins. The
integrated Raman intensity in the energy range of 1.5 Jzo‘oo3 Jz
is plotted as a function of temperature in Fig. 2c,d. The temperature
dependence of the integrated I(o) is well fitted by a sum of the Bose
and the two-fermion scattering contribution (1" f(o))2 with the
Fermi distribution function f ðoÞ ¼ 1=ð1þ e‘o=kBTÞ (ref. 35). The
Bose contribution describes bosonic excitations such as magnons,
whereas the two-fermion contribution is related to the creation
or annihilation of pairs of fermions. The deduced energy
‘o¼ 0.76" 79 Jz of fermions for b- and g-Li2IrO3 validates the
fitting procedure adopting a Fermi distribution function. Here we
stress that the thermal fluctuations of fractionalized fermionic
excitations are a Raman spectroscopic evidence of proximity to a
Kitaev spin liquid. Essentially the same fermionic excitations were
inferred from the T-dependence of the integrated spectral weight in
a-RuCl3 (ref. 35).

Figure 2e,f shows the Raman conductivity w00(o)/o versus
temperature. The Raman conductivity features a pronounced
peak centred at o¼ 0. The low-energy Raman response
exhibits a strong enhancement with increasing temperature. The
intermediate-to-high energy w00(o)/o above 30 meV dampens
hardly with temperature. From the Raman conductivity we can
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incarnadine shading. (d) Comparison of the Raman responses w0 0(o) between b- and g-Li2IrO3 in the (ac) scattering channel after subtracting phonon
peaks. The arrows mark the local maximum of the spectral weight and the D symbol indicates an energy gap.
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magnetic field strength; see the inset of Fig. 1(d). In the ab-
sence of the magnetic field (h = 0), the ground state of the
Kitaev model is exactly obtained by introducing itinerant Ma-
jorana fermions and localized Z2 fluxes W

p

, the latter of which
are defined for each hexagonal plaquette p on the honeycomb
lattice [8]. The ground state is given by all W

p

= +1 (flux-
free state), and the system is in a gapless QSL phase where
the itinerant Majorana fermion spectrum forms the massless
Dirac nodes. In contrast, there is a nonzero gap � ⇠ 0.065J in
the excitation of the localized Z2 fluxes.

When h is small enough compared to �, one can derive an
e↵ective model by using the third-order perturbation, whose
Hamiltonian is given by [8]
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sents neighboring three sites, where the neighboring pair j j
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0) are located on an ↵ (�) bond and � is taken to be neither
↵ nor �. The Hamiltonian H̃ is exactly soluble for all h̃, while
H in Eq. (1) is not for h , 0 [8]. This is shown by, e.g., in-
troducing two kinds of Majorana fermions c

j

and c̄

j

[24–26],
which enable to rewrite the Hamiltonian into a bilinear form
in terms of c

i

as H̃ = 1
2
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})c
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}) is a pure-
imaginary Hermite matrix dependent on ⌘
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0 , which is a
Z2 conserved quantity taking ±1 on the z bond b = h j j
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[27].
The flux in the plaquette p is given by W

p

= ⌘
b1⌘b2 , where b1

and b2 are the z bonds included in the hexagon p. The three-
spin term in Eq. (2) turns into second-neighbor hopping of c

j

in the bilinear Hamiltonian. Interestingly, this hopping term
opens a gap in the Dirac spectrum of the Majorana fermion
system and yields a chiral edge mode within the gap [8], sim-
ilar to the Haldane model showing the quantum anomalous
Hall e↵ect in a zero magnetic field [28]. This topological na-
ture was confirmed for the original model in Eq. (1) [29]. We
note that, in addition to the second term in Eq. (2), the third-
order perturbation in terms of h leads to another three-spin
interactions described by interactions between the Majorana
fermions c, which is supposed be irrelevant to the Dirac gap
opening and omitted in the following analysis [8, 30].

The bilinear Majorana representation for Eq. (2) admits
us to perform QMC simulations without the negative sign
problem [15, 31, 32]. To evaluate the thermal conductiv-
ity, we introduce the energy polarization operator defined as
P
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=
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0
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0 [33]. We
set the Boltzmann constant k

B

and the reduced Planck con-
stant ~ to be unity. The energy current is introduced as
J

E

= @P
E

@t = i[H̃ , P
E

]. In the Majorana fermion sys-
tem, as the chemical potential is always fixed to zero re-
gardless of the configuration of {⌘

b

}, the energy current is
equivalent to the heat current J

Q

. The thermal conductiv-
ity µ⌫ (µ, ⌫ = x, y) is obtained by using the Kubo formula
as µ⌫Kubo(!) = 1

TV
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FIG. 1. (a) Longitudinal thermal conductivity, xx = lim!!0 xx(!),
plotted with the specific heat C

v

and (b) xx/T as functions of T . T

⇤

and T

⇤⇤ are two crossover temperatures, determined from the broad
peaks in C

v

. (c) Contour map of xx(!) on the T -! plane calculated
for the L = 20 cluster. (d) Integrated intensity I

xx =
R 1

0 
xx(!)d!.

The inset of (d) represents the honeycomb lattice on the xy plane
where the Kitaev model is defined in an applied magnetic field h

along the z direction [Eq. (1)]. The di↵erent bond colors illustrate
three di↵erent types of bonds in the Kitaev model.

constant. While the longitudinal component is simply given
by µµ(!) = µµKubo(!), the transverse component µ⌫(!) needs
a contribution from “the gravitational magnetization” in addi-
tion to µ⌫Kubo(!) [34, 35]. We calculate µ⌫(!) for about 300
samples taken from the 40,000 MC steps after 10,000 MC
steps for thermalization, in the 30 ⇥ 30 supercell of the 2L

2

cluster used in the MC simulations. The details of the calcu-
lation are given in Supplemental Material [27].

First, we examine the longitudinal component of the ther-
mal conductivity xx(= yy) in the absence of magnetic field
h̃ = 0. Figure 1(a) shows the T dependence of xx =
lim!!0 xx(!) [27]. We also display the specific heat C

v

in
Fig. 1(a). C

v

has two broad peaks at T

⇤ ' 0.012J and
T

⇤⇤ ' 0.375J due to thermal fractionalization [32]: the low-T
crossover at T

⇤ comes from the release of a half of ln 2 entropy
related to the localized Z2 fluxes W

p

, while the high-T one at
T

⇤⇤ is by the rest half from the itinerant Majorana fermions.
In contrast, we find that xx exhibits only a single broad peak
near T

⇤⇤. The result is far from the conventional wisdom that
predicts xx / C

v

. This discrepancy is a direct consequence
of the thermal fractionalization of quantum spins. Among the
fractional quasiparticles, only the itinerant Majorana fermions
can carry heat. Hence, xx has a substantial contribution only
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magnetic field strength; see the inset of Fig. 1(d). In the ab-
sence of the magnetic field (h = 0), the ground state of the
Kitaev model is exactly obtained by introducing itinerant Ma-
jorana fermions and localized Z2 fluxes W

p

, the latter of which
are defined for each hexagonal plaquette p on the honeycomb
lattice [8]. The ground state is given by all W

p

= +1 (flux-
free state), and the system is in a gapless QSL phase where
the itinerant Majorana fermion spectrum forms the massless
Dirac nodes. In contrast, there is a nonzero gap � ⇠ 0.065J in
the excitation of the localized Z2 fluxes.

When h is small enough compared to �, one can derive an
e↵ective model by using the third-order perturbation, whose
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↵ nor �. The Hamiltonian H̃ is exactly soluble for all h̃, while
H in Eq. (1) is not for h , 0 [8]. This is shown by, e.g., in-
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The flux in the plaquette p is given by W
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b1⌘b2 , where b1

and b2 are the z bonds included in the hexagon p. The three-
spin term in Eq. (2) turns into second-neighbor hopping of c

j

in the bilinear Hamiltonian. Interestingly, this hopping term
opens a gap in the Dirac spectrum of the Majorana fermion
system and yields a chiral edge mode within the gap [8], sim-
ilar to the Haldane model showing the quantum anomalous
Hall e↵ect in a zero magnetic field [28]. This topological na-
ture was confirmed for the original model in Eq. (1) [29]. We
note that, in addition to the second term in Eq. (2), the third-
order perturbation in terms of h leads to another three-spin
interactions described by interactions between the Majorana
fermions c, which is supposed be irrelevant to the Dirac gap
opening and omitted in the following analysis [8, 30].

The bilinear Majorana representation for Eq. (2) admits
us to perform QMC simulations without the negative sign
problem [15, 31, 32]. To evaluate the thermal conductiv-
ity, we introduce the energy polarization operator defined as
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tem, as the chemical potential is always fixed to zero re-
gardless of the configuration of {⌘
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}, the energy current is
equivalent to the heat current J
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FIG. 1. (a) Longitudinal thermal conductivity, xx = lim!!0 xx(!),
plotted with the specific heat C

v

and (b) xx/T as functions of T . T

⇤

and T

⇤⇤ are two crossover temperatures, determined from the broad
peaks in C

v

. (c) Contour map of xx(!) on the T -! plane calculated
for the L = 20 cluster. (d) Integrated intensity I

xx =
R 1

0 
xx(!)d!.

The inset of (d) represents the honeycomb lattice on the xy plane
where the Kitaev model is defined in an applied magnetic field h

along the z direction [Eq. (1)]. The di↵erent bond colors illustrate
three di↵erent types of bonds in the Kitaev model.

constant. While the longitudinal component is simply given
by µµ(!) = µµKubo(!), the transverse component µ⌫(!) needs
a contribution from “the gravitational magnetization” in addi-
tion to µ⌫Kubo(!) [34, 35]. We calculate µ⌫(!) for about 300
samples taken from the 40,000 MC steps after 10,000 MC
steps for thermalization, in the 30 ⇥ 30 supercell of the 2L

2

cluster used in the MC simulations. The details of the calcu-
lation are given in Supplemental Material [27].

First, we examine the longitudinal component of the ther-
mal conductivity xx(= yy) in the absence of magnetic field
h̃ = 0. Figure 1(a) shows the T dependence of xx =
lim!!0 xx(!) [27]. We also display the specific heat C

v

in
Fig. 1(a). C

v

has two broad peaks at T

⇤ ' 0.012J and
T

⇤⇤ ' 0.375J due to thermal fractionalization [32]: the low-T
crossover at T

⇤ comes from the release of a half of ln 2 entropy
related to the localized Z2 fluxes W

p

, while the high-T one at
T

⇤⇤ is by the rest half from the itinerant Majorana fermions.
In contrast, we find that xx exhibits only a single broad peak
near T

⇤⇤. The result is far from the conventional wisdom that
predicts xx / C

v

. This discrepancy is a direct consequence
of the thermal fractionalization of quantum spins. Among the
fractional quasiparticles, only the itinerant Majorana fermions
can carry heat. Hence, xx has a substantial contribution only
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magnetic field strength; see the inset of Fig. 1(d). In the ab-
sence of the magnetic field (h = 0), the ground state of the
Kitaev model is exactly obtained by introducing itinerant Ma-
jorana fermions and localized Z2 fluxes Wp, the latter of which
are defined for each hexagonal plaquette p on the honeycomb
lattice [8]. The ground state is given by all Wp = +1 (flux-
free state), and the system is in a gapless QSL phase where
the itinerant Majorana fermion spectrum forms the massless
Dirac nodes. In contrast, there is a nonzero gap ∆ ∼ 0.065J in
the excitation of the localized Z2 fluxes.

When h is small enough compared to ∆, one can derive an
effective model by using the third-order perturbation, whose
Hamiltonian is given by [8]

H̃ = −J
∑

γ=x,y,z

∑

⟨ j j′⟩γ
S γj S

γ
j′ − h̃

∑

[ j j′′ j′]αβγ

S αj S βj′′S
γ
j′ , (2)

where the effective magnetic field h̃ ∼ h3/∆2; [ j j′′ j′]αβγ repre-
sents neighboring three sites, where the neighboring pair j j′′
( j′′ j′) are located on an α (γ) bond and β is taken to be neither
α nor γ. The Hamiltonian H̃ is exactly soluble for all h̃, while
H in Eq. (1) is not for h ! 0 [8]. This is shown by, e.g., in-
troducing two kinds of Majorana fermions c j and c̄ j [24–26],
which enable to rewrite the Hamiltonian into a bilinear form
in terms of ci as H̃ = 1

2
∑

j j′ c jA j j′ ({ηb})c j; A({ηb}) is a pure-
imaginary Hermite matrix dependent on ηb = ic̄ jc̄ j′ , which is a
Z2 conserved quantity taking ±1 on the z bond b = ⟨ j j′⟩z [27].
The flux in the plaquette p is given by Wp = ηb1ηb2 , where b1
and b2 are the z bonds included in the hexagon p. The three-
spin term in Eq. (2) turns into second-neighbor hopping of c j
in the bilinear Hamiltonian. Interestingly, this hopping term
opens a gap in the Dirac spectrum of the Majorana fermion
system and yields a chiral edge mode within the gap [8], sim-
ilar to the Haldane model showing the quantum anomalous
Hall effect in a zero magnetic field [28]. This topological na-
ture was confirmed for the original model in Eq. (1) [29]. We
note that, in addition to the second term in Eq. (2), the third-
order perturbation in terms of h leads to another three-spin
interactions described by interactions between the Majorana
fermions c, which is supposed be irrelevant to the Dirac gap
opening and omitted in the following analysis [8, 30].

The bilinear Majorana representation for Eq. (2) admits
us to perform QMC simulations without the negative sign
problem [15, 31, 32]. To evaluate the thermal conductiv-
ity, we introduce the energy polarization operator defined as
PE =

∑
j j′

r j+r j′
2 H̃ j j′ , where H̃ j j′ =

1
2 c jA j j′c j′ [33]. We

set the Boltzmann constant kB and the reduced Planck con-
stant ! to be unity. The energy current is introduced as
JE =

∂PE
∂t = i[H̃ , PE]. Note that JE includes not only {c j} but

also {ηb} in the Majorana fermion representation [27]. In the
Majorana fermion system, as the chemical potential is always
fixed to zero regardless of the configuration of {ηb}, the en-
ergy current is equivalent to the heat current JQ. The thermal
conductivity κµν (µ, ν = x, y) is obtained by using the Kubo
formula as κµνKubo(ω) = 1

TV

∫ ∞
0 dtei(ω+iδ)t

∫ β
0 dλ⟨JµQ(−iλ)JνQ(t)⟩,

where JµQ(t) = eiH̃ t JµQe−iH̃ t, β = 1/T is the inverse tem-
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FIG. 1. (a) Longitudinal thermal conductivity, κxx = limω→0 κxx(ω)
and (b) κxx/T as functions of T . In (a), we also plot the specific heat
Cv for L = 20. T ∗ and T ∗∗ are two crossover temperatures, deter-
mined from the broad peaks in Cv. (c) Contour map of κxx(ω) on the
T -ω plane calculated for the L = 20 cluster. (d) Integrated intensity
Ixx =

∫ ∞
0 κ

xx(ω)dω. The inset of (d) represents the honeycomb lat-
tice on the xy plane where the Kitaev model is defined in an applied
magnetic field h along the z direction [Eq. (1)]. The different bond
colors illustrate three different types of bonds in the Kitaev model.

perature, V is the volume of the system, and δ is a positive
infinitesimal constant. While the longitudinal component is
simply given by κµµ(ω) = κµµKubo(ω), the transverse component
κµν(ω) needs a contribution from “the gravitational magneti-
zation” in addition to κµνKubo(ω) [34, 35]. We calculate κµν(ω)
on the 30 × 30 superlattice of the 2L2-site cluster with config-
urations of {ηr} generated by the QMC simulations [36, 37]:
we take 300 samples from the 40,000 MC steps after 10,000
MC steps for thermalization. The details of the calculation are
given in Supplemental Material [27].

First, we examine the longitudinal component of the ther-
mal conductivity κxx(= κyy) in the absence of magnetic field
h̃ = 0. Figure 1(a) shows the T dependence of κxx =
limω→0 κxx(ω) [27]. We also display the specific heat Cv in
Fig. 1(a). Cv has two broad peaks at T ∗ ≃ 0.012J and
T ∗∗ ≃ 0.375J due to thermal fractionalization [32]: the low-T
crossover at T ∗ comes from the release of a half of ln 2 entropy
related to the localized Z2 fluxes Wp, while the high-T one at
T ∗∗ is by the rest half from the itinerant Majorana fermions.
In contrast, we find that κxx exhibits only a single broad peak
near T ∗∗. The result is far from the conventional wisdom that
predicts κxx ∝ Cv. This discrepancy is a direct consequence
of the thermal fractionalization of quantum spins. Among the
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FIG. 3. (a) Temperature T dependence of the total thermal
conductivity κ (circles) presented in Fig. 2 and the phonon thermal
conductivity κph (dashed lines) estimated using the Debye model (see
text). (b) T dependence of a deviation of κ from κph, "κ = κ − κph.
(c) T dependence of the magnetic specific heat Cmag of α-RuCl3.
Cmag was estimated by subtracting the lattice specific heat from the
specific heat of α-RuCl3, following the procedure in Ref. [21]. The
inset shows the T dependence of the mean free path lmag of magnetic
excitations in α-RuCl3 estimated using an elementary kinetic theory
(see text). Data of the thermal conductivity and the specific heat were
taken using α-RuCl3 samples grown by the same group and the same
method.

spin waves in magnetically ordered states are irrelevant to the
peak around Tp = 110 K as Tp is much higher than the ordering
temperatures (<15 K) of α-RuCl3. Instead, Tp corresponds to
the strength of the 2D Kitaev couplings reported for α-RuCl3
(∼100 K). In this high-T range, a continuum of Raman
scattering [19], persistent short-range spin correlation [23,25],
as well as fermionic response [37] were reported and attributed
to 2D Kitaev coupling.

We are in a position to characterize "κ presumably related
to the Kitaev couplings of α-RuCl3. Below, we assume
that a paramagnetic state of α-RuCl3 is proximate to the
Kitaev spin liquid and that the broad peak in "κ originates
from itinerant Majorana fermions. The assumption allows us
to use the 2D elementary kinetic theory for the magnetic
thermal conductivity κmag, given by κmag = Cmag vmag lmag/2
to analyze "κ . Here, vmag and lmag are, respectively, the
velocity and the mean free path of the magnetic excitations.
We note that the quasiparticle picture is supported also by a
Fermi-liquid behavior identified in the numerical calculation
in Ref. [12]. Microscopic models have not been established yet
to quantitatively capture the magnetic properties of α-RuCl3;
to estimate lmag, therefore, we simply assume that κmag is
driven by the Kitaev couplings J α ∼ 100 K (α = x,y,z) alone

and that vmag is given by averaging the Majorana-fermion
group velocity of the Kitaev honeycomb model [10,33,53]
in a certain region of the Brillouin zone [54]. The velocity
vmag is then found to be 1620 m s−1 by setting the Kitaev
couplings to be 100 K. By putting "κ = κmag and using the
experimental data of Cmag and κmag, lmag was found to be
10–20 nm between 60 and 110 K [55], into which the data
for all the samples fit, as shown in the inset to Fig. 3(c).
The result implies that the excitations can carry entropy over
a distance up to 60 times as long as the nearest Ru-Ru
distance (∼3 Å). Although our estimation is reliable only
on a qualitative level, it suggests that the anomalous heat
conduction is due to the coherent propagation of itinerant
spin excitations around Tp, which has not been revealed by
measurements of the magnetic susceptibility nor the specific
heat performed so far. Further evidence for the magnetic
origin may be derived from investigating purely phononic heat
conduction in a nonmagnetic analog of α-RuCl3, for example,
ScCl3, that has a similar honeycomb lattice [56].

Conclusion. In this Rapid Communication, we have investi-
gated the temperature dependence of the thermal conductivity
of the Mott insulator α-RuCl3, whose magnetism is related
to a Kitaev honeycomb model. The thermal conductivity was
observed to exhibit a subpeak structure around 110 K that
is insensitive to interlayer crystal stacking faults. Compared
with the temperature dependence of the magnetic specific heat,
the broad peak in the thermal conductivity was attributed to
itinerant spin excitations. Applying a kinetic approximation
to the magnetic thermal conductivity yielded a long mean
free path that was up to 60 times longer than the nearest
interspin distance between 60 and 110 K. This result suggests
the coherent propagation of itinerant spin excitations due to
Kitaev couplings, possibly itinerant Majorana fermions.

Note added. Recently, we became aware of experimental
work by Leahy et al. [57] and Hentrich et al. [58], who
both focused on the high-field dependence of the thermal
conductivity of α-RuCl3 at low temperatures. Their results
obtained at zero field are well consistent with ours, especially
a kink around 8 K. In addition, Do et al. [59] recently reported
the temperature dependence of the magnetic specific heat of
α-RuCl3, and observed a broad peak structure at about 100 K,
consistent with our result. We also became aware of theoretical
work by Nasu et al. [60]. Their computation with the use of
the Kitaev model showed that itinerant Majorana fermions
contribute to the longitudinal thermal conductivity and the
magnetic specific heat within the same temperature range,
which qualitatively reproduces our result.
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on both T and H is the same in each case, and we focus on
these general features. Quantitatively, our samples show
differences in peak heights and widths, which we relate to
their age and defect content in Sec. SI of the SM [26]. On
cooling at zero field (ZF), κ0ðTÞ ¼ κðT;H ¼ 0Þ has a
broad peak near 25 K and decreases down to the magnetic
ordering temperature TC ≃ 6.3 K, which is identified both
from the upturn in κ and from the magnetic susceptibility
(data not shown). This value of TC is identified clearly in
all our crystals, testifying to their high as-grown quality,
with no contamination from structures of different layer
stackings [27]. For T < TC, κ0ðTÞ shows a weak maximum
before decreasing to zero. κðT; 14 TÞ differs dramatically
from κ0ðTÞ at all temperatures below 60 K. Its peak at
intermediate T is suppressed, broader, and lies at a higher
temperature, whereas below T ≃ 12 K it has a strong low-T
peak that is completely absent from κ0ðTÞ.
Focusing on this low-T regime, Figs. 1(b) and 1(c)

show κðTÞ at constant fields H ¼ 0, 5, 7, 8.5, 10, 12, and
14 T. Because the ordered state has a large magnon
gap [28], the weak low-T, low-H feature is in fact an
enhanced phonon contribution. This is suppressed with
increasing field, and the minimum marking TC is visible
up to H ¼ 5 T. At H ¼ Hmin ≃ 7 T, both the phonon
enhancement and the minimum disappear. Further
increase of H causes the appearance of the low-T peak,
whose height grows linearly with H −Hmin, leading to
rounded maxima around 5 K at 14 T. We have collected
detailed low-T data (0.3 < T < 3 K) at H > Hmin for
Sample 2 [Fig. 1(c)] and find that these do not display an
activated form; the alternative of a power-law form
demonstrates clearly that this feature is the contribution
of a gapless excitation.

The nonmonotonic evolution with H and the strong
high-field enhancement of κ are clearly evident in the
isothermal H dependence. Figure 2(a) presents κðH; TÞ for
Sample 1 as a color contour map, showing the minimum
region around Hmin and maxima at high T or high H. The
fractional change of κðHÞ, Δκ=κ0 ¼ ðκðHÞ − κ0Þ=κ0, is
shown in Fig. 2(b) for a range of T values. κðHÞ and
ΔκðHÞ=κ0 show an initial decrease, before turning over at
Hmin and increasing rapidly. HminðTÞ remains around 7 T
for T < TC, but becomes rapidly larger as T is increased
beyond TC, making the minima shallower until at T ¼
20 K Hmin is pushed outside our measurement range. Our
measured value Hmin ≃ 7 T for T < 10 K coincides with
the critical field (HC) for the field-induced phase transition
observed in bulk magnetization [24] and specific-heat
measurements [29]. Further, the magnetization in this field
range is far from saturation [24,29] and it is safe to
conclude that the system is only weakly spin polarized
above Hmin.
In general, κ contains multiple terms whose effects can

be difficult to separate. For α-RuCl3, the presence and
location of Hmin are fundamental properties of the phase
diagram and four further, distinctive features provide clues
about the primary contributions to κ. These are (i) the local
minimum in κðTÞ occurring at TC at small H [Figs. 1(b)
and 1(c)], (ii) the slow decrease of κðHÞ when H increases
from zero [Fig. 2(b)], (iii) the properties of the low-T peak
in κðTÞ at H > Hmin [Figs. 1(b) and 1(c)], and (iv) the
suppression and shift of the intermediate-temperature con-
tribution by the applied field [Fig. 1(a)].
Features (i) and (ii) can be explained within a conven-

tional framework. The magnetic anisotropy of RuCl3

FIG. 1. (a) In-plane thermal conductivity κðTÞ shown up to
100 K for Samples 1, 2, and 3 at μ0H ¼ 0 T (squares) and 14 T
(triangles). The solid lines are a guide to the eye. (b) Low-
temperature detail of κðTÞ for a range of H values, shown for
Sample 1. (c) κðTÞ at low T for Sample 2.

FIG. 2. (a) κðT;HÞ for Sample 1, represented by color contours.
The horizontal lines correspond to field sweeps measuring κðHÞ
at fixed T. (b) Relative thermal conductivity differenceΔκðHÞ=κ0
shown for the fixed values of T highlighted in panel (a); the
curves are presented with constant offsets.
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Inelastic neutron scattering
continuum up to ~8 meV for both below and above TN, 
persistent up to ~80 K (powder sample)

α-RuCl3
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Figure 5 | Disagreements with classical SWT and agreement with QSL calculations. a, Scattering from mode M1 measured using INS at T =5 K using
Ei =8 meV. Lower panel shows constant-energy cuts over the energy ranges shown, centred at the locations labelled (G,H) in the upper panel. The absence
of structured scattering below 2 meV confirms the gap in the magnetic excitation spectrum. b, Constant-E cuts of the data through the upper mode at four
di�erent temperatures, of which one curve at T =5 K is below TN (red squares) and rest above TN. The lines are guides to the eye. c, A constant-Q cut of
the Ei =25 meV, T =5 K data in the Q range shown. The blue triangles show the M2 portion of the cut B in Fig. 3c, but with the linear background term
subtracted, and the blue line is a fit to a Gaussian peak. As discussed in the text, the red line shows simulated SWT scattering and the green line shows the
scattering calculated from a Kitaev QSL response function. The shaded area represents magnetic scattering that is not captured by the SWT. The
double-ended arrow marked ‘R’ shows the full-width at half-maximum (FWHM) of the instrumental resolution of 0.5 meV at 6.5 meV. In panels a–c, the
error bars represent 1� (see Methods). d, The powder-averaged scattering calculated from a 2D isotropic Kitaev model, with antiferromagnetic K, using the
results of ref. 10, including the magnetic form factor. The upper feature is broad in energy and decreases in strength largely monotonically as Q increases.

non-dispersing high-energy band appears, centred at an energy
that corresponds approximately to the Kitaev exchange scale, K .
(For a similar calculation on the ferromagnetic Kitaev model, and
a general discussion, see Supplementary Fig. 6 and Supplementary
Information) The intensity of the upper band is strongest at Q=0,
and decreases with increasing Q.

With the Kitaev interaction dominant it is reasonable to expect
that ↵-RuCl3 is proximate to the QSL phase. The additional non-
Kitaev interactions lead to long-range order at low temperatures,
and strongly a�ect the low-energy excitations, which then exhibit
spin wave behaviour. Conversely, the high-energy spin fluctuations
native to the proximate quantum ground state are more immune,
and can persist even in the ordered state. This behaviour is well
known in coupled S= 1/2 antiferromagnetic Heisenberg chains6,
where at energies large compared to the interchain coupling the

spectrum of fractionalized excitations (spinons) of the pure chain
dominates the response above and below the magnetic ordering
temperature. This leads to a natural interpretation of the M2 mode
as having the same origin as the upper mode of the Kitaev QSL.
The broad width of the M2 mode as seen in the measurements
can be naturally explained in terms of the fractionalized Majorana
fermion excitations. The green line in Fig. 5c shows the calculated
powder-averaged QSL scattering, including the e�ects of instru-
mental resolution, with the value K =5.5meV chosen to match the
experimental peak position of M2 and the overall height chosen to
match the observed scattering. The calculatedQSL scattering profile
is wellmatched to the observed additional width of theM2 scattering
on the high-energy side. This value of K is slightly smaller than
that inferred from SWT, but it is very reasonable to expect that the
quantum description requires a renormalized parameter. The large

6

© 2016 Macmillan Publishers Limited. All rights reserved
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S(q,ω): theory

cf. T. Suzuki et al., Phys. Rev. B 92, 184411 (2015), Y. Yamaji et al., Phys. Rev. B 93, 174425 (2016)

dichotomy of spin excitation: 
- growth of continuum up to ω~J 

below T~T*(high) 

- growth of quasi-elastic response 
as approaching Τ*(low)

K Γ M K Γ M K Γ M K Γ M K
T ⇠ 2.5T ⇤(high)T ⇠ 1.5T ⇤(low) T ⇠ 0.5T ⇤(high)T ⇠ 0.5T ⇤(low)

2.0

S(�,!)

T ⇤(low) T ⇤(high)

J. Yoshitake, J. Nasu, and Y. Motome, Phys. Rev. Lett. 117, 157203 (2016) 
J. Yoshitake, J. Nasu, Y. Kato, and Y. Motome, Phys. Rev. B 96, 024438 (2017) 
J. Yoshitake, J. Nasu, and Y. Motome, Phys. Rev. B 96, 064433 (2017)

high Tlow T

T ⇤(low) T ⇤(high)

cf. T=0: J. Knolle et al., (2014)



S(q,ω): comparison
continuum up to ~12meV, persistent up to >100K (single crystal): 
fairly good agreement with our theory in (T,ω,q) dependences

α-RuCl3

S.-H. Do, S.-Y. Park, J. Yoshitake, J. Nasu, Y. Motome et al., Nature Physics 13, 1709 (2017)
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Figure 4 | Evolution of the two Majorana fermion excitations. a. Magnetic scattering function 357 

GLMN J, K  at T = 16, 75, 125, and 240 K. The two data sets with an incoming neutron energy of Ei = 358 

22 meV (upper panel) and 10 meV (down panel) are combined together. The white regions mark the 359 

lack of detector coverage. b. Calculated GLMN J, K 	at T = 0.09, 0.375, 0.69, and 1.32 #$  with #$ = 360 

-16.5 meV for comparison with the experimental data. c-d. Comparison of contour plot of the 361 
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cf. A. Banerjee et al., Nature Materials 15, 733 (2016); Science 356, 1055 (2017); npj Quantum Materials 3, 8 (2018)



Summary: Majoranization

many signatures of spin fractionalization 
in physical observables

useful for identifying 
the Kitaev QSLs

Kitaev QSL conventional paramagnetfractionalized paramagnet

T . J/100T = 0 T ⇠ 0.4J

Majoranas w/ disordered fluxesMajoranas w/ no flux

Dirac-type semimetal “Majorana metal”

S=1/2“Fermi degeneracy” 
of itinerant Majoranafreezing of Z2 fluxes

➡



Supplemental: dimension matters

J. Nasu, M. Udagawa, and Y. Motome, Phys. Rev. Lett. 113, 197205 (2014) 
J. Nasu, M. Udagawa, and Y. Motome, Phys. Rev. B 92, 115122 (2015) 

3D hyperhoneycomb

0.0040

0.0042

0.0044

0.0046

0.0048

0.0050

0.0052

0.000 0.002 0.004 0.006 0.008 0.010

L=3

L=4

L=5

L=6C
v

C
v

T

T

A

B

1/N

T
c
’

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 0.001  0.01  0.1  1  10

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 0.002  0.003  0.004  0.005  0.006  0.007  0.008  0.009  0.01
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as a function of the inverse of the system size N . The dotted line represents the linear fit for
three largest N .
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sharp peak growing and becoming 
narrower with the system size 

➡ phase transition !!

broad peak almost independent 
of the system sizes 
➡ just a crossover



Supplemental: “liquid-gas” transition
J. Nasu, M. Udagawa, and Y. Motome, Phys. Rev. Lett. 113, 197205 (2014)

QSL

T=0

T=0
QSL

phase transition
- caused by proliferation of “loops” made of flipped Z2 fluxes 

(hard local constraint for Wp specific to 3D) 
- characterized by the Wilson loop (global order parameter)

“Fermi degeneracy” 
of itinerant Majorana

freezing of 
Z2 fluxes

crossover crossover

crossover

2D

3D

NB. A similar transition was also observed on the hyperoctagon lattice.
P. A. Mishchenko, Y. Kato, and YM, PRB 96, 125124 (2017)



Perspectives
Further comparison between theory and experiment 
- detailed analysis for Kitaev and non-Kitaev signatures for 

further critical comparison 

search for other candidate materials 
- intercalation, exfoliation, … 
- d7 high-spin systems 
- f-electron systems 

effect of a magnetic field

H. Liu and G. Khaliullin: Phys. Rev. B 97, 014407 (2018)  
R. Sano, Y. Kato, and Y. Motome: Phys. Rev. B 97, 014408 (2018)

F.-Y. Li et al., Phys. Rev. B 95, 085132 (2017)  
J. G. Rau and M. J. P. Gingras: preprint (arXiv:1802.03024)

K. Kitagawa et al., Nature 554, 341 (2018) 
M. Ziatdinov et al., Nat. Commun. 7, 13774 (2016)  
B. Zhou et al., J. Phys. Chem. Solids, in press

R. Yadav et al., Sci Rep. 6, 37925 (2016); I. A. Leahy et al., Phys. Rev. Lett. 118, 187203 (2017);  
U. B. Wolter et al.: Phys. Rev. B 96, 041405(R) (2017); S.-H. Baek et al., Phys. Rev. Lett. 119, 037201 (2017);  
J. Zheng et al.: Phys. Rev. Lett. 119, 227208 (2017); A. Little et al., Phys. Rev. Lett. 119, 227201 (2017);  
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experimental detection of the fingerprint of Z2 fluxes 
- so far, all the signatures are for itinerant Majorana fermions 
- important toward quantum computations: how to generate 

and control the fractionalized excitations 

further exotic transitions in 2D and 3D extensions 
- transition to a chiral spin liquid 
- other symmetry breaking? 
- frustration in the Z2 fluxes? 

… and more !

Perspectives

J. Nasu and YM, Phys. Rev. Lett. 115, 087203 (2015) 
Y. Kato et al., Phys. Rev. B 96, 174409 (2017)

K. O’Brien, M. Hermanns, and S. Trebst, Phys. Rev. B 93, 085101 (2016)
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TABLE I. Overview of elementary tricoordinated lattices in three spatial dimensions. Following the classification of Wells [23], we only
consider lattices of fixed polygonality p (i.e., a fixed length of all elementary closed loops) and vertex coordination c = 3 using the Schläfli
symbol (p,c) followed by a letter. For each lattice, we list alternative names used in the literature along with some basic lattice information
including the number of sites Z in the unit cell, whether the lattice exhibits a (nontrivial) sublattice symmetry (see also the discussion in the
main text), whether the lattice exhibits (nontrivial) inversion symmetry and provide the space-group information. More technical details, such
as precise unit-cell definitions including Wyckoff positions, can be found in an extensive appendix.

Alternative Sites in Sublattice Inversion
Space-group

Lattice names unit cell symmetry symmetry symbol No.

(10,3)a hyperoctagon [19], Laves graph [25], K4 crystal [26] 4 k0 ̸= 0 chiral I4132 214
(10,3)b hyperhoneycomb [14] 4 ! ! Fddd 70
(10,3)c 6 ! chiral P 3112 151

(9,3)a 12 ! R3̄m 166
(9,3)b 24 ! P 42/nmc 137

(8,3)a 6 k0 ̸= 0 chiral P 6222 180
(8,3)b 6 k0 ̸= 0 ! R3̄m 166
(8,3)c 8 ! ! P 63/mmc 194
(8,3)n 16 ! k̃0 ̸= 0 I4/mmm 139

(6,3) honeycomb 2 ! !

emergent Majorana metal depends on the underlying lattice
geometry. We do so by considering Kitaev models for the
most elementary three-dimensional, tricoordinated lattices,
i.e., lattices that have elementary loops of only one fixed length
[22]. For instance, the well-known honeycomb lattice is the
only tricoordinated lattice with elementary loops of length 6.
However, there are multiple lattice structures with elementary
loops of lengths 7, 8, 9 or 10 (and possibly higher), which
are all three dimensional. In fact, such three-dimensional,
tricoordinated structures have been comprehensively classified
in the work of Wells in the 1970s [23]. Here, we focus on
those lattice structures that exhibit equidistant bonds and
approximately 120◦ bond angles at every vertex [24]. An
overview of the so-identified family of three-dimensional,
tricoordinated lattice structures and their basic properties is
provided in Table I. A convenient way to systematically label
the individual lattices is to use the so-called Schläfli symbol
(p,c) followed by a letter, where p is the fixed polygonality
(or elementary loop length) of the lattice, c = 3 refers to
the tricoordination of the vertices, and the additional letter
simply enumerates the lattices for a given Schläfli symbol. It
should be noted that some of these lattices are well known
in the literature under alternative names. These include the
(10,3)a lattice, which has long been known as the Laves
graph [25] in the crystallographic literature or as K4 crystal
[26] in the mathematical literature. It has also been renamed
hyperoctagon lattice [19] by some of the authors of this paper
in an earlier study. Similarly, the (10,3)b lattice has recently
gained some attention under the name hyperhoneycomb lattice
[14] after it had been discovered as the iridium-sublattice in
the iridate β-Li2IrO3.

It is precisely this family of tricoordinated lattice structures
that serves as principal input in our quest to comprehensively
discuss three-dimensional Kitaev models in the following. We
show that these Kitaev models harbor a plethora of gapless spin
liquids that can be cast as different incarnations of Majorana
metals whose precise nature can be systematically understood
from a basic symmetry analysis.

Overview of results

Before going into a detailed discussion of the Kitaev models
for these individual lattices, we provide a brief overview of our
main results. For all but one lattice, i.e., (8,3)n, we find that
there is an extended gapless spin-liquid phase around the point
of isotropic coupling, i.e., Jx ∼ Jy ∼ Jz. This gapless phase
is best described as a Majorana metal (or semimetal) since it
is the band structure of the itinerant Majorana fermions that
exhibits gapless excitations, while the vison excitations of the
static Z2 gauge field remain gapped for all lattices [27]. A
summary of our results characterizing the various Majorana
metals for different lattice geometries is provided in Table II.

TABLE II. Overview of Majorana metals in three-dimensional
Kitaev models. Shown is a characterization of the nodal structure
of the metallic states formed by the itinerant Majorana fermions in
the gapless spin-liquid phase of three-dimensional Kitaev models
defined on tricoordinated lattices of Table I. Results for the pure
Kitaev model (1) are given in the second column. The third column
provides information on how the nodal structure changes if the Kitaev
model is augmented by an explicit time-reversal symmetry (TRS)
breaking magnetic field term (i.e., a magnetic field pointing along the
111 direction). The asterisk indicates that for these two lattices we
are providing results for the lowest-energy flux sector that does not
break any point-group symmetries of the lattice.

Lattice Majorana metal TRS breaking

(10,3)a Fermi surface Fermi surface
(10,3)b Nodal line Weyl nodes
(10,3)c Nodal line Fermi surface

(9,3)a∗ Weyl nodes Weyl nodes

(8,3)a Fermi surface Fermi surface
(8,3)b Weyl nodes Weyl nodes
(8,3)c∗ Nodal line Weyl nodes
(8,3)n Gapped Weyl nodes

(6,3) Dirac cones Gapped

085101-2
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TABLE I. Overview of elementary tricoordinated lattices in three spatial dimensions. Following the classification of Wells [23], we only
consider lattices of fixed polygonality p (i.e., a fixed length of all elementary closed loops) and vertex coordination c = 3 using the Schläfli
symbol (p,c) followed by a letter. For each lattice, we list alternative names used in the literature along with some basic lattice information
including the number of sites Z in the unit cell, whether the lattice exhibits a (nontrivial) sublattice symmetry (see also the discussion in the
main text), whether the lattice exhibits (nontrivial) inversion symmetry and provide the space-group information. More technical details, such
as precise unit-cell definitions including Wyckoff positions, can be found in an extensive appendix.

Alternative Sites in Sublattice Inversion
Space-group

Lattice names unit cell symmetry symmetry symbol No.

(10,3)a hyperoctagon [19], Laves graph [25], K4 crystal [26] 4 k0 ̸= 0 chiral I4132 214
(10,3)b hyperhoneycomb [14] 4 ! ! Fddd 70
(10,3)c 6 ! chiral P 3112 151

(9,3)a 12 ! R3̄m 166
(9,3)b 24 ! P 42/nmc 137

(8,3)a 6 k0 ̸= 0 chiral P 6222 180
(8,3)b 6 k0 ̸= 0 ! R3̄m 166
(8,3)c 8 ! ! P 63/mmc 194
(8,3)n 16 ! k̃0 ̸= 0 I4/mmm 139

(6,3) honeycomb 2 ! !

emergent Majorana metal depends on the underlying lattice
geometry. We do so by considering Kitaev models for the
most elementary three-dimensional, tricoordinated lattices,
i.e., lattices that have elementary loops of only one fixed length
[22]. For instance, the well-known honeycomb lattice is the
only tricoordinated lattice with elementary loops of length 6.
However, there are multiple lattice structures with elementary
loops of lengths 7, 8, 9 or 10 (and possibly higher), which
are all three dimensional. In fact, such three-dimensional,
tricoordinated structures have been comprehensively classified
in the work of Wells in the 1970s [23]. Here, we focus on
those lattice structures that exhibit equidistant bonds and
approximately 120◦ bond angles at every vertex [24]. An
overview of the so-identified family of three-dimensional,
tricoordinated lattice structures and their basic properties is
provided in Table I. A convenient way to systematically label
the individual lattices is to use the so-called Schläfli symbol
(p,c) followed by a letter, where p is the fixed polygonality
(or elementary loop length) of the lattice, c = 3 refers to
the tricoordination of the vertices, and the additional letter
simply enumerates the lattices for a given Schläfli symbol. It
should be noted that some of these lattices are well known
in the literature under alternative names. These include the
(10,3)a lattice, which has long been known as the Laves
graph [25] in the crystallographic literature or as K4 crystal
[26] in the mathematical literature. It has also been renamed
hyperoctagon lattice [19] by some of the authors of this paper
in an earlier study. Similarly, the (10,3)b lattice has recently
gained some attention under the name hyperhoneycomb lattice
[14] after it had been discovered as the iridium-sublattice in
the iridate β-Li2IrO3.

It is precisely this family of tricoordinated lattice structures
that serves as principal input in our quest to comprehensively
discuss three-dimensional Kitaev models in the following. We
show that these Kitaev models harbor a plethora of gapless spin
liquids that can be cast as different incarnations of Majorana
metals whose precise nature can be systematically understood
from a basic symmetry analysis.

Overview of results

Before going into a detailed discussion of the Kitaev models
for these individual lattices, we provide a brief overview of our
main results. For all but one lattice, i.e., (8,3)n, we find that
there is an extended gapless spin-liquid phase around the point
of isotropic coupling, i.e., Jx ∼ Jy ∼ Jz. This gapless phase
is best described as a Majorana metal (or semimetal) since it
is the band structure of the itinerant Majorana fermions that
exhibits gapless excitations, while the vison excitations of the
static Z2 gauge field remain gapped for all lattices [27]. A
summary of our results characterizing the various Majorana
metals for different lattice geometries is provided in Table II.

TABLE II. Overview of Majorana metals in three-dimensional
Kitaev models. Shown is a characterization of the nodal structure
of the metallic states formed by the itinerant Majorana fermions in
the gapless spin-liquid phase of three-dimensional Kitaev models
defined on tricoordinated lattices of Table I. Results for the pure
Kitaev model (1) are given in the second column. The third column
provides information on how the nodal structure changes if the Kitaev
model is augmented by an explicit time-reversal symmetry (TRS)
breaking magnetic field term (i.e., a magnetic field pointing along the
111 direction). The asterisk indicates that for these two lattices we
are providing results for the lowest-energy flux sector that does not
break any point-group symmetries of the lattice.

Lattice Majorana metal TRS breaking

(10,3)a Fermi surface Fermi surface
(10,3)b Nodal line Weyl nodes
(10,3)c Nodal line Fermi surface

(9,3)a∗ Weyl nodes Weyl nodes

(8,3)a Fermi surface Fermi surface
(8,3)b Weyl nodes Weyl nodes
(8,3)c∗ Nodal line Weyl nodes
(8,3)n Gapped Weyl nodes

(6,3) Dirac cones Gapped
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for these individual lattices, we provide a brief overview of our
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