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Superposition of all realizable states

Ensemble average



: arbitrary orthonormal basis 

 : random complex numbers  
   

Thermal Pure Quantum States

(      and      obey normal distribution with mean = 0 and variance = 1)

s.t.

The canonical thermal pure quantum (cTPQ) state at temperature         is 
defined as

High energy cut-offRandom number
Arbitrary basis

SS and A. Shimizu, PRL (2013)

Equilibrium value
For           , 

: Free energy density
:Variance of : Ensemble average, 

SS and A. Shimizu, PRL (2012)

“Typicality”



A single realization of the TPQ state gives  
equilibrium values of all macrocscopic quantities. 

Number Density Correlation Function

Specific Heat

Numerical Applications of TPQ state
M. Hyuga, SS, K. Sakai, A.Shimizu ,PRB(2014)

SS and A.Shimizu, arXiv (2013)



Is such a state metaphysical?
No, such states are realized in ultracold atoms experiments.

Initial state

By I.Bloch’s Group (S. Trotzky,et.al, Nat. Phys.(2012))

By M.Greiner’s Group (A.Kaufman,et.al, Science(2016) 
“Quantum thermalization through entanglement in an isolated many-body system”)

Quenched state

Quantum

Not But rather



Bipartite Entanglement Entropy

When a system is devided into A and B;

Renyi entanglement entropy

It quantifies a quantum correlation 
between A and B.

Hilbert space: 

Quantum state: 

A                       B

When we look locally, the thermodynamic entropy is recovered as the 
entanglement entropy
When we look grobally, quantum correlation breaks the correspondence 
between the thermal and entanglement entropy. 

What is the role of the entanglement entropy in thermalization?

We consider isolated quantum system 
Hamiltonian:

Time evolution: 

Ĥ

e�
i
~ Ĥ | i



A                       B

What is the role of the entanglement entropy in thermalization?

In this talk, I focus on…  
   Volume-law entanglement, i.e., 
   the state has finite energy density 
   The second (         ) Renyi entropy

Experiment

(Kaufman et.al., Science, 2016)

And more…  (P. Calabrese and J. Cardy 
 J. Stat Mech 2007 

 T.Takayanagi and T. Ugajin 
JHEP 2010 …..)

Energy eigenstates

(Garrison et.al, arXiv, 2015)
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Chi Tranter “snow monkeys in hot spring Japan”  
https://www.flickr.com/photos/chitranter/14212780326/
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Steve Harris “dsc_7150-monkeys.jpg”  
https://www.flickr.com/photos/steveharris/47049240/



Renyi Entropy of TPQ state
Let’s calculate the Renyi entropy for the TPQ state; 

Reduced density matrix 

Therefore, we can calculate               :

Just consider n=2 (&3) case in this talk.



Renyi Entropy

2nd Renyi

Using

we get

Randomness in cTPQ state



2nd Renyi Entropy

Step1)  For large         , by using transfer matrices, we can prove

Therefore, 

Step2)  For large    , the free energy is extensive, i.e., 

, and
: const.

Finally, we get

We evaluate 2nd Renyi entropy in statistical-mechanical way: 

: const.Extensivity of density matrix



2nd Renyi entropy is characterized just by two parameters,      and      .

Volume law

Constant offset
Deviation around

Right at the middle,         , the deviation is always        , independent of    .

Analytical Result:  
         2nd Renyi Entropy of cTPQ states

Key of derivation
Randomness in cTPQ state
Extensivity of density matrix



Numerical calculation

We will use our analytical result for the cTPQ states 
as a fitting function for other excited pure states.

Entanglement entropy of  
the cTPQ states

Entanglement entropy of 
excited pure quantum states

(Garrison and Grover, arXiv, 2015)

It works when the state is scrambled,  
and doesn’t when it isn’t.



Numerical calculation 1: Energy eigenstates

Energyeigenstate Thermalization Hypothesis (ETH) (Deutsch, Srednicki, Rigol) :
In nonintegrable systems, a single energy eigenstate is 
expected to represent a thermal equilibrium state.

Popular expectation in ETH: At              ,                                    .

: Energy eigenstate : Inverse temperature  
  estimated from Energy

However,                     and            will be very different at 

How about entanglement?

We will test our fitting function for energy eigenstates.



What’s this oscillation?

Non-integrable

Numerical calculation 1: Energy eigenstates

Energy eigenstates agree with the function: 

At              , volume law. Consistent to Energy eigenstate thermalization  
hypothesis (ETH)
At              ,      still exhibits generic behavior predictable by our formula

Integrable

Dots: numerical data 
Line: Fittings



Dots: numerical data 
Line: Fittings

What’s this oscillation?

Non-integrable Integrable

In the integrable model, there are a lot of energy eigenstates for which 
the fittings don’t work.

Let’s see this difference quantitatively. 

Numerical calculation 1: Energy eigenstates



What’s this oscillation?

Non-integrable Integrable

    Vertical axis: Residues of fittings of energy eigenstates 
Horizontal axis: Index of eigenstates. Eigenstates are sorted in order 
                           of their residues, i.e., percentile.

L large

L large

Non-integrable: Fittings improves as L increases. Leads to typical behavior. 
Integrable: Fittings gets worse as L increases, maybe due to many conserved  
                  quantities.     Cf) L.Vidmar,L.Hackl,E.Bianchi, M.Rigol PRL.119,020601(2017)

Numerical calculation 1: Energy eigenstates

Bad

Good

Effect of energy fluctuation in microcanonical energy shell
Cf) T.Grover et.al, arXiv 1503.00729 &1709.08784,  A.Dymarsky, N.Lashkari,& H.Liu, arXiv 1611.08764



Correction from energy fluctuation

However, energy fluctuation is different

Renyi entropy has the correction  which comes from the energy fluctuation…

⇢mc/2 ⌘ TrB |nihn| '
e��Ĥ

Z
?

von Neumann Entropy

SvN(⇢̂) ⌘ �TrA[⇢ln⇢]SvN(⇢̂mc) = SvN(
e��Ĥ

Z
)

hn|(�Ĥ)2|ni = 0 h�|(�Ĥ)2|�i = O(L)

 (T.Grover et.al, arXiv 1709.08784,  A.Dymarsky, N.Lashkari,& H.Liu, arXiv 1611.08764)

S2(⇢̂mc) 6= S2(
e��Ĥ

Z
)



What’s this oscillation?

Non-integrable Integrable

L large

L large

Numerical calculation 1: Energy eigenstates

Bad

Good

Consider microcanonical-type TPQ state |Ei ⌘ 1p
D(E)

X

n2energyshell

cn|ni

2nd Renyi entropy is S2 = � ln
h
trA

⇣
trB (⇢̂mc)

2
⌘
+ trB

⇣
trA (⇢̂mc)

2
⌘i  (T.Grover et.al, 

arXiv 1709.08784)

This correction in non-integrable model is subtle effect only appear in 
eigenstates and in large L (and is easily fixable). 
By contrast, the behavior is completely different in integrable model



In integrable systems, a state after quench may relaxes to  
some stationary state, but it never thermalize.

Quench protocol Initial state: 

Thermal state (Gibbs ensemble)
                         , characterized by temperature       , and 
                                                              many integrals of motions : Lagrangian multiplier

              , characterized  
only by temperature        . 

Generalized Gibbs Ensemble (GGE)

Thermalize?
Yes! No ☹

It locally relaxes to…It locally relaxes to…

How about entanglement?

Numerical calculation 2: States after quantum quench

We suddenly change Hamiltonian from 
                                                       to

Integrable Hamiltonian



Non-integrable

Integrable

Numerical calculation 2: States after quantum quench

After the entanglement entropy 
saturates, it oscillates around our 
predicted curve.



Non-integrable

Integrable The time averages agree with our 
fitting.

Even the state has O(L) local integrables of motions,                         , 
 2nd Renyi entropy is still characterized only by two parameters!

Numerical calculation: States after quantum quench

After the entanglement entropy 
saturates, it oscillates around our 
predicted curve.



Why it works?

Key of derivation
Randomness in cTPQ state
Extensivity of density matrix

In the case of a stationary state after a quench, the quantum state is 

| i =
X

n

e�
i
~Enan|ni

If                 for           and                                  for            and           , 

And the 2nd Renyi entropy is

Ei 6= Ej i 6= j Ei � Ej 6= Ek � Ej i 6= k j 6= l
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Why it works?

Key of derivation
Randomness in cTPQ state
Extensivity of density matrix

S2 = � ln
h
trA

⇣
trB (⇢̂dia)

2
⌘
+ trB

⇣
trA (⇢̂dia)

2
⌘i

In the case of non-integrable model, 

Thermal state (Gibbs ensemble)

              , characterized  
only by temperature        . 

trA
⇣
trB (⇢̂dia)

2
⌘
= Ka�a

                         , characterized by temperature       , and 
                                                              many integrals of motions : Lagrangian multiplier

Generalized Gibbs Ensemble (GGE)
In the case of integrable model, 

h |(�Ĥ)2| i = O(L)Since                                     ,



Numerical calculation 3: Many-body Localization

It shows ETH-MBL transition. 

(D. J. Luis, N. Laflorencie, and F. Alet, PRB(R) 2015)

     : drawn from a uniform distribution 

(values at ε=0.5)

MBL phase ETH phase 

It is an eigenstate transition (dynamical transition), which cannot be 
captured by the equilibrium values of ensembles.

(D. Pekker, G. Refael, E. Altman, E.A.Demler, 
And V. Oganesyan,, PRX 2013)



Numerical calculation 3: Many-body Localization
ETH phase What kind of eigenstates?

MBL phase 

| "i ⌦ 1p
2
(| "#i+ | #"i)⌦ | #i ⌦ | #i ⌦ | "i ⌦ | "i

Area law

Numerical caululations  

(D. J. Luis, N. Laflorencie, and F. Alet, PRB(R) 2015)(V.Khemani,S.P.Lim, D.N.Sheng. and D.A.Huse, PRB 2017)
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Numerical calculation 3: Many-body Localization

Problem: Harris bound requires           , and thus this result violates the bound… 

Our formula becomes 
 a remedy:

(Cf Conventional way: 
                                    )

It shows ETH-MBL transition. 
At the middle of the spectrum,  

(D. J. Luis, N. Laflorencie, and F. Alet, PRB(R) 2015)

(A. Chandran, C. R. Laumann, and V. Oganesyan, arXiv, 2015)

     : drawn from a uniform distribution 

Our formula helps to estimate the slope of 
the volume-law precisely. 

Estimation of the critical exponent        is so improved that the 
value is very close to satisfy Harris bound           .



Summary

TPQ state:

Universal structure of Renyi entropy is obtained at finite temperature

ETH-MBL transition is detected accurately

Renyi Entropy:

2nd Renyi of Energy eigenstates  
obeys our prediction

2nd Renyi of State after Quench to integrable  
obeys our prediction

arXiv: 1703.02993


