非エルミート系の物理: 量子ウォークによるアプローチ Non-Hermitian Physics: An approach of quantum walks

北海道大学 工学研究院 小布施 秀明

統計物理学懇談会 2022年3月10日

Importance of (discrete-time) quantum walks

Quantum walk defines a fundamental equation for discrete-time quantum dynamics.

Quantum walk:

- Quantum counterpart of classical random walks
- Faster propagations of probability
- Useful for quantum computations and information (Grover search).
- Interdisciplinary science; physics, math, quantum info, …
- Various experimental setup (photon, cold atom, ion trap, …)
- Dirac equation in continuum limit
- Chalker-Coddington network model
 frequently used in the study

0.05

frequently used in the study of the Anderson localization

150

100

Importance of quantum walks for non-Hermitian physics

Quantum walk is an ideal platform for experiments of non-Hermitian systems.

Photonic quantum walks with entangled photons

- Quantitative control of loss of photons
- Quantumness is guaranteed by the entanglement
- Various physical phenomena can be reproduced due to high controllability of system parameters (quantum simulator).

Table of contents

1. Non-Hermitian systems

2. Quantum walks

3. Non-unitary quantum walks for Non-Hermitian physics: topological edge states, skin effects, Anderson transition in 1D

[1] K. Mochizuki, D. Kim, and <u>H. Obuse</u>, Phys. Rev. A 93, 062116 (2016).

[2] L. Xiao, X. Zhan, Z.H. Bian, K. K. Wang, X. Zhang, X.P. Wang, J.Li, K. Mochizuki, D. Kim, N. Kawakami, Y. Wi, <u>H. Obuse</u>, B. Sanders, P. Xue, Nature Phys. 13, 1117 (2017).

[3] L. Xiao, X. Qin, K. Wang, Z. Bian, X. Zhan, <u>H. Obuse</u>, B.Sanders, W. Yi, P. Xue, Phys. Rev. A 98, 063847 (2018).

[4] K. Mochizuki, D. Kim, N. Kawakami, and <u>H. Obuse</u>, Phys. Rev. A, 102, 062202 (2020).

[5] M. Kawasaki, K. Mochizuki, N. Kawakami, and H. Obuse, Prog. Theor. Exp. Phys. 2020, 12A105 (2020).

[6] N. Hatano and <u>H. Obuse</u>, Annals of Physics **435**, 168615 (2021).

[7] T. Bessho, K. Mochizuki, H. Obuse, and M. Sato, Phys. Rev. B (accepted).

[8] R. Okamoto, N. Kawakami, and <u>H. Obuse (in preparation).</u>

解説

・「量子ウォークのトポロジカル相と光の振幅制御への応用」小布施、望月、金、川上、日本物理学会誌 74,780 (2019)

・「アンダーソン局在の臨界現象:最近の実験・理論の新展開」小布施、日本物理学会誌 70,14(2015)

Acknowledgements

■ Theory:

- Makio Kawasaki (Hokkaido Univ.)
- Dakyeong Kim (Hokkaido Univ.)
- Ken Mochizuki (Hokkaido Univ. → Tohoku Univ.)
- Takumi Bessho (Kyoto Univ.)
- Naomichi Hatano (U. Tokyo)
- Norio Kawakami (Kyoto Univ.)
- Masatoshi Sato (Kyoto Univ.)
- Manami Yamagishi (U. Tokyo)
- Experiment :
 - Ryo Okamoto (Kyoto Univ.)
 - Peng Xue group (BCSRC, China)

1.Non-Hermitian Systems

Non-Hermitian physics and open systems

Non-Hermitian Hamiltonian:

$$H \neq H^{\dagger}$$

 $E \in \mathbb{C}$

in-flow: $+i\gamma$ out-flow: $-i\gamma$

environment

Open quantum systems (gain and/or loss, asymmetric hopping)

$$H\psi = E\psi$$
 \longrightarrow Complex eigen-energy

Breakdown of conservation of probabilities

There are various phenomena which are peculiar to non-Hermitian systems.

Anderson transition in 1D non-Hermitian systems

N. Hatano and D. R. Nelson, PRL 77, 570 (1996)

Hatano-Nelson model : asymmetric hopping with onsite disorder in 1D

$$H = \sum_{x} t(e^{h}c_{x+1}^{\dagger}c_{x} + e^{-h}c_{x-1}^{\dagger}c_{x}) + \varepsilon_{x}c_{x}^{\dagger}c_{x}$$

In 1D non-Hermitian system the Anderson transition occurs, while it never happens in Hermitian systems.

PT symmetric non-Hermitian quantum mechanics

C.M. Bender and S. Boettcher, PRL 80, 5243 (1998)

Non-Hermitian systems with PT symmetry($H \neq H^{\dagger}$)

- ${\cal P}$: Parity ec x
 ightarrow -ec x
- ${\mathcal T}$:Time-reversal symmetry $i \to -i$

$$\mathcal{PT} H (\mathcal{PT})^{-1} = H$$
$$\mathcal{PT} |\psi\rangle = e^{i\alpha} |\psi\rangle$$

$$E = E^* \quad \clubsuit \quad E \in \mathbb{R}$$

Real eigenenergy

Exceptional point :

the Hamiltonian is non-diagonalizable at a parameter space

Importance of symmetry in non-Hermitian systems.

Non-Hermitian topological phases

K. Esaki, M. Sato, K. Hasebe, M. Kohmoto, PRB 84, 205128 (2011)
Z. Gong, Y. Ashida, K. Kawabata, K. Takasan, S. Higashikawa, M. Ueda, PRX 8, 031079 (2018)
K. Kawabata, K. Shiozaki, M. Ueda, M. Sato, PRX 9, 041015 (2019)

• 38 symmetry classes

Ramification of symmetries

Time-reversal sym. (TRS): $TH^*(k)T^{-1} = H(-k)$ $TH^T(k)T^{-1} = H(-k)$ Particle-hole sym. (PHS): $CH^*(k)C^{-1} = -H(-k)$ $CH^T(k)C^{-1} = -H(-k)$

Chiral & sublattice symm.:

 $\Gamma H^{\dagger}(k)\Gamma^{-1} = -H(k)$ $SH(k)S^{-1} = -H(k)$

• Two kinds of energy gaps

Non-Hermitian systems possess richer topological phenomena.

Experiment of non-Hermitian systems : classical optics

PRL 103, 093902 (2009)

PHYSICAL REVIEW LETTERS

week ending 28 AUGUST 2009

Observation of \mathcal{PT} -Symmetry Breaking in Complex Optical Potentials

Guo, Salamo, Duchesne, Morandotti, Ravat, Aimez, Siviloglou, Christodoulides, PRL 103, 093902 (2009)

Deposition of Cr on one of a coupled wave guide

Control of imaginary part of refractive index (loss) $i\frac{d}{dz} \begin{pmatrix} E_1 \\ E_2 \end{pmatrix} = \begin{pmatrix} 0 & \kappa \\ \kappa & -i\gamma \end{pmatrix} \begin{pmatrix} E_1 \\ E_2 \end{pmatrix}$ $= \begin{pmatrix} +i\gamma/2 & \kappa \\ \kappa & -i\gamma/2 \end{pmatrix} \begin{pmatrix} E_1 \\ E_2 \end{pmatrix} - i\gamma/2 \begin{pmatrix} E_1 \\ E_2 \end{pmatrix}$

Increase of transmission by increasing loss PT symmetry breaking (At the limit of $t^2 \ll \gamma^2 |\psi\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ or $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ light localizes at one of the coupled wave guide No experimental verification of PT symmetric open quantum systems in 2014.

- Difficulty of controlling non-Hermitian effects (gain and/or loss, asymmetric hopping)
- How to guarantee quantumness
- Evidencing result

Importance of quantum walks for non-Hermitian physics

Quantum walk is an ideal platform for experiments of non-Hermitian systems.

Photonic quantum walks with entangled photons

- Quantitative control of loss of photons
- Quantumness is guaranteed by the entanglement
- Various physical phenomena can be reproduced due to high controllability of system parameters (quantum simulator).

2.Quantum Walks

Quantum walk (QW) in 1D

1.Basis:

• position \otimes internal states $|x\rangle \otimes |s\rangle$ $x \in \mathbb{Z}$ s = L, R

2. Basic operators:

- Coin operator: C $C[\theta(x)] = \sum_{x} |x\rangle \langle x| \otimes \mathcal{R}[\theta(x)]$ $\mathcal{R}(\theta) = \begin{pmatrix} x \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$
- Shift operator : S $S = \sum_{x} \left(|x+1\rangle\langle x| \otimes |R\rangle\langle R| + |x-1\rangle\langle x| \otimes |L\rangle\langle L| \right)$

Time-evolution operators

3. Time-evolution operator

A time evolution operator is defined by combining the basic operators.

E.g.)

Single step QW: $U = SC(\theta)$ 2 step QW: $U = SC(\theta_2)SC(\theta_1)$

Continuum limit for position and time [Strauch PRA (2006)]

Dirac equation $H = \hat{p}\sigma_z - \theta\sigma_y$

Time-evolution

4. Time evolution

 $|\psi(t+1)\rangle = U^t |\psi_0\rangle \qquad t \in \mathbb{Z}$

"Floquet system", "Floquet topological phase"

c.f. Bessho, Mochizuki, Obuse, Sato, PRB(accepted), arXiv:2112.03167

c.f. 2D Grover walk for quantum search

Effective Hamiltonian & Dispersion relation

• Dispersion relation $U = e^{-iH_{\rm eff}t}$ $U|\psi\rangle = \lambda|\psi\rangle$ $\lambda = e^{-i\varepsilon} \varepsilon$: quasi-energy

Unitary operator:

Non-unitary operator:

 $\varepsilon \in \mathbb{C}$

Symmetry of quantum walks

Kitagawa, Rudner, Berg, Demler, PRA (2010) Asboth and Obuse, PRB (2013)

TRS: $U = e^{-iHt}$ $TH^*(k)T^{-1} = H(-k) \iff TU^*(k)T^{-1} = U^{\dagger}(-k)$ PHS: $CH^*(k)C^{-1} = -H(-k) \iff CU^*(k)C^{-1} = U(-k)$

Chiral sym.: $\Gamma H(k)\Gamma^{-1} = -H(-k) \quad \longleftrightarrow \ \Gamma U^*(k)\Gamma^{-1} = U^{\dagger}(k)$

Topological phases of 1D quantum walks with chiral

2 step QWs: $U = SC(\theta_2)SC(\theta_1)$ • Topological numbers (ν_0, ν_π) : two edge states at $\varepsilon = 0$ & π . winding number $\nu' = \frac{1}{\pi i} \oint dk \langle \psi_- | \nabla_k | \psi_- \rangle$ Asbóth & HO, PRB ('13). $\nu_0 = \frac{\nu' + \nu''}{2}, \qquad \nu_\pi = \frac{\nu' - \nu''}{2},$ 0.5 (1,1) $heta_2 \ 0$ $\operatorname{Im}(\lambda)$ 0 -0.5 -0.5 0 0.5 -1 1 θ_1 $\operatorname{Re}(\lambda)$

Topological phases of 1D quantum walks with chiral

2 step QWs: $U = SC(\theta_2)SC(\theta_1)$ $\theta_2 = \pi/5$

3.Non-unitary Quantum walks for Non-Hermitian Physic

Introduction of non-unitary operators

Non-unitary time evolution operator:

A time evolution operator is defined by combining the basic operators.

E.g.)

Single step QW:

$$U = GSC$$

2 step QW:

$$U = G^{-1}SC(\theta_2)GSC(\theta_1)$$

3 step QW:

$$U = G^{-1}SC(\theta_2)SC(\theta_2 + \delta)GSC(\theta_1)$$

Time evolution:

$$|\psi(t+1)\rangle = U^t |\psi_0\rangle$$

Non-Hermitian topological phases

K. Esaki, M. Sato, K. Hasebe, M. Kohmoto, PRB 84, 205128 (2011)
Z. Gong, Y. Ashida, K. Kawabata, K. Takasan, S. Higashikawa, M. Ueda, PRX 8, 031079 (2018)
K. Kawabata, K. Shiozaki, M. Ueda, M. Sato, PRX 9, 041015 (2019)

• 38 symmetry classes

Ramification of symmetries

Time-reversal sym. (TRS): $TH^*(k)T^{-1} = H(-k)$ $TH^T(k)T^{-1} = H(-k)$ Particle-hole sym. (PHS): $CH^*(k)C^{-1} = -H(-k)$ $CH^T(k)C^{-1} = -H(-k)$ Chiral & sublattice sym.:

> $\Gamma H^{\dagger}(k) \Gamma^{-1} = -H(k)$ $SH(k) S^{-1} = -H(k)$

• Two kinds of energy gaps

Non-Hermitian systems possess richer topological phenomena.

Topological phases for real line gaps

Topological phases for real line gaps : experiment

 $U_{ll} = L'SC(\theta_2)LSC$

h

a pair of entangled photons

 $C(\theta_1^{(i)})$

S

C(02(0)) 5

C(0,(i))

nature physics

ARTICLES PUBLISHED ONLINE: 31 JULY 2017 | DOI: 10.1038/NPHYS4204

Observation of topological edge states in parity-time-symmetric quantum walks

L. Xiao¹, X. Zhan¹, Z. H. Bian¹, K. K. Wang¹, X. Zhang¹, X. P. Wang¹, J. Li¹, K. Mochizuki², D. Kim², N. Kawakami³, W. Yi^{4,5}, H. Obuse², B. C. Sanders^{5,6,7,8} and P. Xue^{1,9*}

Nature Physics 13, 1117 (2017)

...

Observation of edge states for a real line gaps

Breakdown of bulk-edge correspondence

M. Kawasaki, K. Mochizuki, N. Kawakami, and H. Obuse, 3step non-unitary quantum walk with chiral symmetry breaking term $U_{\delta} = G^{-1}SC(\theta_2)SC(\theta_2 + \delta)GSC(\theta_1)$

When $\delta \neq 0$

• Eigenvalue: difference of topo# is 2 at $\ \delta = 0$

05

(Y)∭ °

-0.5

-1

-0.5

Re(λ)

 $\delta = 0.05$

05

(۸) ٥

-0.5

-1

-0.5

05

Re(λ)

Chiral symmetry $\Gamma U_{\delta}' \Gamma^{-1} \neq U_{\delta}'^{\dagger}$

Particle-hole symmetry[†] $\Xi U_{\delta}' \Xi^{-1} = U_{\delta}'$ $\Xi = \sum |x\rangle \langle x| \otimes \sigma_0 K$

 $BDI^{\dagger}(\mathbb{Z}) \longrightarrow D^{\dagger}(\mathbb{Z}_2)$

Edge states with $\operatorname{Re}(\varepsilon) = 0$ survives up to δ_c even in class $\operatorname{D}^{\dagger}(\mathbb{Z}_2)$

05

 $\delta_c = 0.0696$

 AZ^{\dagger} class

Gap

05

Im(ک) ٥

-0.5

Prog. Theor. Exp. Phys. 2020, 12A105 (2020).

Classifying space

 \mathcal{R}_1

 \mathcal{R}_2 \mathcal{R}_0

 $\delta = 0.08$

-0.5

0

Re(λ)

-1

d = 1

 \mathbb{Z} \mathbb{Z}_2

d = 0

 \mathbb{Z}_2 \mathbb{Z}_2

Breakdown of bulk-edge correspondence

M. Kawasaki, K. Mochizuki, N. Kawakami, and <u>H. Obuse</u>, Prog. Theor. Exp. Phys. 2020, 12A105 (2020).

Particle-hole symmetry[†]
$$\Xi U^* \Xi^{-1} = U$$

 $\bigvee U = H$

Time-reversal symmetry $\Xi H^* \Xi = H$

Eigenvalues remain real unless exceptional points appear!

A new kind of the breakdown of bulk-edge correspondence!

Cf. K. Sone, Y. Ashida, T. Sagawa, Nat. Commun. 11, 5745 (2020).

Skin effects in non-Hermitian systems

Non-Hermitian system with the asymmetric hopping

Hatano-Nelson model (w/o disorder) N. Hatano and D. R. Nelson, PRL 77, 570 (1996)

$$H = \sum_{x} t(e^{\gamma} c_{x+1}^{\dagger} c_{x} + e^{-\gamma} c_{x-1}^{\dagger} c_{x}) \qquad \gamma \in \mathbb{R}$$
Periodic BC(PBC) ImE
$$e^{\sum_{n=0}^{(c)} e^{\sum_{n=0}^{(c)} e^{\sum_{n=$$

All eigenstates localize at the edge.

Unique topological phenomena in the non-Hermitian systems

Hatano-Nelson model : asymmetric hopping with onsite disorder in 1D N. Hatano and D. R. Nelson, PRL 77, 570 (1996)

$$H = \sum_{x} t(e^{\gamma} c_{x+1}^{\dagger} c_{x} + e^{-\gamma} c_{x-1}^{\dagger} c_{x}) + \varepsilon_{x} c_{x}^{\dagger} c_{x}$$

Real *ɛ*: localized states

Complex ε : extended states

The Anderson transition in 1D non-Hermitian system occurs.

c.f. Kawabata and Ryu, PRL **126**, 166801 (2021)

Luo, Xiao, Kawabata, Ohtsuki, Shindou, arXiv:2105.02514

Model & Results

No symmetry \rightarrow class A (the same with the original Hatano-Nelson model)

Spectrum:

No symmetry & No band gap due to 2π periodicity \rightarrow All states simultaneously delocalize at g = 0.5.

Summary

Topological edge states:

• We have demonstrated the non-Hermitian quantum systems by using the photonic quantum walk first time.

Skin effects:

 We have shown the ballistic behaviors in the system exhibiting the skin effects by using the quantum walk, which can be realized by using the photonic quantum walk with fine control of loss.

Anderson transition in 1D non-unitary QW:

 All states simultaneously delocalize due to no symmetry and band gap originating from 2π periodicity of quasi-energy.
 The quantum walk is an ideal platform to study non-Hermitian quantum physics.

国際会議 Localisation 2022 https://2022.localisation.cloud

不規則性に伴う局在現象に関する国際会議(ハイブリッド形式) LT29(8/18~24, 札幌)のサテライト

期間:2022年8月25~30日

場所:北海道大学 鈴木章ホール, Zoom

4月から口頭発表・ポスター発表の募集を開始予定

Co-chairs: Stefan Kettemann, Hideaki Obuse, Keith Slevin **Organizers:** Tomi Ohtsuki, Dragana Popovic, Satoshi Tanda, Kousuke Yakubo