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Agenda

Introduction (general topics)

What are glasses? Marginal stability?

Glasses under External Field

Non-eq. criticality governing structural failure

Effect of Structural Failure: Mechanical Aspect

Structural origin of a universal rheological law

Effect of Structural Failure: Dynamical Aspect

Governed by a distinct correlation length?



Introduction



(Glass Transition

- Emergence of universal "phase" of matters -

Fast

Temperature

P Found in various soft matter systems universally

P Self-generated randomness: no randomness in Hamiltonian
(simple liquids, alloys, colloids, polymer, emulsion, suspension, etc.)

P Glass "transition" = phase transition?

P Extremely viscous liquid? Solid with random structure?



Stuctures vs. Dynamics

- Which is "the" essential factors of glass physics? -

Viscosity vs. temperature Static structure factor
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P Viscosity changes by more thatn 10 orders between 250 — 320K

P Static structure barely changes between these temperatures
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Stuctures vs. Dynamics

- Which is "the" essential factors of glass physics? -

Dynamic heterogeneity
B C

super-
AA{\ cooled

normal

>

static SF
dynamic SF

distance log time

dynamic correlation :
range

relaxation
rate

density
Garrahan, PNAS (2011)

Heterogeneous dynamics exhibit "correlated structures”

Dynamic correlation length grows as temperature decreases

Relaxation time: critical phenomenon-like scaling

Karmakar et al, PNAS 106(10), 3675 (2009)




Structural Order Parameters

- System dependent, tailor-made indicators -

Structural indicator Dynamics

“henn
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Tanaka, Nature Materials (2010)

P Structural "order" strongly corrrelated with dynamics
P Initially,heuristic finding in a tailor-made manner
P Machine learning approches to find universal one

Bapst, Nat. Phys. (2020), Boattini, Nat. Commun. (2020), Shiba, J. Chem. Phys. (2023), Oyama, Front. Phys. (2023) etc.



Glasses As..
P "Liquids" with extremely high viscosity?

(divergence of viscosity, dynamic heterogeneity etc.)

P "Solids" with random structures?



Low-Temperature Behavior

- Crystal vs. glasses, universal scaling for glasses -
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Zeller and Pohl, Phys. Rev.E 4,2029 (1971)

P Different glasses obey the same scaling law
P Amorphous and crystal obey different scaling laws

P Glasses: not dominated by phonon?: Not "solids"?

(Low-temperature: dominated by low-frequency "modes")
BEETAZA, 1, il FERA, 15 A AR



Glasses As Coupled Oscillators

N-body coupled harmonic oscillators

A glass sample

k1,2 m k2,3 m ]{73,4 kN—l,N m
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Complexities of glasses

e Complicated "random" structures

 Non-harmonic potentials (g, Vi;(r) = 4 [(2)'2 — (2)%])

T

P Matrix representation with harmonic approximation for small perturbations

(equivalent approximation to ones employed in Debye's theory)



Normal Mode Analysis

Dynamical Matrix Particles interaction

?

DB _ 9°U Z

is = reor | -
a_ Dy ||dN
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T J

dN

P Mechanical equilibrium state is assumed (zero temperature)
P Total potential i = .. Vi;(7i5)

P Obtained by the Euler-Lagrange eq. with harmonic approximation
P Eigenvalues \x: "Spring consants" to small perturbations
P wi = )\t gives the eigen-frequency of k-th eigenmode



Low-Frequency Modes in Glasses

- Low frequency anomalous properties -

Vibrational density of states (v-DoS) Low-frequency plastic modes

__A Debye

tg y For small ¢p)
o

2

O

O

w % power-law

mode exists
Non- O 7 .....
Debye W=V
>
log(frequency)

P "Quasi-localized Vibrational Modes (QLVs)" appear
P QLV modes are "plasticity-inducing" pattern

P Infinitesimal perturbation can destabilize the systemin N — 0o



QLV vs. Phonon Modes

- Difference between low-frequency modes -

Quasi-localized mode Phonon mode

(b) Crystal.

Mizuno and lkeda, Private Communication

P Universally observed in various amorphous systems
Lerner PRL (2016), Mizuno PNAS (2017), Kapteijns PRL (2018), Wang Nat. Commun. (2019), Richard PRL (2020) etc.



QLV vs. Phonon Modes

- Difference between low-frequency modes -

Quasi-localized mode

Phonon mode

N~

\
\

X
~/

/
—~/

N

(c) Glass.

-—

AN

—

N~

-_—

~ ?

| o - - / A~
) s T
///// / /// ’
- /
/{/j\l\///\
— /N
/1\\\_,//1._
/ -~ — —F — s -
\,////'/’__-—»\_. //‘/
A
byl /77—~ 1 o
TfT/r’ SRR
TT R AN
\\\\,, PR
I\‘_-—//// \__._./'

(d) Crystal.

Mizuno and lkeda, Private Communication

P Universally observed in various amorphous systems
Lerner PRL (2016), Mizuno PNAS (2017), Kapteijns PRL (2018), Wang Nat. Commun. (2019), Richard PRL (2020) etc.



Marginal Stability (MS)

- Candidate for the KEY concept -
AA

Unstable States

Stable States

>B

Miuiller, and Wyart, Annu. Rev. Condens. Matter Phys. 6, 177(2015)

P Theoretical predictions are available

(e.g. oo dimensional mean-field model)
Parisi, Urbani, and Zamponi, "Theory of Simple Glasses", Cambridge University Press (2020)
Franzetal.,,PNAS 112, 14539 (2015), Biroli and Urbani, Nat. Phys. 12,1130 (2016)

P Glasses: extremely vulnerable solids?



Glasses under External Field

- Non-eq. criticality governing structural failure -
Oyama, Mizuno, and lkeda, Phys. Rev. E 104,015002 (2021), arXiv:2109.08849



Prep: (Shear) Strain and Stress

- Fundamental observables for rheology -

P Strain:y = AL, /L, (dimensionless)

P Stressio = —L S0 (rF £+ £7)

(dimension of pressure)

P Strain -y (or 7) iscontrolled in this study
(stress o can be treated as the response)



MD Simulation under Athermal Quasistatic Drive

- Method to access purely athermal events -

P Correspondingtos = 0

P Avy=5x10"" —5 x 107 (depending on IN)

P Only the steady-state data (y > 0.25) is utilized



Inter-particle potentials

- Athermal glass system -

Smoothed Lennard-Jones potential

~.4- Infinite

e soothed LJ i

.
| = s pormal LJ
2 "

Potential

0.8 1.0 1.2
Inter-particle distance

Salerno et al., PRL 109, 105703 (2012)
P Attraction & excluded volume effect — dense: glasses
P Binary mixture (1:1.4 size ratio, 50:50 number ratio)

» 2D,p = 1.09,N = 512 — 32768 particles




Response under Athermal Quasistatic Shear

- Yielding transition and. ... -

Stress-strain cueve Yielding regime movie

o i —¢+— = —-— ———+—— Non-affine displacement

Y = 95e-3 ol 1:

044 ——T,=0120
1 Transient ——T =0.100
0.3 -

0.2 1

0.1+ Steady-state 1

Ozawaet al.,,PNAS 115, 6656 (2018)
P Behavior under athermal quasistatic shear
P VYielding singularity at aroundy = 0.1
P Curves self-organize into single one after singularity



Response under Athermal Quasistatic Shear

- Steady-state regime -

Stress-strain cueve Experiment (Granular flow)
o
0.015
0.01 .
plastic events
0.005
0.0

1.0 1.005 1.01 1015 7/

Our result Yigiu Zhao(Duke University)/ Luding, Physics, 12, 109 (2019)

P Focus on steady-state regime hereafter

P Canbeviewed as a critical phenomenon?
Dahmen et al., Nat. Phys. 7,554 (2011), Linet al, PNAS 111, 14382 (2014)



Steady-state Behavior

- Elastic and plastic = elastoplastic response? -

Stress-strain cueve Single ST Avalanche of STs
e R / N

7

.

0.015

0.01

plastic events

0.005

0.0

1.0 1.005 1.01 1015 7/

D Elastic behavior is puctuated by intermittent plastic events

P Elementary process of plastisity is shear transformation (ST)
(characterized by quadrupolar strain field)

P Sometimes organized into avalanches
(energy released by a ST can trigger other STs)



Statistics of "Avalanches” in Steady State

- One example of avalanche criticalities -

Definitions and scaling laws Avalanche of STs
b T T T ‘\:\‘é\ AR
0.015
0.01 5’)/ .
~ N—X
0.005 F <5’Y> N .
Se ~ N /d

0.0 - - -
1.0 1.005 1.0l 1015 )

P Avalanchesize § = N§o (unit of energy o< volume)

P "Maximum" avalanche size for system with linear dimension L
S.(L) = (§%)/(8S) (assuming P(S) = S~ £(S/S.))



Typical Avalanching Scaling Laws

- System-size-dependence of avg. strain interval and cutoff avalanche size -

Avg. strain interval Cutoff avalanche size
10—2E . . oo} = .
_fae o F @©c df =1.034
L \\ C\Q/ . O (5) 0
<[ o X =0738 = T
10_3: \\ . 103% .—’
[ ‘ [
- N i —0.269
B N 102 L @
_I(Ia;IIh ] 1 1 11110 I\,I EI(.It)l)llln ] 1 1 11110 ] ||
103 104 NV 103 104 NV

P (Ay) ~ NX — 0(N — oo): consistent with MS

P S. ~ L4 will become important later



Yielding: A Non-eq. Criticality?

Scaling ansatzes

R
:\

Keotre LN

ECRree

£

e Correlationlength

RN
<
39

JOdy

(CFeT e
SO ey

S

&

—V
~ o — oy]|
- Maximum spanning of avalanches

e Macroscopicstrainrate: 4 ~ |o — oy |’
- Regarded as the order parameter

e Avalanche lifetime: T ~ &

- Inaccessible information

e Cutoff avalanchesize: S, ~ &%

- Characterized by fractal dimension d f

Dahmen et al., Nat. Phys. 7,554 (2011), Linet al, PNAS 111, 14382 (2014)



Effect of Structural Failure: Mechanical Aspect

- Structural origin of a universal rheological law -
Oyama, Mizuno, and lkeda, Phys. Rev. Lett. 127, 108003 (2021)



log stress o [Pa]

\:Q

Herschel-Bulkley Law

- Universal constitutive relation -
Herschel and Bulkley, Kolloid Zeitschrift 39,291 (1926)

Schematic Flow Curve Vegetables and Frwts

Herschel- BquIey
o=0 +k7/‘ n<1 - shear thinning

n>1 - shear thickening
— 0 =0, n=1 > Newtonian

790 n= a/ ys00 7

log shear rate y [/s]

de Kort, PhD Thesis (2016) http://www.kuroda-dryer.co.jp,
Diamante and Umemoto, Int. J. Food. Prop. 18,1191 (2015)

P Glasses, foams, emulsions, suspensions, blood, etc.
P Yield stress and power-law offset from it

P Structural origin is not yet clarified



MD Simulation under Finite-Rate Shear

- Athermal system with mechanical noises -

Equation of motion Sketch of algorithm

dd’vi B 8V(TZ_7)
dt _Z or; oY,
jEOi
dt — () YYi €y

P 2x107° < 4= Avy/At <2 x 1072

P Focus on purely structurally-induced rheology: zero temperature
(still treated as a classical system)

P Dissipation: Stokes drag



Flow Curves
- Shear-rate dependent mechanical response -

S

S N =32768 y

N =8192
A5k ® N=2048

4.0

35 | T I I A O N M T I O I
10 10t 10 1072 o

P Herschel-Bulkley law: (o) = oy + k3"
P Strong finite size effect (FSE)
P HB parameters cannot be obtained by simple fitting



Plasticity in Sheared Glasses

- Phenomenological description -

Schematic picture of cause and effect of plastic events

Local
random

stability
O_dls

R

Elastic
Local propagation
plastic of mformatlon

straln

t'

3

vV vV VY

| OCa

L OCa

L OCa

Driven by

stability is randomly distributed
instability triggers plastic events

plastic strain propagate through elastic kernel



Theoretical Formulation

- Continuum description -

Elastic
DA™ Local propagation
Coca plastic of lnformatlon
od straln
random
stabilit
O_disy '\—\

®

"73t7("°7 t) — T fr' g(r o rl)'Y(rla t) o Udis ['7(7'7 t)7 ‘T’]
Linetal.,, PNAS 111, 14382 (2014)

P External stress >.: Spatially uniform and time independent

P Localyield stress odis ['y, :B] : Not explicitly depend on time
(controlled solely by the applied total shear v -> sois yP)

P Interaction kernel G: Eshelby-type quadrupolar propagator
(Nonmonotonicity is crucial to reproduce MS: (Av) ~ N7X)



Yielding: A Non-eq. Criticality?

Scaling ansatzes

S

N . e Interactionkernel: G ~ £° (non-monotonic

- Eshelby-like quadrupolar pattern
k) = 4ki k2 / k* in k-space

e Correlationlength: ¢ ~ |0 — 0Y|_V

- Maximum spanning of avalanches

RIS
Rem sy

e Macroscopicstrainrate:y ~ |0 — oy |B
- Regarded as the order parameter

e Avalanche lifetime:T' ~ &7

e Cutoffavalanchesize: S, ~ &%
- Characterized by fractal dimension d f

Useful hyperscaling relations among them?



Statistical Tilt Symmetry (STS)

- Special symmetry of the system -

Introduction of "tilt"
Wir(r,) =B+ + [ G =1, 8) = o r(r 1), 7

@n@ﬁ(r,t):i) /g"'_’l’)’)”f’ t)_o.dls /g 1 tllt

Narayan and Fisher, Phys. Rev. B48, 7030 (1993); Linet al., PNAS 111, 14382 (2014)

P Tilt *: random stress field with vanishing spatial average
(tilted strainfield: (r) = y(r) + [, G ' (r — v')otit ("))

D Absorbed by the random local yield stress distribution g%*

P On average (over randomness), tilt does not matter: §5/sstt = 0



Consequences of STS

- Scaling relations from susceptibility -

Susceptibility estimated by tilt

_ & _ a3+ /G0

— ottt Hotilt

e Tilt does not play any role: 85 /0clt =0

Ng—l NgO

X1

e Interactino kernel is nonmonotonic: G ~ £°

Susceptibility estimated by global stress increment

X2 = A7 ~ gdf /gd ~ gl/v—l—df—d
Alog — oY | E-1/v

e Perturbing o induces avalanhce with size§ ~ |o — oy

| —V
e Strain: (avalanche volume &% ) / (total volume ¢2))

Narayan and Fisher, Phys. Rev.B48, 7030 (1993); Linet al., PNAS 111, 14382 (2014)

P Hyperscalingrelation: x; ~ x2 = v =1/(d — dy)



Simple Scaling Argument
- Other useful relations -
Scaling relation for strain rate

l N gdf /é.d -~ &-df—d—z
T £?

iy~ o — oyl ~ P
S B=v(z+d—d;)

Determination of the intrinsic yield stress

05075 *\ £~ o —oy|™” & (o)) = oy + klg—l/zx
7 Br(€) ~ (0)(8) — ormy ~ ko V"
-3 0.5065 ) =  (F)(&) = Ff + ksor(£)

s o305 gor oo (A, (€): Standard deviation of o(£))
)D

Vandembroucq et al., Phys. Rev. E 70,051101 (2004)
Linetal., PNAS 111, 14382 (2014)



Yielding: A Non-eq. Criticality?

Scaling ansatzes

e Interaction kernel: G ~ €° (non-monotonic)
(G(k) = 4k2 k2 /k* in k-space)

e Correlation length:£ ~ |0 — ay|™"
e Macroscopic strainrate:y ~ | — oy |ﬁ ~ &P /v
e Avalanche lifetime: T' ~ &*

e Cutoffavalanchesize: S, ~ &%

Hyperscaling relation
e Correlationlength:v = 1/(d — dy)

e Strainrate: 8 = v(z + d — dy)
e Critical stress estimation: (o) (§) = oy + kA4 (&)

P These relations were verified using continuum model
Linetal.,, PNAS 111, 14382 (2014)

» No verification for paritcle-based data -> WHY?



Yielding: A Non-eq. Criticality?
Hyperscaling relation
e Correlationlength:v = 1/(d — dy)
e Strainrate: / = v(z 4+ d — dy)
e Critical stress estimation: (o) (£) = ov + kA, (&)

P Red values can be measured by quasistatic simulation
Oyama, Mizuno, and Ikeda, PRE 104,015002 (2021)

P Critical stress oy is determined!
(HBlaw: % ~ |o — 0y|ﬁ)

> can be obtained if ~ is measured, but...



Dynamical information?

- Inaccessible information -

tress-strain curve "Displacement" field

1.02 1.04

Avalanche lifetime: T' ~ &°
BothT" and £ cannot be extracted unambiguously

Cannot utilize this relation for particle data...



Our Strategy and Aim

- To by-pass the problem above... -

Utilize the microscopic structures
that are available only in MD simulations

P (Instantaneous) Normal Modes



Shear Transformations (STs

- Elementary processes of plasticity -

Single ST Avalanche of STs

TR
IR

it

RS

23

P Considered to be the elementary process

P Sometimes form "avalanches"



Shear Transformations (STs

- Elementary processes of plasticity -

Single ST System-spanning Avalanche

Keibes :

Lttt iee.

e < v L}
LT R
SIRAI e

e
“

eietae o
SRR LA A4
e e e

P Considered to be the elementary process

P Sometimes form "avalanches"



Knowledge Under Quasistatic Shear

- How are plastic events evoked? -



Normal Mode Analysis
Dynamical Matrix Potential energy landscape (PEL)

>
50
T
-
=]
dN =
+~
=
2
o
ARV !
v Curvatures = \g
>
dN Reaction Corrdinate

P Measured with no noise sources (basin bottom of PEL)
P All eigenvalues A\, are positive in this case

P Eigenvalues \;, give the curvatures of the PEL

P wp = \/Tk . eigen-frequencies along the curvature



"Cause” of Plastic Events

- Under athermal quasistatic shear -

Evolution of normal modes Evolution of potential energy landscape
B ' ' | 1
0.05 == f
| | . 0.8
0.0t l \/J\
c:f‘ ; | , 0.6
% 0.03 l
3 SR E 0.4
~ 0.02 | ‘ . 1 Reversible (Elastic) Step Irreversible (Plastic) Step
0.01 10-2
L Energy Minimum
A ) A . L . ner aximum - i
0014 0015 0016 0017 0018 = T Increasing Shear Strain  ==——ji-
Strain O -/+ Inflection Point
Manning and Liu, Phys. Rev. Lett. 107,108302 (2011) Maloney and Lemaitre, Phys. Rev. E 74,016118 (2006)

P Lowest eigenvalue goes to zero just before plastic event
P The decaying mode has a quadrupolar pattern

P Disappearance of energy basin: saddle-node bifurcation
P What if under finite-rate shear?



Potential Energy

Normal Modes Under Finite-rate Shear

- Generalization of normal mode analysis -

Standard NM analysis

NM analysis under finite-rate shear

Potential Energy

\% A=

Curvatures = \x

|

Reaction Corrdinate Reaction Corrdinate

P What do eigenmodes stand for in such a situation?




Emergence of Negative Mode?

- Cause of plasticity under finite-rate shear -
Atveryslowrate: % = 2 x 107°

2.92

290 r
© 288 ¢
2.86

2.84

1.0026 1.0028 1.0030 1.0032

P Lowest eigenvalue goes down similarly to quasistatic case

P Nostressdrop (plasticity) at the onsetof A\ = 0



Emergence of Negative Mode?

- Cause of plasticity under finite-rate shear -

Atveryslowrate: 4% = 2 x 107°

_(©

-1 (£)

1

1.0026 1.0028 1.0030 1.0032

P Mode crossing zero: ST-inducing eigenvector -> phonon

P Negative normal mode corresponds to "active" ST



Number of Negative Modes IN'T

- Shear rate dependent change in morphology of avalanches-

%
o
RIS

N W o~ Ot O

W
T

/N
(@

N—"

S
i
N—

= I
. I

1.0 1.01 1.02

7 1.0 1.01 1.02 ¥ 1.0 1.01 1.02 Y

P Sometimes form avalanches: large stress drop and N > 1



Number of Negative Modes IN'T

- Shear rate dependent change in morphology of avalanches-

ST
e
L\}W)\;g‘

A
&%

N W o~ Ot O

W
T

/N
(@

N—"

RN ||||

1.0 1.01 1.02

Stress drop events span broad (abscissa : 7y, not ¢



Number of Negative Modes IN'T

- Shear rate dependent change in morphology of avalanches-

ST
e
L\}W)\;g‘

A
&%

N W o~ Ot O

W
T

/N
(@

N—"

RN ||||

1.0 1.01 1.02

P Multiple avalanches (cause of decrease in &



Number of Negative Modes IN'T

- Shear rate dependent change in morphology of avalanches-

%
o
RIS

N W o~ Ot O

W
T
/N
(@
N—"
1

ERy l _
A

1.0 1.01 1.02 Y

P Compicated spatial pattern (avalanches cannot be identified



Number of Negative Modes IN'T

- Shear rate dependent change in morphology of avalanches-

NN |l||

1.0 1.01 1.02

nformation of shape and number of avalanches is encoded in IV r?



Statistics of Number of Negative Modes NT

- Structural information about plasticity -

~ E @ 2048 x 16928
1020 4 4096 @ 32768
8192

101
109

101

10> 10=* 107 o

P Power-law function of 4?



Scaling Estimation of N1

- Plastic "structures" indicate mechanics -

Ij
|

D #ofavalanches: Ny, ~ L% /€9

White and Dahmen, PRL 91,085702 (2003), Lin et al., PNAS 111, 14382 (2014)

P #of STs peravalanche : Ngr/ays ~ £
> .ZV'Jr = Nava X NST/ava ~ Ldgdf_d ~ Nryl/,B
» Number density:n! = NT/N ~ NO,-),l/ﬁ



Number Density ot Negative Modes n!

- Validation of scaling law 1 -

e

Q B T T
o[ ® 2048 16928
107"E . 4096 @ 32768
- W 3192 & .
103 s | ////,/’
= et
— | 7 -0.764
10—k o0
¥ 2%
B | Ilﬁllln L 1 1t I 1 11t .I |
10=°> 10=* 1073 o
nl ~ NO;yl/B

» nl fordifferent N are collapsed as predicted!
P Bisdeterminedtobe § ~ 1/0.764 ~ 1.31



Scaling Collapse of F

- Validation of scaling

Unscaled plot

5.0 2
S T
=
4.5
100

4.0 -
' 50
3.5 0

1079 10~ 103 1072 7y

ow Curves

aw 2 -

Scaled semi-log plot Scaled log-log plot

. .
(b)

@ N =512

N = 2048

N = 8192

L W N = 32768 y

TT_-"""!’

1072 1072 107t 107

I Ok

,. <b] : (C) ,,/

II 2 - /’.’

// 10 2 7
II : R
/ : ,o"

110! g
./’5.

] 10() - Lol Lol L

ALV 107 10° 10- A LAV

§ ~ Ad? f(Ac /Aoy (L))
~ L7P (Ao - LV")P f(Ac L)
o ALPY ~ (Ao - LY)P f(Ac L)

P Beautiful collapse with 3 obtained by negative NM analysis

P Negative modes serve as the structural signature of HB law



Effect of Structural Failure: Dynamical Aspect

- Adistinct correlation length emerges? -

Oyama, Kawasaki, Kim, and Mizuno, in preparation



Effective Diffusion under Shear

- Purely mechanically induced diffusivity -

P Diffusive motion in perpendicular direction to shear

P Quantified by mean squared displacements (MSD) A~
AL (t) = 5 i (wi(to + t)yi(to)),



Mean Squared Displacements

- Shear-rate dependent dynamical response -

Constant [NV
(N = 32768)

Constant 7y
(¥ =2 x1077)

mcreasing vy -

¥=2x10"7

N = 32768

increasing N |

» A+ decreases with shear rate 9

» AL increaseswith systemsize IV

P Quantified by per-strain diffusion constant

D =Dt /4 =1lim, o A* /5



Per-strain Diffusion Constant

- Total parameter dependence -

® N-=52
N = 2048
N = 8192

B N = 32768

10Y

L L LI L L LI L L |
107 1074 1073 1072 ry

» D decreaseswith shear rate as: D( > 0) ~ 4?2
» Dincreases with systemsizeas: Dy = D(5 — 0) ~ L

P Consistent with a previous work
Lemaitre and Caroli, Phys. Rev. Lett. 103,065501 (2009)



Summary

- Take-home messages -

Structural failures of glasses: yielding criticality

P Closely related to marginal stability

Universal rheological law: Herschel-Bulkley law
P Governed by the correlation length &

Shear-induced self-diffusion dynamics active STs

P Can be governed by another length
(depending on dissipation mechanism)



Overview

- What should be done next? -

O Checking the "universality" of the finidng

P Potentials, dissipation sources, ...
O Taking into account thermal fluctuations

P Phase diagram gets complicated

0 Thermal relaxation without shear?

P Isthere any connection?



