Optimal transport：From stochastic thermodynamics to quantum many－body systems
 最適輸送：ゆらぎ熱力学から量子多体系まで

Tan Van Vu（RIKEN RQC \leftarrow Keio Univ．）
Collaborator：Keiji Saito（Keio Univ．）
Refs．PRX 13， 011013 （2023）and PRL 130， 010402 （2023）

統計物理学懇談会（第 10 回）2023年 3月 27－28日

Table of contents

1. Optimal transport theory
2. Optimal transport and stochastic thermodynamics
3. Optimal transport and speed limits

Optimal transport theory

Optimal transport

About the optimal planning and optimal cost of transporting distributions

Monge formulation of optimal transport

Monge formulation

Optimal transport cost with respect to a cost function $c(x, y): \mathbb{R}^{d} \times \mathbb{R}^{d} \mapsto \mathbb{R}_{\geq 0}$:

$$
M\left(p^{A}, p^{B}\right):=\min _{\varphi} \int c(x, \varphi(x)) p^{A}(x) d x
$$

$\varphi: \mathbb{R}^{d} \mapsto \mathbb{R}^{d}$: one-to-one map satisfying $p^{A}(x)=p^{B}(\varphi(x))|\nabla \varphi(x)|$ φ^{*} : optimal transport map

Monge formulation of optimal transport

Monge formulation

Optimal transport cost with respect to a cost function $c(x, y): \mathbb{R}^{d} \times \mathbb{R}^{d} \mapsto \mathbb{R}_{\geq 0}$:

$$
M\left(p^{A}, p^{B}\right):=\min _{\varphi} \int c(x, \varphi(x)) p^{A}(x) d x
$$

$\varphi: \mathbb{R}^{d} \mapsto \mathbb{R}^{d}$: one-to-one map satisfying $p^{A}(x)=p^{B}(\varphi(x))|\nabla \varphi(x)|$
φ^{*} : optimal transport map

- Non-existence of a valid transport map: φ^{*} might not exist in discrete cases because no mass can be split

Monge formulation of optimal transport

Monge formulation

Optimal transport cost with respect to a cost function $c(x, y): \mathbb{R}^{d} \times \mathbb{R}^{d} \mapsto \mathbb{R}_{\geq 0}$:

$$
M\left(p^{A}, p^{B}\right):=\min _{\varphi} \int c(x, \varphi(x)) p^{A}(x) d x
$$

$\varphi: \mathbb{R}^{d} \mapsto \mathbb{R}^{d}$: one-to-one map satisfying $p^{A}(x)=p^{B}(\varphi(x))|\nabla \varphi(x)|$
φ^{*} : optimal transport map

- Non-existence of a valid transport map: φ^{*} might not exist in discrete cases because no mass can be split
- Resolved by the relaxation of Kantorovich

Kantorovich formulation of optimal transport

Kantorovich formulation

Optimal transport cost with respect to a cost function $c(x, y): \mathbb{R}^{d} \times \mathbb{R}^{d} \mapsto \mathbb{R}_{\geq 0}$:

$$
K\left(p^{A}, p^{B}\right):=\min _{\pi} \int c(x, y) \pi(x, y) d x d y
$$

$\pi: \mathbb{R}^{d} \times \mathbb{R}^{d} \mapsto \mathbb{R}_{>0}$: coupling of p^{A} and p^{B} (a joint probability distribution function of x and y)

$$
\int_{\mathbb{R}^{d}} \pi(x, y) d y=p^{A}(x) \text { and } \int_{\mathbb{R}^{d}} \pi(x, y) d x=p^{B}(y)
$$

π^{*} : optimal transport plan

Kantorovich formulation of optimal transport

Kantorovich formulation

Optimal transport cost with respect to a cost function $c(x, y): \mathbb{R}^{d} \times \mathbb{R}^{d} \mapsto \mathbb{R}_{\geq 0}$:

$$
K\left(p^{A}, p^{B}\right):=\min _{\pi} \int c(x, y) \pi(x, y) d x d y
$$

$\pi: \mathbb{R}^{d} \times \mathbb{R}^{d} \mapsto \mathbb{R}_{>0}$: coupling of p^{A} and p^{B} (a joint probability distribution function of x and y)

$$
\int_{\mathbb{R}^{d}} \pi(x, y) d y=p^{A}(x) \text { and } \int_{\mathbb{R}^{d}} \pi(x, y) d x=p^{B}(y)
$$

π^{*} : optimal transport plan

- $\pi(x, y)$: how much mass is moved from x to y

Kantorovich formulation of optimal transport

Kantorovich formulation

Optimal transport cost with respect to a cost function $c(x, y): \mathbb{R}^{d} \times \mathbb{R}^{d} \mapsto \mathbb{R}_{\geq 0}$:

$$
K\left(p^{A}, p^{B}\right):=\min _{\pi} \int c(x, y) \pi(x, y) d x d y
$$

$\pi: \mathbb{R}^{d} \times \mathbb{R}^{d} \mapsto \mathbb{R}_{>0}$: coupling of p^{A} and p^{B} (a joint probability distribution function of x and y)

$$
\int_{\mathbb{R}^{d}} \pi(x, y) d y=p^{A}(x) \text { and } \int_{\mathbb{R}^{d}} \pi(x, y) d x=p^{B}(y)
$$

π^{*} : optimal transport plan

- $\pi(x, y)$: how much mass is moved from x to y
- $\pi(x, y)=p^{A}(x) \delta\left(y-\varphi^{*}(x)\right)$ is a valid transport plan. In general,

$$
K\left(p^{A}, p^{B}\right) \leq M\left(p^{A}, p^{B}\right)
$$

Kantorovich formulation of optimal transport

Kantorovich formulation

Optimal transport cost with respect to a cost function $c(x, y): \mathbb{R}^{d} \times \mathbb{R}^{d} \mapsto \mathbb{R}_{\geq 0}$:

$$
K\left(p^{A}, p^{B}\right):=\min _{\pi} \int c(x, y) \pi(x, y) d x d y
$$

$\pi: \mathbb{R}^{d} \times \mathbb{R}^{d} \mapsto \mathbb{R}_{>0}$: coupling of p^{A} and p^{B} (a joint probability distribution function of x and y)

$$
\int_{\mathbb{R}^{d}} \pi(x, y) d y=p^{A}(x) \text { and } \int_{\mathbb{R}^{d}} \pi(x, y) d x=p^{B}(y)
$$

π^{*} : optimal transport plan

- $\pi(x, y)$: how much mass is moved from x to y
- $\pi(x, y)=p^{A}(x) \delta\left(y-\varphi^{*}(x)\right)$ is a valid transport plan. In general,

$$
K\left(p^{A}, p^{B}\right) \leq M\left(p^{A}, p^{B}\right)
$$

- Two formulations are equivalent when distributions are absolutely continuous

Wasserstein distances

L^{α}-Wasserstein distance

Optimal transport cost with respect to a cost function $c(x, y)=\|x-y\|^{\alpha}$:

$$
W_{\alpha}\left(p^{A}, p^{B}\right)^{\alpha}:=\min _{\pi} \int\|x-y\|^{\alpha} \pi(x, y) d x d y
$$

$\|\cdot\|$: Euclidean norm

Wasserstein distances

L^{α}-Wasserstein distance

Optimal transport cost with respect to a cost function $c(x, y)=\|x-y\|^{\alpha}$:

$$
W_{\alpha}\left(p^{A}, p^{B}\right)^{\alpha}:=\min _{\pi} \int\|x-y\|^{\alpha} \pi(x, y) d x d y
$$

$\|\cdot\|$: Euclidean norm

- W_{α} is a distance (satisfying the triangle inequality) for $\alpha \geq 1$

Wasserstein distances

L^{α}-Wasserstein distance

Optimal transport cost with respect to a cost function $c(x, y)=\|x-y\|^{\alpha}$:

$$
W_{\alpha}\left(p^{A}, p^{B}\right)^{\alpha}:=\min _{\pi} \int\|x-y\|^{\alpha} \pi(x, y) d x d y
$$

$\|\cdot\|$: Euclidean norm

- W_{α} is a distance (satisfying the triangle inequality) for $\alpha \geq 1$
- $W_{\alpha^{\prime}} \geq W_{\alpha}$ for any $\alpha^{\prime} \geq \alpha \geq 1$

Wasserstein distances

L^{α}-Wasserstein distance

Optimal transport cost with respect to a cost function $c(x, y)=\|x-y\|^{\alpha}$:

$$
W_{\alpha}\left(p^{A}, p^{B}\right)^{\alpha}:=\min _{\pi} \int\|x-y\|^{\alpha} \pi(x, y) d x d y
$$

$\|\cdot\|$: Euclidean norm

- W_{α} is a distance (satisfying the triangle inequality) for $\alpha \geq 1$
- $W_{\alpha^{\prime}} \geq W_{\alpha}$ for any $\alpha^{\prime} \geq \alpha \geq 1$
- W_{1} and W_{2} are of interest

Discrete Wasserstein distances

- Transport a N-dimensional distribution $p^{A}=\left[p_{x}^{A}\right]$ to distribution $p^{B}=\left[p_{x}^{B}\right]$ with respect to a cost matrix $C=\left[c_{x y}\right]$

Discrete Wasserstein distances

- Transport a N-dimensional distribution $p^{A}=\left[p_{x}^{A}\right]$ to distribution $p^{B}=\left[p_{x}^{B}\right]$ with respect to a cost matrix $C=\left[c_{x y}\right]$
- Discrete L^{α}-Wasserstein distances

$$
W_{\alpha}\left(p^{A}, p^{B}\right)^{\alpha}:=\min _{\pi \in \Pi\left(p^{A}, p^{B}\right)} \sum_{x, y} c_{x y}^{\alpha} \pi_{x y}
$$

- $c_{x y} \geq 0$: cost of transporting a unit probability from p_{y}^{A} to p_{x}^{B}
- $\pi_{x y} \geq 0$: amount of probability transported from p_{y}^{A} to p_{x}^{B}

Discrete Wasserstein distances

- Transport a N-dimensional distribution $p^{A}=\left[p_{x}^{A}\right]$ to distribution $p^{B}=\left[p_{x}^{B}\right]$ with respect to a cost matrix $C=\left[c_{x y}\right]$
- Discrete L^{α}-Wasserstein distances

$$
W_{\alpha}\left(p^{A}, p^{B}\right)^{\alpha}:=\min _{\pi \in \Pi\left(p^{A}, p^{B}\right)} \sum_{x, y} c_{x y}^{\alpha} \pi_{x y}
$$

- $c_{x y} \geq 0$: cost of transporting a unit probability from p_{y}^{A} to p_{x}^{B}
- $\pi_{x y} \geq 0$: amount of probability transported from p_{y}^{A} to p_{x}^{B}
- L^{1}-Wasserstein distance is of interest
- W_{1} satisfies the triangle inequality as long as $c_{x y}+c_{y z} \geq c_{x z}$

Discrete Wasserstein distances

- Transport a N-dimensional distribution $p^{A}=\left[p_{x}^{A}\right]$ to distribution $p^{B}=\left[p_{x}^{B}\right]$ with respect to a cost matrix $C=\left[c_{x y}\right]$
- Discrete L^{α}-Wasserstein distances

$$
W_{\alpha}\left(p^{A}, p^{B}\right)^{\alpha}:=\min _{\pi \in \Pi\left(p^{A}, p^{B}\right)} \sum_{x, y} c_{x y}^{\alpha} \pi_{x y}
$$

- $c_{x y} \geq 0$: cost of transporting a unit probability from p_{y}^{A} to p_{x}^{B}
- $\pi_{x y} \geq 0$: amount of probability transported from p_{y}^{A} to p_{x}^{B}
- L^{1}-Wasserstein distance is of interest
- W_{1} satisfies the triangle inequality as long as $c_{x y}+c_{y z} \geq c_{x z}$
- Number of choices for the cost matrix C is infinite

Generalized Wasserstein distances

- Optimal transport between two unbalanced states \boldsymbol{x}^{a} and $\boldsymbol{x}^{b}\left[\right.$ i.e., $\sum_{i} x_{i}^{a} \neq \sum_{i} x_{i}^{b}$]

Generalized Wasserstein distances

- Optimal transport between two unbalanced states \boldsymbol{x}^{a} and $\boldsymbol{x}^{b}\left[\right.$ i.e., $\sum_{i} x_{i}^{a} \neq \sum_{i} x_{i}^{b}$]
- An infinitesimal mass $\delta \boldsymbol{x}^{a}$ of \boldsymbol{x}^{a} can either be removed at cost $\lambda\left\|\delta \boldsymbol{x}^{a}\right\|_{1}$ or moved from \boldsymbol{x}^{a} to \boldsymbol{x}^{b} at cost $\mathcal{W}_{1}\left(\delta \boldsymbol{x}^{a}, \delta \boldsymbol{x}^{b}\right)$

Generalized Wasserstein distances

- Optimal transport between two unbalanced states \boldsymbol{x}^{a} and $\boldsymbol{x}^{b}\left[\right.$ i.e., $\sum_{i} x_{i}^{a} \neq \sum_{i} x_{i}^{b}$]
- An infinitesimal mass $\delta \boldsymbol{x}^{a}$ of \boldsymbol{x}^{a} can either be removed at cost $\lambda\left\|\delta \boldsymbol{x}^{a}\right\|_{1}$ or moved from \boldsymbol{x}^{a} to \boldsymbol{x}^{b} at cost $\mathcal{W}_{1}\left(\delta \boldsymbol{x}^{a}, \delta \boldsymbol{x}^{b}\right)$
- Generalized Wasserstein distance [Piccoli et al., ARMA (2013)]

$$
\mathcal{W}_{1, \lambda}\left(\boldsymbol{x}^{a}, \boldsymbol{x}^{b}\right):=\min \left\{\lambda\left(\left\|\boldsymbol{x}^{a}-\tilde{\boldsymbol{x}}^{a}\right\|_{1}+\left\|\boldsymbol{x}^{b}-\tilde{\boldsymbol{x}}^{b}\right\|_{1}\right)+\mathcal{W}_{1}\left(\tilde{\boldsymbol{x}}^{a}, \tilde{\boldsymbol{x}}^{b}\right)\right\}
$$

Generalized Wasserstein distances

- Optimal transport between two unbalanced states \boldsymbol{x}^{a} and $\boldsymbol{x}^{b}\left[\right.$ i.e., $\sum_{i} x_{i}^{a} \neq \sum_{i} x_{i}^{b}$]
- An infinitesimal mass $\delta \boldsymbol{x}^{a}$ of \boldsymbol{x}^{a} can either be removed at cost $\lambda\left\|\delta \boldsymbol{x}^{a}\right\|_{1}$ or moved from \boldsymbol{x}^{a} to \boldsymbol{x}^{b} at cost $\mathcal{W}_{1}\left(\delta \boldsymbol{x}^{a}, \delta \boldsymbol{x}^{b}\right)$
- Generalized Wasserstein distance [Piccoli et al., ARMA (2013)]

$$
\mathcal{W}_{1, \lambda}\left(\boldsymbol{x}^{a}, \boldsymbol{x}^{b}\right):=\min \left\{\lambda\left(\left\|\boldsymbol{x}^{a}-\tilde{\boldsymbol{x}}^{a}\right\|_{1}+\left\|\boldsymbol{x}^{b}-\tilde{\boldsymbol{x}}^{b}\right\|_{1}\right)+\mathcal{W}_{1}\left(\tilde{\boldsymbol{x}}^{a}, \tilde{\boldsymbol{x}}^{b}\right)\right\}
$$

- Minimum is over all the states $\tilde{\boldsymbol{x}}^{a}$ and $\tilde{\boldsymbol{x}}^{b}$ such that $\left\|\tilde{\boldsymbol{x}}^{a}\right\|_{1}=\left\|\tilde{\boldsymbol{x}}^{b}\right\|_{1}$

Generalized Wasserstein distances

- Optimal transport between two unbalanced states \boldsymbol{x}^{a} and $\boldsymbol{x}^{b}\left[\right.$ i.e., $\sum_{i} x_{i}^{a} \neq \sum_{i} x_{i}^{b}$]
- An infinitesimal mass $\delta \boldsymbol{x}^{a}$ of \boldsymbol{x}^{a} can either be removed at cost $\lambda\left\|\delta \boldsymbol{x}^{a}\right\|_{1}$ or moved from \boldsymbol{x}^{a} to \boldsymbol{x}^{b} at cost $\mathcal{W}_{1}\left(\delta \boldsymbol{x}^{a}, \delta \boldsymbol{x}^{b}\right)$
- Generalized Wasserstein distance [Piccoli et al., ARMA (2013)]

$$
\mathcal{W}_{1, \lambda}\left(\boldsymbol{x}^{a}, \boldsymbol{x}^{b}\right):=\min \left\{\lambda\left(\left\|\boldsymbol{x}^{a}-\tilde{\boldsymbol{x}}^{a}\right\|_{1}+\left\|\boldsymbol{x}^{b}-\tilde{\boldsymbol{x}}^{b}\right\|_{1}\right)+\mathcal{W}_{1}\left(\tilde{\boldsymbol{x}}^{a}, \tilde{\boldsymbol{x}}^{b}\right)\right\}
$$

- Minimum is over all the states $\tilde{\boldsymbol{x}}^{a}$ and $\tilde{\boldsymbol{x}}^{b}$ such that $\left\|\tilde{\boldsymbol{x}}^{a}\right\|_{1}=\left\|\tilde{\boldsymbol{x}}^{b}\right\|_{1}$
- For balanced states, $\mathcal{W}_{1, \lambda} \rightarrow \mathcal{W}_{1}$ within the $\lambda \rightarrow+\infty$ limit

Generalized Wasserstein distances

- Optimal transport between two unbalanced states \boldsymbol{x}^{a} and \boldsymbol{x}^{b} [i.e., $\sum_{i} x_{i}^{a} \neq \sum_{i} x_{i}^{b}$]
- An infinitesimal mass $\delta \boldsymbol{x}^{a}$ of \boldsymbol{x}^{a} can either be removed at cost $\lambda\left\|\delta \boldsymbol{x}^{a}\right\|_{1}$ or moved from \boldsymbol{x}^{a} to \boldsymbol{x}^{b} at cost $\mathcal{W}_{1}\left(\delta \boldsymbol{x}^{a}, \delta \boldsymbol{x}^{b}\right)$
- Generalized Wasserstein distance [Piccoli et al., ARMA (2013)]

$$
\mathcal{W}_{1, \lambda}\left(\boldsymbol{x}^{a}, \boldsymbol{x}^{b}\right):=\min \left\{\lambda\left(\left\|\boldsymbol{x}^{a}-\tilde{\boldsymbol{x}}^{a}\right\|_{1}+\left\|\boldsymbol{x}^{b}-\tilde{\boldsymbol{x}}^{b}\right\|_{1}\right)+\mathcal{W}_{1}\left(\tilde{\boldsymbol{x}}^{a}, \tilde{\boldsymbol{x}}^{b}\right)\right\}
$$

- Minimum is over all the states $\tilde{\boldsymbol{x}}^{a}$ and $\tilde{\boldsymbol{x}}^{b}$ such that $\left\|\tilde{\boldsymbol{x}}^{a}\right\|_{1}=\left\|\tilde{\boldsymbol{x}}^{b}\right\|_{1}$
- For balanced states, $\mathcal{W}_{1, \lambda} \rightarrow \mathcal{W}_{1}$ within the $\lambda \rightarrow+\infty$ limit
- $W_{1, \lambda}$ satisfies the triangle inequality

Optimal transport and stochastic thermodynamics

Thermodynamics of continuous-variable optimal transport

Benamou-Brenier formula [Numer. Math. (2000)]

$$
W_{2}\left(p^{A}, p^{B}\right)^{2}=\min _{v_{t}} \tau \int_{0}^{\tau} \int_{\mathbb{R}^{d}}\left\|v_{t}(x)\right\|^{2} p_{t}(x) d x d t
$$

the minimum is over all smooth paths $\left\{v_{t}\right\}_{0 \leq t \leq \tau}$ subject to the continuity equation

$$
\dot{p}_{t}(x)+\nabla \cdot\left[v_{t}(x) p_{t}(x)\right]=0
$$

with the initial and final conditions $p_{0}(x)=p^{A}(x)$ and $p_{\tau}(x)=p^{B}(x)$

Thermodynamics of continuous-variable optimal transport

Benamou-Brenier formula [Numer. Math. (2000)]

$$
W_{2}\left(p^{A}, p^{B}\right)^{2}=\min _{v_{t}} \tau \int_{0}^{\tau} \int_{\mathbb{R}^{d}}\left\|v_{t}(x)\right\|^{2} p_{t}(x) d x d t
$$

the minimum is over all smooth paths $\left\{v_{t}\right\}_{0 \leq t \leq \tau}$ subject to the continuity equation

$$
\dot{p}_{t}(x)+\nabla \cdot\left[v_{t}(x) p_{t}(x)\right]=0
$$

with the initial and final conditions $p_{0}(x)=p^{A}(x)$ and $p_{\tau}(x)=p^{B}(x)$

- For overdamped Fokker-Planck dynamics, $v_{t}(x)=F_{t}(x)-D \nabla \ln p_{t}(x)$ and

$$
\Sigma_{\tau}=\frac{1}{D} \int_{0}^{\tau} \int_{\mathbb{R}^{d}}\left\|v_{t}(x)\right\|^{2} p_{t}(x) d x d t
$$

Thermodynamics of continuous-variable optimal transport

Benamou-Brenier formula [Numer. Math. (2000)]

$$
W_{2}\left(p^{A}, p^{B}\right)^{2}=\min _{v_{t}} \tau \int_{0}^{\tau} \int_{\mathbb{R}^{d}}\left\|v_{t}(x)\right\|^{2} p_{t}(x) d x d t
$$

the minimum is over all smooth paths $\left\{v_{t}\right\}_{0 \leq t \leq \tau}$ subject to the continuity equation

$$
\dot{p}_{t}(x)+\nabla \cdot\left[v_{t}(x) p_{t}(x)\right]=0
$$

with the initial and final conditions $p_{0}(x)=p^{A}(x)$ and $p_{\tau}(x)=p^{B}(x)$

- For overdamped Fokker-Planck dynamics, $v_{t}(x)=F_{t}(x)-D \nabla \ln p_{t}(x)$ and

$$
\Sigma_{\tau}=\frac{1}{D} \int_{0}^{\tau} \int_{\mathbb{R}^{d}}\left\|v_{t}(x)\right\|^{2} p_{t}(x) d x d t
$$

- Wasserstein distance in terms of dissipation

$$
W_{2}\left(p^{A}, p^{B}\right)=\min _{F_{t}} \sqrt{D \tau \Sigma_{\tau}}
$$

- Mandelstam-Tamm (MT) and Margolus-Levitin (ML) speed limits inspired by Heisenberg uncertainty principle $\Delta t \times \Delta E \gtrsim \hbar$:

$$
\tau \geq \frac{\pi}{2} \max \left\{\frac{\hbar}{\Delta H}, \frac{\hbar}{\langle H\rangle-E_{g}}\right\}
$$

Essential applications of Benamou-Brenier formula

- Mandelstam-Tamm (MT) and Margolus-Levitin (ML) speed limits inspired by Heisenberg uncertainty principle $\Delta t \times \Delta E \gtrsim \hbar$:

$$
\tau \geq \frac{\pi}{2} \max \left\{\frac{\hbar}{\Delta H}, \frac{\hbar}{\langle H\rangle-E_{g}}\right\}
$$

- Quantum speed limits (QSLs): universal limitation on the operational time of quantum processes

Essential applications of Benamou-Brenier formula

- Mandelstam-Tamm (MT) and Margolus-Levitin (ML) speed limits inspired by Heisenberg uncertainty principle $\Delta t \times \Delta E \gtrsim \hbar$:

$$
\tau \geq \frac{\pi}{2} \max \left\{\frac{\hbar}{\Delta H}, \frac{\hbar}{\langle H\rangle-E_{g}}\right\}
$$

- Quantum speed limits (QSLs): universal limitation on the operational time of quantum processes
- Thermodynamic speed limit for overdamped Langevin dynamics [Aurell et al., JSP (2012)]

$$
\tau \geq \frac{W_{2}\left(p_{0}, p_{\tau}\right)}{\sqrt{D\langle\sigma\rangle_{\tau}}}
$$

$\langle\sigma\rangle_{\tau}:=\tau^{-1} \Sigma_{\tau}:$ time-average entropy production

Essential applications of Benamou-Brenier formula

Landauer principle

Minimum heat dissipation required for erasing of one bit of information

$$
Q \geq k_{B} T \ln 2
$$

T : the temperature of the environment

$$
\begin{gathered}
\cdots|0| 1|1| 0|1| 0 \mid \cdots \\
\Downarrow \Lambda \text { (input) } \\
\cdots|0| 0|0| 0|0| 0 \mid \cdots
\end{gathered}
$$

Essential applications of Benamou-Brenier formula

Landauer principle

Minimum heat dissipation required for erasing of one bit of information

$$
Q \geq k_{B} T \ln 2
$$

T : the temperature of the environment

- Finite-time Landauer principle

$$
\beta Q \geq \ln 2+\frac{W_{2}\left(p_{0}, p_{\tau}\right)^{2}}{D \tau}
$$

$$
\begin{gathered}
\cdots|0| 1|1| 0|1| 0 \mid \cdots \\
\Downarrow \Lambda \text { (input) } \\
\cdots|0| 0|0| 0|0| 0 \mid \cdots
\end{gathered}
$$

Essential applications of Benamou-Brenier formula

Landauer principle

Minimum heat dissipation required for erasing of one bit of information

$$
Q \geq k_{B} T \ln 2
$$

T : the temperature of the environment

- Finite-time Landauer principle

$$
\beta Q \geq \ln 2+\frac{W_{2}\left(p_{0}, p_{\tau}\right)^{2}}{D \tau}
$$

$$
\begin{gathered}
\cdots|0| 1|1| 0|1| 0 \mid \cdots \\
\Downarrow \Lambda \text { (input) } \\
\cdots|0| 0|0| 0|0| 0 \mid \cdots
\end{gathered}
$$

- For 1D overdamped systems with double-well potentials [Proesman et al., PRL (2020)]

$$
\beta Q \geq \ln 2+\frac{\operatorname{Var}(x)}{2 D \tau}
$$

Motivation

Markov jump processes

- Discrete-state system with N states: $\dot{p}_{t}=\mathrm{W}_{t} p_{t}, \mathrm{~W}_{t}=\left[w_{x y}(t)\right]$

heat bath

Markov jump processes

- Discrete-state system with N states: $\dot{p}_{t}=\mathrm{W}_{t} p_{t}, \mathrm{~W}_{t}=\left[w_{x y}(t)\right]$
- Microscopically reversible: $w_{x y}(t)>0$ whenever $w_{y x}(t)>0$

heat bath

Markov jump processes

- Discrete-state system with N states: $\dot{p}_{t}=\mathrm{W}_{t} p_{t}, \mathrm{~W}_{t}=\left[w_{x y}(t)\right]$
- Microscopically reversible: $w_{x y}(t)>0$ whenever $w_{y x}(t)>0$
- Local detailed balance

$$
\ln \frac{w_{x y}(t)}{w_{y x}(t)}=s_{x y}(t)
$$

$s_{x y}(t)$: environmental entropy change associated with jump $y \rightarrow x$

heat bath

Markov jump processes

- Discrete-state system with N states: $\dot{p}_{t}=\mathrm{W}_{t} p_{t}, \mathrm{~W}_{t}=\left[w_{x y}(t)\right]$
- Microscopically reversible: $w_{x y}(t)>0$ whenever $w_{y x}(t)>0$
- Local detailed balance

$$
\ln \frac{w_{x y}(t)}{w_{y x}(t)}=s_{x y}(t)
$$

$s_{x y}(t)$: environmental entropy change associated with jump $y \rightarrow x$

- Irreversible entropy production rate

heat bath

$$
\sigma_{t}:=\dot{s}_{\mathrm{sys}}(t)+\dot{s}_{\mathrm{env}}(t)=\frac{1}{2} \sum_{x \neq y}\left[a_{x y}(t)-a_{y x}(t)\right] \ln \frac{a_{x y}(t)}{a_{y x}(t)} \geq 0
$$

$$
\begin{aligned}
a_{x y}(t) & :=w_{x y}(t) p_{y}(t) \\
j_{x y}(t) & :=a_{x y}(t)-a_{y x}(t) \\
f_{x y}(t) & :=\ln \frac{a_{x y}(t)}{a_{y x}(t)}
\end{aligned}
$$

Markov jump processes

- Discrete-state system with N states: $\dot{p}_{t}=\mathrm{W}_{t} p_{t}, \mathrm{~W}_{t}=\left[w_{x y}(t)\right]$
- Microscopically reversible: $w_{x y}(t)>0$ whenever $w_{y x}(t)>0$
- Local detailed balance

$$
\ln \frac{w_{x y}(t)}{w_{y x}(t)}=s_{x y}(t)
$$

$s_{x y}(t)$: environmental entropy change associated with jump $y \rightarrow x$

- Irreversible entropy production rate

heat bath

$$
\sigma_{t}:=\dot{s}_{\mathrm{sys}}(t)+\dot{s}_{\mathrm{env}}(t)=\frac{1}{2} \sum_{x \neq y}\left[a_{x y}(t)-a_{y x}(t)\right] \ln \frac{a_{x y}(t)}{a_{y x}(t)} \geq 0
$$

- Dynamical activity $\mathcal{A}_{\tau}:=\int_{0}^{\tau} a_{t} d t$ quantifies the total number of jumps

$$
a_{t}:=\sum_{x \neq y} a_{x y}(t)
$$

$$
\begin{aligned}
a_{x y}(t) & :=w_{x y}(t) p_{y}(t) \\
j_{x y}(t) & :=a_{x y}(t)-a_{y x}(t) \\
f_{x y}(t) & :=\ln \frac{a_{x y}(t)}{a_{y x}(t)}
\end{aligned}
$$

Dynamical state mobility

- Onsager kinetic coefficients at the transition level:

$$
m_{x y}(t):=\frac{a_{x y}(t)-a_{y x}(t)}{\ln a_{x y}(t)-\ln a_{y x}(t)}=\frac{j_{x y}(t)}{f_{x y}(t)}
$$

Dynamical state mobility

- Onsager kinetic coefficients at the transition level:

$$
m_{x y}(t):=\frac{a_{x y}(t)-a_{y x}(t)}{\ln a_{x y}(t)-\ln a_{y x}(t)}=\frac{j_{x y}(t)}{f_{x y}(t)}
$$

- $\left\{m_{x y}(t)\right\}$ characterize the responses of the probability currents against the thermodynamic forces

Linear response regime	Nonlinear regime
$J_{x}=\sum_{y} \mu_{x y} F_{y}$	$j_{x y}(t)=m_{x y}(t) f_{x y}(t)$
$\sigma=\sum_{x, y} \mu_{x y} F_{x} F_{y}$	$\sigma_{t}=\sum_{x>y} m_{x y}(t) f_{x y}(t)^{2}$

Dynamical state mobility

- Onsager kinetic coefficients at the transition level:

$$
m_{x y}(t):=\frac{a_{x y}(t)-a_{y x}(t)}{\ln a_{x y}(t)-\ln a_{y x}(t)}=\frac{j_{x y}(t)}{f_{x y}(t)}
$$

- $\left\{m_{x y}(t)\right\}$ characterize the responses of the probability currents against the thermodynamic forces

Linear response regime	Nonlinear regime
$J_{x}=\sum_{y} \mu_{x y} F_{y}$	$j_{x y}(t)=m_{x y}(t) f_{x y}(t)$
$\sigma=\sum_{x, y} \mu_{x y} F_{x} F_{y}$	$\sigma_{t}=\sum_{x>y} m_{x y}(t) f_{x y}(t)^{2}$

- $\sqrt{a_{x y} a_{y x}} \leq m_{x y} \leq\left(a_{x y}+a_{y x}\right) / 2$

Dynamical state mobility

- Onsager kinetic coefficients at the transition level:

$$
m_{x y}(t):=\frac{a_{x y}(t)-a_{y x}(t)}{\ln a_{x y}(t)-\ln a_{y x}(t)}=\frac{j_{x y}(t)}{f_{x y}(t)}
$$

- $\left\{m_{x y}(t)\right\}$ characterize the responses of the probability currents against the thermodynamic forces

Linear response regime	Nonlinear regime
$J_{x}=\sum_{y} \mu_{x y} F_{y}$	$j_{x y}(t)=m_{x y}(t) f_{x y}(t)$
$\sigma=\sum_{x, y} \mu_{x y} F_{x} F_{y}$	$\sigma_{t}=\sum_{x>y} m_{x y}(t) f_{x y}(t)^{2}$

- $\sqrt{a_{x y} a_{y x}} \leq m_{x y} \leq\left(a_{x y}+a_{y x}\right) / 2$

Dynamical state mobility

- Onsager kinetic coefficients at the transition level:

$$
m_{x y}(t):=\frac{a_{x y}(t)-a_{y x}(t)}{\ln a_{x y}(t)-\ln a_{y x}(t)}=\frac{j_{x y}(t)}{f_{x y}(t)}
$$

- $\left\{m_{x y}(t)\right\}$ characterize the responses of the probability currents against the thermodynamic forces

Linear response regime	Nonlinear regime
$J_{x}=\sum_{y} \mu_{x y} F_{y}$	$j_{x y}(t)=m_{x y}(t) f_{x y}(t)$
$\sigma=\sum_{x, y} \mu_{x y} F_{x} F_{y}$	$\sigma_{t}=\sum_{x>y} m_{x y}(t) f_{x y}(t)^{2}$

- $\sqrt{a_{x y} a_{y x}} \leq m_{x y} \leq\left(a_{x y}+a_{y x}\right) / 2$
- Dynamical state mobility

$$
m_{t}:=\sum_{x>y} m_{x y}(t)
$$

Dynamical state mobility

- Onsager kinetic coefficients at the transition level:

$$
m_{x y}(t):=\frac{a_{x y}(t)-a_{y x}(t)}{\ln a_{x y}(t)-\ln a_{y x}(t)}=\frac{j_{x y}(t)}{f_{x y}(t)}
$$

- $\left\{m_{x y}(t)\right\}$ characterize the responses of the probability currents against the thermodynamic forces

Linear response regime	Nonlinear regime
$J_{x}=\sum_{y} \mu_{x y} F_{y}$	$j_{x y}(t)=m_{x y}(t) f_{x y}(t)$
$\sigma=\sum_{x, y} \mu_{x y} F_{x} F_{y}$	$\sigma_{t}=\sum_{x>y} m_{x y}(t) f_{x y}(t)^{2}$

- $\sqrt{a_{x y} a_{y x}} \leq m_{x y} \leq\left(a_{x y}+a_{y x}\right) / 2$
- Dynamical state mobility

$$
m_{t}:=\sum_{x>y} m_{x y}(t)
$$

- Kinetic cost $\mathcal{M}_{\tau}:=\int_{0}^{\tau} m_{t} d t=\tau\langle m\rangle_{\tau}$

Dynamical state mobility

- Analogy between the dynamical state mobility and macroscopic mobility

Macroscopic level	Microscopic level
$J=\mu F$	$j_{x y}=m_{x y} f_{x y}$
Einstein relation $\|F\| \ll 1$ $\mu=\beta D$	Einstein-like relation $\left\|f_{x y}\right\| \ll 1$
$m_{x y}=\left(a_{x y}+a_{y x}\right) / 2$	

Dynamical state mobility

- Analogy between the dynamical state mobility and macroscopic mobility

Macroscopic level	Microscopic level
$J=\mu F$	$j_{x y}=m_{x y} f_{x y}$
Einstein relation $\|F\| \ll 1$	Einstein-like relation $\left\|f_{x y}\right\| \ll 1$
$\mu=\beta D$	$m_{x y}=\left(a_{x y}+a_{y x}\right) / 2$

- In general, $m_{t} \leq a_{t} / 2$ or $\mathcal{M}_{\tau} \leq \mathcal{A}_{\tau} / 2$

Dynamical state mobility

- Analogy between the dynamical state mobility and macroscopic mobility

Macroscopic level	Microscopic level
$J=\mu F$	$j_{x y}=m_{x y} f_{x y}$
Einstein relation $\|F\| \ll 1$	Einstein-like relation $\left\|f_{x y}\right\| \ll 1$
$\mu=\beta D$	$m_{x y}=\left(a_{x y}+a_{y x}\right) / 2$

- In general, $m_{t} \leq a_{t} / 2$ or $\mathcal{M}_{\tau} \leq \mathcal{A}_{\tau} / 2$
- In the continuous-state limit, $m_{t} \rightarrow a_{t} / 2=D(\Delta x)^{-2}$

Dynamical state mobility

- Analogy between the dynamical state mobility and macroscopic mobility

Macroscopic level	Microscopic level
$J=\mu F$	$j_{x y}=m_{x y} f_{x y}$
Einstein relation $\|F\| \ll 1$	Einstein-like relation $\left\|f_{x y}\right\| \ll 1$
$\mu=\beta D$	$m_{x y}=\left(a_{x y}+a_{y x}\right) / 2$

- In general, $m_{t} \leq a_{t} / 2$ or $\mathcal{M}_{\tau} \leq \mathcal{A}_{\tau} / 2$
- In the continuous-state limit, $m_{t} \rightarrow a_{t} / 2=D(\Delta x)^{-2}$
- Improved thermodynamic uncertainty relation [Gingrich et al., PRL (2016)]

$$
\frac{\langle J\rangle^{2}}{\operatorname{Var}[J]} \leq \eta \frac{\Sigma_{\tau}}{2} \leq \frac{\Sigma_{\tau}}{2}
$$

$$
\eta:=2 \mathcal{M}_{\tau} / \mathcal{A}_{\tau} \leq 1
$$

Wasserstein distance based on connectivity of Markov jump processes

- $\mathcal{G}(V, E)$: graph characterizing topology of Markov jump process
- V : set of states
- $(x, y) \in E$ if jump between x and y is allowed

Wasserstein distance based on connectivity of Markov jump processes

- $\mathcal{G}(V, E)$: graph characterizing topology of Markov jump process
- V : set of states
- $(x, y) \in E$ if jump between x and y is allowed
- Shortest path distances $\left\{d_{y x}\right\}$ of graph \mathcal{G}

Shortest-path distances $\left\{d_{x y}\right\}$

0	1	2	3	2
1	0	1	2	1
2	1	0	1	2
3	2	1	0	1
2	1	2	1	0

Wasserstein distance based on connectivity of Markov jump processes

- $\mathcal{G}(V, E)$: graph characterizing topology of Markov jump process
- V : set of states
- $(x, y) \in E$ if jump between x and y is allowed
- Shortest path distances $\left\{d_{y x}\right\}$ of graph \mathcal{G}
- L^{1}-Wasserstein distance [arXiv:1803.00567; Dechant, JPA (2022)]

$$
\mathcal{W}_{1}\left(p^{A}, p^{B}\right):=\min _{\pi \in \Pi\left(p^{A}, p^{B}\right)} \sum_{x, y} d_{x y} \pi_{x y}
$$

Shortest-path distances $\left\{d_{x y}\right\}$

0	1	2	3	2
1	0	1	2	1
2	1	0	1	2
3	2	1	0	1
2	1	2	1	0

Wasserstein distance based on connectivity of Markov jump processes

- $\mathcal{G}(V, E)$: graph characterizing topology of Markov jump process
- V : set of states
- $(x, y) \in E$ if jump between x and y is allowed
- Shortest path distances $\left\{d_{y x}\right\}$ of graph \mathcal{G}
- L^{1}-Wasserstein distance [arXiv:1803.00567; Dechant, JPA (2022)]

$$
\mathcal{W}_{1}\left(p^{A}, p^{B}\right):=\min _{\pi \in \Pi\left(p^{A}, p^{B}\right)} \sum_{x, y} d_{x y} \pi_{x y}
$$

- In the case of full connectivity (i.e., $d_{x y}=1$ for any $x \neq y$),

$$
\mathcal{W}_{1}\left(p^{A}, p^{B}\right)=\frac{1}{2} \sum_{x}\left|p_{x}^{A}-p_{x}^{B}\right|=: \mathcal{T}\left(p^{A}, p^{B}\right)
$$

Shortest-path distances $\left\{d_{x y}\right\}$

0	1	2	3	2
1	0	1	2	1
2	1	0	1	2
3	2	1	0	1
2	1	2	1	0

Wasserstein distance based on connectivity of Markov jump processes

- $\mathcal{G}(V, E)$: graph characterizing topology of Markov jump process
- V : set of states
- $(x, y) \in E$ if jump between x and y is allowed
- Shortest path distances $\left\{d_{y x}\right\}$ of graph \mathcal{G}
- L^{1}-Wasserstein distance [arXiv:1803.00567; Dechant, JPA (2022)]

$$
\mathcal{W}_{1}\left(p^{A}, p^{B}\right):=\min _{\pi \in \Pi\left(p^{A}, p^{B}\right)} \sum_{x, y} d_{x y} \pi_{x y}
$$

- In the case of full connectivity (i.e., $d_{x y}=1$ for any $x \neq y$),

$$
\mathcal{W}_{1}\left(p^{A}, p^{B}\right)=\frac{1}{2} \sum_{x}\left|p_{x}^{A}-p_{x}^{B}\right|=: \mathcal{T}\left(p^{A}, p^{B}\right)
$$

- In general, $\mathcal{W}_{1}\left(p^{A}, p^{B}\right) \geq \mathcal{T}\left(p^{A}, p^{B}\right)$

Shortest-path distances $\left\{d_{x y}\right\}$

0	1	2	3	2
1	0	1	2	1
2	1	0	1	2
3	2	1	0	1
2	1	2	1	0

Thermodynamic interpretation of discrete Wasserstein distances

Theorem 1

The Wasserstein distance based on a topology $\mathcal{G}(V, E)$ can be written in variational forms as

$$
\begin{aligned}
\mathcal{W}_{1}\left(p^{A}, p^{B}\right) & =\min _{\mathrm{W}_{t}} \int_{0}^{\tau} \sqrt{\sigma_{t} m_{t}} d t \\
& =\min _{\mathrm{W}_{t}} \sqrt{\Sigma_{\tau} \mathcal{M}_{\tau}}
\end{aligned}
$$

the minimum is taken over all transition rate matrices $\left\{\mathrm{W}_{t}\right\}_{0 \leq t \leq \tau}$ which satisfy the master equation with the boundary conditions $p_{0}=p^{A}$ and $p_{\tau}=p^{B}$ and induce subgraphs of $\mathcal{G}(V, E)$ for all times

Thermodynamic interpretation of discrete Wasserstein distances

Theorem 1

The Wasserstein distance based on a topology $\mathcal{G}(V, E)$ can be written in variational forms as

$$
\begin{aligned}
\mathcal{W}_{1}\left(p^{A}, p^{B}\right) & =\min _{\mathrm{W}_{t}} \int_{0}^{\tau} \sqrt{\sigma_{t} m_{t}} d t \\
& =\min _{\mathrm{W}_{t}} \sqrt{\Sigma_{\tau} \mathcal{M}_{\tau}}
\end{aligned}
$$

the minimum is taken over all transition rate matrices $\left\{\mathrm{W}_{t}\right\}_{0 \leq t \leq \tau}$ which satisfy the master equation with the boundary conditions $p_{0}=p^{A}$ and $p_{\tau}=p^{B}$ and induce subgraphs of $\mathcal{G}(V, E)$ for all times

Proof:

[step 1] Prove that $\mathcal{W}_{1}\left(p^{A}, p^{B}\right) \leq \int_{0}^{\tau} \sqrt{\sigma_{t} m_{t}} d t \leq \sqrt{\Sigma_{\tau} \mathcal{M}_{\tau}}$ holds for all admissible Markovian dynamics that transform p^{A} into p^{B}

Thermodynamic interpretation of discrete Wasserstein distances

Theorem 1

The Wasserstein distance based on a topology $\mathcal{G}(V, E)$ can be written in variational forms as

$$
\begin{aligned}
\mathcal{W}_{1}\left(p^{A}, p^{B}\right) & =\min _{\mathrm{W}_{t}} \int_{0}^{\tau} \sqrt{\sigma_{t} m_{t}} d t \\
& =\min _{\mathrm{W}_{t}} \sqrt{\Sigma_{\tau} \mathcal{M}_{\tau}}
\end{aligned}
$$

the minimum is taken over all transition rate matrices $\left\{\mathrm{W}_{t}\right\}_{0 \leq t \leq \tau}$ which satisfy the master equation with the boundary conditions $p_{0}=p^{A}$ and $p_{\tau}=p^{B}$ and induce subgraphs of $\mathcal{G}(V, E)$ for all times

Proof:

[step 1] Prove that $\mathcal{W}_{1}\left(p^{A}, p^{B}\right) \leq \int_{0}^{\tau} \sqrt{\sigma_{t} m_{t}} d t \leq \sqrt{\Sigma_{\tau} \mathcal{M}_{\tau}}$ holds for all admissible Markovian dynamics that transform p^{A} into p^{B}
[step 2] Construct a specific process that attains the equality

Remarks of Theorem 1

- Analogous thermodynamic properties with the continuous L^{2}-Wasserstein distance
$\bar{D}:=\langle m\rangle_{\tau}$ plays the same role as the diffusion coefficient D

Remarks of Theorem 1

- Analogous thermodynamic properties with the continuous L^{2}-Wasserstein distance
$\bar{D}:=\langle m\rangle_{\tau}$ plays the same role as the diffusion coefficient D
- Bound on entropy production: $\Sigma_{\tau} \geq \mathcal{W}_{1}\left(p^{A}, p^{B}\right)^{2} /(\bar{D} \tau)$

Remarks of Theorem 1

- Analogous thermodynamic properties with the continuous L^{2}-Wasserstein distance
$\bar{D}:=\langle m\rangle_{\tau}$ plays the same role as the diffusion coefficient D
- Bound on entropy production: $\Sigma_{\tau} \geq \mathcal{W}_{1}\left(p^{A}, p^{B}\right)^{2} /(\bar{D} \tau)$
- Minimum entropy production:

$$
\min _{\langle m\rangle_{\tau}=\bar{D}} \Sigma_{\tau}=\frac{\mathcal{W}_{1}\left(p^{A}, p^{B}\right)^{2}}{\bar{D} \tau}
$$

Remarks of Theorem 1

- Analogous thermodynamic properties with the continuous L^{2}-Wasserstein distance
$\bar{D}:=\langle m\rangle_{\tau}$ plays the same role as the diffusion coefficient D
- Bound on entropy production: $\Sigma_{\tau} \geq \mathcal{W}_{1}\left(p^{A}, p^{B}\right)^{2} /(\bar{D} \tau)$
- Minimum entropy production:

$$
\min _{\langle m\rangle_{\tau}=\bar{D}} \Sigma_{\tau}=\frac{\mathcal{W}_{1}\left(p^{A}, p^{B}\right)^{2}}{\bar{D} \tau}
$$

- Tradeoff between irreversibility and state mobility: $\Sigma_{\tau} \mathcal{M}_{\tau} \geq \mathcal{W}_{1}\left(p_{0}, p_{\tau}\right)^{2}$
- Either the thermodynamic or kinetic cost must be sacrificed to achieve a feasible state transformation

Remarks of Theorem 1

- Theorem 1 immediately derives

$$
\mathcal{W}_{1}\left(p^{A}, p^{B}\right)=\min _{\mathcal{W}_{t}} \int_{0}^{\tau} \sum_{x>y}\left|j_{x y}(t)\right| d t
$$

Remarks of Theorem 1

- Theorem 1 immediately derives

$$
\mathcal{W}_{1}\left(p^{A}, p^{B}\right)=\min _{\mathcal{W}_{t}} \int_{0}^{\tau} \sum_{x>y}\left|j_{x y}(t)\right| d t
$$

- For one-dimensional nearest-neighbor topology (i.e., jump between x and y is admitted if and only if $|x-y|=1$), $d_{x y}=|x-y|$ and

$$
\mathcal{W}_{1}\left(p^{A}, p^{B}\right)=\min _{\mathbf{W}_{t}} \int_{0}^{\tau} \sum_{x=1}^{N-1}\left|j_{x+1, x}(t)\right| d t
$$

Remarks of Theorem 1

- Theorem 1 immediately derives

$$
\mathcal{W}_{1}\left(p^{A}, p^{B}\right)=\min _{\mathcal{W}_{t}} \int_{0}^{\tau} \sum_{x>y}\left|j_{x y}(t)\right| d t
$$

- For one-dimensional nearest-neighbor topology (i.e., jump between x and y is admitted if and only if $|x-y|=1), d_{x y}=|x-y|$ and

$$
\mathcal{W}_{1}\left(p^{A}, p^{B}\right)=\min _{\mathbb{W}_{t}} \int_{0}^{\tau} \sum_{x=1}^{N-1}\left|j_{x+1, x}(t)\right| d t
$$

- Taking the continuum limit yields

$$
W_{1}\left(p^{A}, p^{B}\right)=\min _{j_{t}} \int_{0}^{\tau} \int_{\mathbb{R}}\left|j_{t}(x)\right| d x d t
$$

Providing a unified generalization of the Benamou-Brenier formula for the L^{1}-Wasserstein distance

Markovian open quantum dynamics

- Discrete-state dynamics obeying GKSL master equation $\dot{\varrho}_{t}=\mathcal{L}_{t}\left(\varrho_{t}\right):=-i\left[H_{t}, \varrho_{t}\right]+\sum_{k} \mathcal{D}\left[L_{k}(t)\right] \varrho_{t}$

Markovian open quantum dynamics

- Discrete-state dynamics obeying GKSL master equation $\varrho_{t}=\mathcal{L}_{t}\left(\varrho_{t}\right):=-i\left[H_{t}, \varrho_{t}\right]+\sum_{k} \mathcal{D}\left[L_{k}(t)\right] \varrho_{t}$
- Local detailed balance $L_{k}(t)=e^{s_{k}(t) / 2} L_{k^{\prime}}(t)^{\dagger}$ $s_{k}(t)=-s_{k^{\prime}}(t)$: entropy change in the environment

Entropy production, dynamical activity, and dynamical state mobility

- Irreversible entropy production

$$
\Sigma_{\tau}:=\Delta S_{\mathrm{sys}}+\Delta S_{\mathrm{env}} \geq 0
$$

$\Delta S_{\text {sys }}:=S\left(\varrho_{\tau}\right)-S\left(\varrho_{0}\right)$: change in the von Neumann entropy
$\Delta S_{\text {env }}:=\int_{0}^{\tau} \sum_{k} \operatorname{tr}\left\{L_{k}(t) \varrho_{t} L_{k}^{\dagger}(t)\right\} s_{k}(t) d t$: environmental entropy production

Entropy production, dynamical activity, and dynamical state mobility

- Irreversible entropy production

$$
\Sigma_{\tau}:=\Delta S_{\text {sys }}+\Delta S_{\text {env }} \geq 0
$$

$\Delta S_{\text {sys }}:=S\left(\varrho_{\tau}\right)-S\left(\varrho_{0}\right)$: change in the von Neumann entropy
$\Delta S_{\text {env }}:=\int_{0}^{\tau} \sum_{k} \operatorname{tr}\left\{L_{k}(t) \varrho_{t} L_{k}^{\dagger}(t)\right\} s_{k}(t) d t$: environmental entropy production

- Dynamical activity $\mathcal{A}_{\tau}:=\int_{0}^{\tau} \sum_{k} \operatorname{tr}\left\{L_{k}(t) \varrho_{t} L_{k}^{\dagger}(t)\right\} d t$

Entropy production, dynamical activity, and dynamical state mobility

- Irreversible entropy production

$$
\Sigma_{\tau}:=\Delta S_{\mathrm{sys}}+\Delta S_{\mathrm{env}} \geq 0
$$

$\Delta S_{\text {sys }}:=S\left(\varrho_{\tau}\right)-S\left(\varrho_{0}\right)$: change in the von Neumann entropy
$\Delta S_{\text {env }}:=\int_{0}^{\tau} \sum_{k} \operatorname{tr}\left\{L_{k}(t) \varrho_{t} L_{k}^{\dagger}(t)\right\} s_{k}(t) d t$: environmental entropy production

- Dynamical activity $\mathcal{A}_{\tau}:=\int_{0}^{\tau} \sum_{k} \operatorname{tr}\left\{L_{k}(t) \varrho_{t} L_{k}^{\dagger}(t)\right\} d t$
- Dynamical state mobility

$$
m_{t}:=\frac{1}{2} \sum_{k} e^{-s_{k}(t) / 2}\left\langle L_{k}(t)^{\dagger}, \llbracket \varrho_{t} \rrbracket_{s_{k}(t)}\left(\mathcal{P}_{t}\left[L_{k}(t)^{\dagger}\right]\right)\right\rangle
$$

$\langle X, Y\rangle:=\operatorname{tr}\left\{X^{\dagger} Y\right\}$
$\mathcal{P}_{t}[X]:=X-\sum_{x}\left\langle x_{t}\right| X\left|x_{t}\right\rangle\left|x_{t}\right\rangle\left\langle x_{t}\right|$
$\llbracket \phi \rrbracket_{\theta}(X):=e^{-\theta / 2} \int_{0}^{1} e^{\theta u} \phi^{u} X \phi^{1-u} d u$
$\varrho_{t}=\sum_{x} p_{x}(t)\left|x_{t}\right\rangle\left\langle x_{t}\right|$: spectral decomposition of the density matrix ϱ_{t}

Quantum Wasserstein distance

- Naive quantum extension

$$
W_{q}\left(\varrho^{A}, \varrho^{B}\right):=\min _{\varrho^{A B} \in \Pi\left(\varrho^{A}, \varrho^{B}\right)} \operatorname{tr}\left\{C \varrho^{A B}\right\}
$$

$\Pi\left(\varrho^{A}, \varrho^{B}\right)$: set of density matrices $\varrho^{A B}$ satisfying $\operatorname{tr}_{B} \varrho^{A B}=\varrho^{A}$ and $\operatorname{tr}_{A} \varrho^{A B}=\varrho^{B}$ C : cost matrix that must be properly chosen to guarantee that W_{q} is a distance

Quantum Wasserstein distance

- Naive quantum extension

$$
W_{q}\left(\varrho^{A}, \varrho^{B}\right):=\min _{\varrho^{A B} \in \Pi\left(\varrho^{A}, \varrho^{B}\right)} \operatorname{tr}\left\{C \varrho^{A B}\right\}
$$

$\Pi\left(\varrho^{A}, \varrho^{B}\right)$: set of density matrices $\varrho^{A B}$ satisfying $\operatorname{tr}_{B} \varrho^{A B}=\varrho^{A}$ and $\operatorname{tr}_{A} \varrho^{A B}=\varrho^{B}$ C : cost matrix that must be properly chosen to guarantee that W_{q} is a distance

- Trace distance $\mathcal{T}\left(\varrho^{A}, \varrho^{B}\right)=\left\|\varrho^{A}-\varrho^{B}\right\|_{1} / 2$ cannot be expressed for any choice of C [arXiv:1803.02673]

Quantum Wasserstein distance

- Naive quantum extension

$$
W_{q}\left(\varrho^{A}, \varrho^{B}\right):=\min _{\varrho^{A B} \in \Pi\left(\varrho^{A}, \varrho^{B}\right)} \operatorname{tr}\left\{C \varrho^{A B}\right\}
$$

$\Pi\left(\varrho^{A}, \varrho^{B}\right)$: set of density matrices $\varrho^{A B}$ satisfying $\operatorname{tr}_{B} \varrho^{A B}=\varrho^{A}$ and $\operatorname{tr}_{A} \varrho^{A B}=\varrho^{B}$ C : cost matrix that must be properly chosen to guarantee that W_{q} is a distance

- Trace distance $\mathcal{T}\left(\varrho^{A}, \varrho^{B}\right)=\left\|\varrho^{A}-\varrho^{B}\right\|_{1} / 2$ cannot be expressed for any choice of C [arXiv:1803.02673]
- $W_{q}\left(\varrho_{0}, \varrho_{\tau}\right)>0$ even for unitary dynamics $\varrho_{\tau}=U \varrho_{0} U^{\dagger}$ with zero entropy production

Quantum Wasserstein distance

- Naive quantum extension

$$
W_{q}\left(\varrho^{A}, \varrho^{B}\right):=\min _{\varrho^{A B} \in \Pi\left(\varrho^{A}, \varrho^{B}\right)} \operatorname{tr}\left\{C \varrho^{A B}\right\}
$$

$\Pi\left(\varrho^{A}, \varrho^{B}\right)$: set of density matrices $\varrho^{A B}$ satisfying $\operatorname{tr}_{B} \varrho^{A B}=\varrho^{A}$ and $\operatorname{tr}_{A} \varrho^{A B}=\varrho^{B}$ C : cost matrix that must be properly chosen to guarantee that W_{q} is a distance

- Trace distance $\mathcal{T}\left(\varrho^{A}, \varrho^{B}\right)=\left\|\varrho^{A}-\varrho^{B}\right\|_{1} / 2$ cannot be expressed for any choice of C [arXiv:1803.02673]
- $W_{q}\left(\varrho_{0}, \varrho_{\tau}\right)>0$ even for unitary dynamics $\varrho_{\tau}=U \varrho_{0} U^{\dagger}$ with zero entropy production
- Relating dissipation to the optimal transport distances defined in the naive form is impossible

Quantum Wasserstein distance

- Considering dissipative structure of Lindblad dynamics, we define

$$
\mathcal{W}_{q}\left(\varrho^{A}, \varrho^{B}\right):=\frac{1}{2} \min _{V^{\dagger} V=\mathbb{1}}\left\|V \varrho^{A} V^{\dagger}-\varrho^{B}\right\|_{1}
$$

the minimum is over all possible unitaries V

Quantum Wasserstein distance

- Considering dissipative structure of Lindblad dynamics, we define

$$
\mathcal{W}_{q}\left(\varrho^{A}, \varrho^{B}\right):=\frac{1}{2} \min _{V^{\dagger} V=\mathbb{\mathbb { 1 }}}\left\|V \varrho^{A} V^{\dagger}-\varrho^{B}\right\|_{1}
$$

the minimum is over all possible unitaries V

- Analytical expression

$$
\mathcal{W}_{q}\left(\varrho^{A}, \varrho^{B}\right)=\frac{1}{2} \sum_{x}\left|p_{x}^{A}-p_{x}^{B}\right|=\mathcal{T}\left(p^{A}, p^{B}\right)
$$

$\left\{p_{x}^{A}\right\}$ and $\left\{p_{x}^{B}\right\}$: increasing eigenvalues of ϱ^{A} and ϱ^{B}, respectively

Theorem 2

The quantum Wasserstein distance can be written in the following variational form:

$$
\begin{aligned}
\mathcal{W}_{q}\left(\varrho^{A}, \varrho^{B}\right) & =\min _{\mathcal{L}_{t}} \int_{0}^{\tau} \sqrt{\sigma_{t} m_{t}} d t \\
& =\min _{\mathcal{L}_{t}} \sqrt{\Sigma_{\tau} \mathcal{M}_{\tau}}
\end{aligned}
$$

the minimum is taken over all super-operators $\left\{\mathcal{L}_{t}\right\}_{0 \leq t \leq \tau}$ that satisfy the Lindblad master equation with boundary conditions $\varrho_{0}=\varrho^{A}$ and $\varrho_{\tau}=\varrho^{B}$

Applications

- Thermodynamic speed limit: lower bound on the operational time required for state transformations

$$
\tau \geq \frac{\mathcal{W}_{1}\left(p_{0}, p_{\tau}\right)}{\left\langle\sqrt{\sigma m\rangle_{\tau}}\right.} \geq \frac{\mathcal{W}_{1}\left(p_{0}, p_{\tau}\right)}{\sqrt{\langle\sigma\rangle_{\tau}\langle m\rangle_{\tau}}}
$$

Applications

- Thermodynamic speed limit: lower bound on the operational time required for state transformations

$$
\tau \geq \frac{\mathcal{W}_{1}\left(p_{0}, p_{\tau}\right)}{\langle\sqrt{\sigma m}\rangle_{\tau}} \geq \frac{\mathcal{W}_{1}\left(p_{0}, p_{\tau}\right)}{\sqrt{\langle\sigma\rangle_{\tau}\langle m\rangle_{\tau}}}
$$

- Finite-time Landauer principle: lower bound on heat dissipation required for erasing information

$$
Q \geq-T \Delta S_{\mathrm{sys}}+\frac{\mathcal{W}_{1}\left(p_{0}, p_{\tau}\right)^{2}}{\tau \beta\langle m\rangle_{\tau}}
$$

Numerical demonstration

Pareto-optimal protocol in information erasure of qubit

$$
\mathcal{F}_{q}\left[\left\{\varepsilon_{t}, \theta_{t}\right\}\right]:=\lambda Q-(1-\lambda) F\left(\varrho_{\tau}, \varrho_{*}\right)
$$

Numerical demonstration

Pareto-optimal protocol in information erasure of qubit

$$
\mathcal{F}_{q}\left[\left\{\varepsilon_{t}, \theta_{t}\right\}\right]:=\lambda Q-(1-\lambda) F\left(\varrho_{\tau}, \varrho_{*}\right)
$$

(a)

(f) 1

(g)

Take-home message

	Continuous	Classical discrete	Quantum
Wasserstein distance	$W_{\alpha}(\alpha \geq 1)$	\mathcal{W}_{1}	\mathcal{W}_{q}
Thermodynamic interpretation of optimal transport	Benamou-Brenier formula $W_{2}\left(p^{A}, p^{B}\right)=\min \sqrt{\tau D \Sigma_{\tau}}$ $W_{1}\left(p^{A}, p^{B}\right) \leq \min \sqrt{\tau D \Sigma_{\tau}}$	$\mathcal{W}_{1}\left(p^{A}, p^{B}\right)=\min \sqrt{\tau\langle m\rangle_{\tau} \Sigma_{\tau}}$	Theorem $\mathcal{W}_{q}\left(\varrho^{A}, \varrho^{B}\right)=\min \sqrt{\tau\langle m\rangle_{\tau} \Sigma_{\tau}}$
Minimum dissipation	$\min \Sigma_{\tau}=\frac{\mathcal{W}_{2}\left(p^{A}, p^{B}\right)^{2}}{\tau D}$	$\min _{\langle m\rangle_{\tau}} \Sigma_{\tau}=\frac{\mathcal{W}_{1}\left(p^{A}, p^{B}\right)^{2}}{\tau D}$	$\min _{\langle m\rangle_{\tau}=D} \Sigma_{\tau}=\frac{\mathcal{W}_{q}\left(\varrho^{A}, \varrho^{B}\right)^{2}}{\tau D}$
Thermodynamic speed limit	$\tau \geq \frac{W_{2(1)}\left(p^{A}, p^{B}\right)}{\sqrt{D\langle\sigma\rangle_{\tau}}}$	$\tau \geq \frac{\mathcal{W}_{1}\left(p^{A}, p^{B}\right)}{\sqrt{\langle m\rangle_{\tau}\langle\sigma\rangle_{\tau}}}$	$\tau \geq \frac{\mathcal{W}_{q}\left(\varrho^{A}, \varrho^{B}\right)}{\sqrt{\langle m\rangle_{\tau}\langle\sigma\rangle_{\tau}}}$

Optimal transport and speed

limits

Motivation

- Interacting systems generally form spatial structures in their dynamics

bosonic transport

Motivation

- Interacting systems generally form spatial structures in their dynamics
- Jump processs with dense connectivity may relax faster

bosonic transport

Motivation

- Interacting systems generally form spatial structures in their dynamics
- Jump processs with dense connectivity may relax faster
- Systems with long-range interactions may propagate information faster [J. Eisert et al., PRL (2013)]

bosonic transport

Motivation

- Interacting systems generally form spatial structures in their dynamics
- Jump processs with dense connectivity may relax faster
- Systems with long-range interactions may propagate information faster [J. Eisert et al., PRL (2013)]
- Conventional speed limits

$$
\tau \geq \frac{\mathcal{L}\left(\boldsymbol{x}_{0}, \boldsymbol{x}_{\tau}\right)}{\bar{v}}
$$

$\mathcal{L}\left(\boldsymbol{x}_{0}, \boldsymbol{x}_{\tau}\right) \leq C$ (irrelevant to system size) \bar{v} : velocity generally being order of system size

bosonic transport

Motivation

- Interacting systems generally form spatial structures in their dynamics
- Jump processs with dense connectivity may relax faster
- Systems with long-range interactions may propagate information faster [J. Eisert et al., PRL (2013)]
- Conventional speed limits

$$
\tau \geq \frac{\mathcal{L}\left(\boldsymbol{x}_{0}, \boldsymbol{x}_{\tau}\right)}{\bar{v}}
$$

$\mathcal{L}\left(\boldsymbol{x}_{0}, \boldsymbol{x}_{\tau}\right) \leq C$ (irrelevant to system size)
\bar{v} : velocity generally being order of system size

- These speed limits generally become less tight as the system increases in terms of size

$$
\tau \geq \frac{\mathcal{L}\left(\boldsymbol{x}_{0}, \boldsymbol{x}_{\tau}\right)}{\bar{v}} \rightarrow 0 \text { as system size increases }
$$

Motivation

- Interacting systems generally form spatial structures in their dynamics
- Jump processs with dense connectivity may relax faster
- Systems with long-range interactions may propagate information faster [J. Eisert et al., PRL (2013)]
- Conventional speed limits

$$
\tau \geq \frac{\mathcal{L}\left(\boldsymbol{x}_{0}, \boldsymbol{x}_{\tau}\right)}{\bar{v}}
$$

$\mathcal{L}\left(\boldsymbol{x}_{0}, \boldsymbol{x}_{\tau}\right) \leq C$ (irrelevant to system size)
\bar{v} : velocity generally being order of system size

- These speed limits generally become less tight as the system increases in terms of size

$$
\tau \geq \frac{\mathcal{L}\left(\boldsymbol{x}_{0}, \boldsymbol{x}_{\tau}\right)}{\bar{v}} \rightarrow 0 \text { as system size increases }
$$

- Metrics that are scalable to system size should be considered

General dynamics

- A physical state $\boldsymbol{x}_{t}=\left[x_{1}(t), \ldots, x_{N}(t)\right]$ described by

$$
\dot{x}_{i}(t)=f_{i}(t)+\sum_{j \in \mathcal{B}_{i}} f_{i j}(t)
$$

$f_{i j}(t)=-f_{j i}(t)$: flow exchange between i and j $f_{i}(t)$: arbitrary external flow

General dynamics

- A physical state $\boldsymbol{x}_{t}=\left[x_{1}(t), \ldots, x_{N}(t)\right]$ described by

$$
\dot{x}_{i}(t)=f_{i}(t)+\sum_{j \in \mathcal{B}_{i}} f_{i j}(t)
$$

$f_{i j}(t)=-f_{j i}(t)$: flow exchange between i and j $f_{i}(t)$: arbitrary external flow

- Examples include probability distributions of discrete systems, reactant concentrations of chemical reaction networks, or physical observables in quantum systems

$$
\dot{x}_{i}(t)=f_{i}(t)+\sum_{j \in \mathcal{B}_{i}} f_{i j}(t)
$$

General dynamics

- A physical state $\boldsymbol{x}_{t}=\left[x_{1}(t), \ldots, x_{N}(t)\right]$ described by

$$
\dot{x}_{i}(t)=f_{i}(t)+\sum_{j \in \mathcal{B}_{i}} f_{i j}(t)
$$

$f_{i j}(t)=-f_{j i}(t)$: flow exchange between i and j $f_{i}(t)$: arbitrary external flow

- Examples include probability distributions of discrete systems, reactant concentrations of chemical reaction networks, or physical observables in quantum systems
- Time-dependent velocity

$$
v_{t, \lambda}:=\lambda \sum_{i}\left|f_{i}(t)\right|+\sum_{(i, j) \in \mathcal{E}}\left|f_{i j}(t)\right|
$$

$\lambda \geq 0$: weighting factor

General result

Speed limit using generalized Wasserstein distance

The operational time required for transform x_{0} into x_{τ} is lower bounded by the Wasserstein distance divided by the average velocity:

$$
\tau \geq \frac{\mathcal{W}_{1, \lambda}\left(\boldsymbol{x}_{0}, \boldsymbol{x}_{\tau}\right)}{\left\langle v_{t, \lambda}\right\rangle_{\tau}} \forall \lambda \geq 0
$$

In the case that the external flows are absent [i.e., $f_{i}(t)=0$]

$$
\tau \geq \frac{\mathcal{W}_{1}\left(\boldsymbol{x}_{0}, \boldsymbol{x}_{\tau}\right)}{\left\langle v_{t}\right\rangle_{\tau}}
$$

Applications

Quantitative

$$
H_{t}=-\gamma \sum_{i=1}^{N-1}\left(b_{i}^{\dagger} b_{i+1}+b_{i+1}^{\dagger} b_{i}\right)+\sum_{i=1}^{N} U_{i}(t) \hat{n}_{i}\left(\hat{n}_{i}-1\right) / 2
$$

Applications

Quantitative

$H_{t}=-\gamma \sum_{i=1}^{N-1}\left(b_{i}^{\dagger} b_{i+1}+b_{i+1}^{\dagger} b_{i}\right)+\sum_{i=1}^{N} U_{i}(t) \hat{n}_{i}\left(\hat{n}_{i}-1\right) / 2$

Applications - Bosonic transport

- Model of bosons that hop on an arbitrary finite-dimensional lattice and interact with each other

$$
H:=-\gamma \sum_{(i, j)}\left(b_{i}^{\dagger} b_{j}+b_{j}^{\dagger} b_{i}\right)+\sum_{Z \subseteq \Lambda} h_{Z}
$$

Applications - Bosonic transport

- Model of bosons that hop on an arbitrary finite-dimensional lattice and interact with each other

$$
H:=-\gamma \sum_{(i, j)}\left(b_{i}^{\dagger} b_{j}+b_{j}^{\dagger} b_{i}\right)+\sum_{Z \subseteq \Lambda} h_{Z}
$$

- Weakly coupled to a Markovian thermal reservoir and can exchange particles with the reservoir

$$
\dot{\varrho}_{t}=-i\left[H, \varrho_{t}\right]+\sum_{i \in \Lambda}\left(\mathcal{D}\left[L_{i,+}\right]+\mathcal{D}\left[L_{i,-}\right]\right) \varrho_{t}
$$

$L_{i,+}=\sqrt{\gamma_{i,+}} b_{i}^{\dagger}$ and $L_{i,-}=\sqrt{\gamma_{i,-}} b_{i}$: jump operators that characterize the absorption and emission of bosons at site i

Applications - Bosonic transport

- Model of bosons that hop on an arbitrary finite-dimensional lattice and interact with each other

$$
H:=-\gamma \sum_{(i, j)}\left(b_{i}^{\dagger} b_{j}+b_{j}^{\dagger} b_{i}\right)+\sum_{Z \subseteq \Lambda} h_{Z}
$$

- Weakly coupled to a Markovian thermal reservoir and can exchange particles with the reservoir

$$
\dot{\varrho}_{t}=-i\left[H, \varrho_{t}\right]+\sum_{i \in \Lambda}\left(\mathcal{D}\left[L_{i,+}\right]+\mathcal{D}\left[L_{i,-}\right]\right) \varrho_{t}
$$

$L_{i,+}=\sqrt{\gamma_{i,+}} b_{i}^{\dagger}$ and $L_{i,-}=\sqrt{\gamma_{i,-}} b_{i}$: jump operators that characterize the absorption and emission of bosons at site i

- Vector of boson numbers occupied at each site, $x_{i}(t)=\operatorname{tr}\left\{\hat{n}_{i} \varrho_{t}\right\}$, and $\mathcal{N}_{t}:=\sum_{i \in \Lambda} x_{i}(t)$

Applications - Bosonic transport

- Model of bosons that hop on an arbitrary finite-dimensional lattice and interact with each other

$$
H:=-\gamma \sum_{(i, j)}\left(b_{i}^{\dagger} b_{j}+b_{j}^{\dagger} b_{i}\right)+\sum_{Z \subseteq \Lambda} h_{Z}
$$

- Weakly coupled to a Markovian thermal reservoir and can exchange particles with the reservoir

$$
\dot{\varrho}_{t}=-i\left[H, \varrho_{t}\right]+\sum_{i \in \Lambda}\left(\mathcal{D}\left[L_{i,+}\right]+\mathcal{D}\left[L_{i,-}\right]\right) \varrho_{t}
$$

$L_{i,+}=\sqrt{\gamma_{i,+}} b_{i}^{\dagger}$ and $L_{i,-}=\sqrt{\gamma_{i,-}} b_{i}$: jump operators that characterize the absorption and emission of bosons at site i

- Vector of boson numbers occupied at each site, $x_{i}(t)=\operatorname{tr}\left\{\hat{n}_{i} \varrho_{t}\right\}$, and $\mathcal{N}_{t}:=\sum_{i \in \Lambda} x_{i}(t)$
- Time evolution of $x_{i}(t)$ can be expressed using $f_{i}(t)=\operatorname{tr}\left\{L_{i,+} \varrho_{t} L_{i,+}^{\dagger}\right\}-\operatorname{tr}\left\{L_{i,-} \varrho_{t} L_{i,-}^{\dagger}\right\}$ and $f_{i j}(t)=2 \gamma \Im\left[\operatorname{tr}\left\{b_{j}^{\dagger} b_{i} \varrho_{t}\right\}\right]$

Applications - Bosonic transport

- Upper bound of velocity

$$
v_{t, \lambda} \leq \gamma d_{G} \mathcal{N}_{t}+\lambda \frac{\sigma_{t}}{2} \Phi\left(\frac{\sigma_{t}}{2 a_{t}}\right)^{-1}
$$

d_{G} : maximal vertex degree

Applications - Bosonic transport

- Upper bound of velocity

$$
v_{t, \lambda} \leq \gamma d_{G} \mathcal{N}_{t}+\lambda \frac{\sigma_{t}}{2} \Phi\left(\frac{\sigma_{t}}{2 a_{t}}\right)^{-1}
$$

d_{G} : maximal vertex degree

- Thermodynamic speed limit

$$
\tau \geq \frac{\mathcal{W}_{1, \lambda}\left(\boldsymbol{x}_{0}, \boldsymbol{x}_{\tau}\right)}{\left\langle\gamma d_{G} \mathcal{N}_{t}+\lambda \frac{\sigma_{t}}{2} \Phi\left(\frac{\sigma_{t}}{2 a_{t}}\right)^{-1}\right\rangle_{\tau}}
$$

Applications - Bosonic transport

- In the vanishing coupling limit (i.e., when the system becomes isolated), $\sigma_{t}=a_{t}=0$ and $\mathcal{N}_{t}=\mathcal{N}$ for all times

Applications - Bosonic transport

- In the vanishing coupling limit (i.e., when the system becomes isolated), $\sigma_{t}=a_{t}=0$ and $\mathcal{N}_{t}=\mathcal{N}$ for all times
- Defining $\bar{x}_{i}(t):=\mathcal{N}^{-1} x_{i}(t)$ [i.e., $\sum_{i} \bar{x}_{i}(t)=1$], we obtain a speed limit for bosonic transport

$$
\tau \geq \frac{\mathcal{W}_{1}\left(\overline{\boldsymbol{x}}_{0}, \overline{\boldsymbol{x}}_{\tau}\right)}{\gamma d_{G}}
$$

Applications - Bosonic transport

- In the vanishing coupling limit (i.e., when the system becomes isolated), $\sigma_{t}=a_{t}=0$ and $\mathcal{N}_{t}=\mathcal{N}$ for all times
- Defining $\bar{x}_{i}(t):=\mathcal{N}^{-1} x_{i}(t)$ [i.e., $\sum_{i} \bar{x}_{i}(t)=1$], we obtain a speed limit for bosonic transport

$$
\tau \geq \frac{\mathcal{W}_{1}\left(\overline{\boldsymbol{x}}_{0}, \overline{\boldsymbol{x}}_{\tau}\right)}{\gamma d_{G}}
$$

- Transport bosons between two regions X and Y within a finite time τ

$$
\mathcal{W}_{1}\left(\overline{\boldsymbol{x}}_{0}, \overline{\boldsymbol{x}}_{\tau}\right) \geq \operatorname{dist}(X, Y) \rightarrow \tau \geq \frac{\operatorname{dist}(X, Y)}{\gamma d_{G}}
$$

Applications - Bosonic transport

- In the vanishing coupling limit (i.e., when the system becomes isolated), $\sigma_{t}=a_{t}=0$ and $\mathcal{N}_{t}=\mathcal{N}$ for all times
- Defining $\bar{x}_{i}(t):=\mathcal{N}^{-1} x_{i}(t)$ [i.e., $\sum_{i} \bar{x}_{i}(t)=1$], we obtain a speed limit for bosonic transport

$$
\tau \geq \frac{\mathcal{W}_{1}\left(\overline{\boldsymbol{x}}_{0}, \overline{\boldsymbol{x}}_{\tau}\right)}{\gamma d_{G}}
$$

- Transport bosons between two regions X and Y within a finite time τ

$$
\mathcal{W}_{1}\left(\overline{\boldsymbol{x}}_{0}, \overline{\boldsymbol{x}}_{\tau}\right) \geq \operatorname{dist}(X, Y) \rightarrow \tau \geq \frac{\operatorname{dist}(X, Y)}{\gamma d_{G}}
$$

- Transporting bosons always takes at least a time proportional to the distance between the two regions

Applications - Bosonic transport

- In the vanishing coupling limit (i.e., when the system becomes isolated), $\sigma_{t}=a_{t}=0$ and $\mathcal{N}_{t}=\mathcal{N}$ for all times
- Defining $\bar{x}_{i}(t):=\mathcal{N}^{-1} x_{i}(t)$ [i.e., $\sum_{i} \bar{x}_{i}(t)=1$], we obtain a speed limit for bosonic transport

$$
\tau \geq \frac{\mathcal{W}_{1}\left(\overline{\boldsymbol{x}}_{0}, \overline{\boldsymbol{x}}_{\tau}\right)}{\gamma d_{G}}
$$

- Transport bosons between two regions X and Y within a finite time τ

$$
\mathcal{W}_{1}\left(\bar{x}_{0}, \overline{\boldsymbol{x}}_{\tau}\right) \geq \operatorname{dist}(X, Y) \rightarrow \tau \geq \frac{\operatorname{dist}(X, Y)}{\gamma d_{G}}
$$

- Transporting bosons always takes at least a time proportional to the distance between the two regions
- This statement holds for arbitrary initial states, including the pure states considered in [Faupin et al., PRL (2022)]
- Speed limits that consider spatial structure lead to essential implications on speed of systems
- Speed limits that consider spatial structure lead to essential implications on speed of systems - Applicable to a wide range of dynamics, from classical to quantum, from continuous time to discrete time

Thermodynamic interpretation of discrete Wasserstein distances

Corollary 1

The discrete Wasserstein distance can be expressed in terms of irreversible entropy production and dynamical activity as

$$
\begin{aligned}
\mathcal{W}_{1}\left(p^{A}, p^{B}\right) & =\min _{\mathrm{W}_{t}} \int_{0}^{\tau} \frac{\sigma_{t}}{2} \Phi\left(\frac{\sigma_{t}}{2 a_{t}}\right)^{-1} d t \\
& =\min _{\mathrm{W}_{t}} \frac{\Sigma_{\tau}}{2} \Phi\left(\frac{\Sigma_{\tau}}{2 \mathcal{A}_{\tau}}\right)^{-1}
\end{aligned}
$$

$\Phi(x)$: inverse function of $x \tanh (x)$

Thermodynamic interpretation of discrete Wasserstein distances

Corollary 2
The discrete Wasserstein distance can be expressed in terms of pseudo entropy production and dynamical activity as

$$
\begin{aligned}
\mathcal{W}_{1}\left(p^{A}, p^{B}\right) & =\min _{\mathcal{W}_{t}} \int_{0}^{\tau} \sqrt{\sigma_{t}^{\mathrm{ps}} a_{t}} d t \\
& =\min _{\mathcal{W}_{t}} \sqrt{\sum_{\tau}^{\mathrm{ps}} \mathcal{A}_{t}}
\end{aligned}
$$

$\sigma_{t}^{\mathrm{ps}}:=\dot{\Sigma}_{t}^{\mathrm{ps}}$: the pseudo entropy production rate

Thermodynamic interpretation of discrete Wasserstein distances

Corollary 2
The discrete Wasserstein distance can be expressed in terms of pseudo entropy production and dynamical activity as

$$
\begin{aligned}
\mathcal{W}_{1}\left(p^{A}, p^{B}\right) & =\min _{\mathcal{W}_{t}} \int_{0}^{\tau} \sqrt{\sigma_{t}^{\mathrm{ps}} a_{t}} d t \\
& =\min _{\mathcal{W}_{t}} \sqrt{\Sigma_{\tau}^{\mathrm{ps}} \mathcal{A}_{t}}
\end{aligned}
$$

$\sigma_{t}^{\mathrm{ps}}:=\dot{\Sigma}_{t}^{\mathrm{ps}}$: the pseudo entropy production rate

- Pseudo entropy production rate

$$
\sigma_{t}^{\mathrm{ps}}=\sum_{m>n} \frac{\left(a_{m n}(t)-a_{n m}(t)\right)^{2}}{a_{m n}(t)+a_{n m}(t)} \leq \sigma_{t} / 2
$$

Thermodynamic interpretation of discrete Wasserstein distances

Corollary 2

The discrete Wasserstein distance can be expressed in terms of pseudo entropy production and dynamical activity as

$$
\begin{aligned}
\mathcal{W}_{1}\left(p^{A}, p^{B}\right) & =\min _{\mathcal{W}_{t}} \int_{0}^{\tau} \sqrt{\sigma_{t}^{\mathrm{ps}} a_{t}} d t \\
& =\min _{\mathcal{W}_{t}} \sqrt{\Sigma_{\tau}^{\mathrm{ps}} \mathcal{A}_{t}}
\end{aligned}
$$

$\sigma_{t}^{\mathrm{ps}}:=\dot{\Sigma}_{t}^{\mathrm{ps}}$: the pseudo entropy production rate

- Pseudo entropy production rate

$$
\sigma_{t}^{\mathrm{ps}}=\sum_{m>n} \frac{\left(a_{m n}(t)-a_{n m}(t)\right)^{2}}{a_{m n}(t)+a_{n m}(t)} \leq \sigma_{t} / 2
$$

- $\left(\Sigma_{\tau}, \mathcal{M}_{\tau}\right)$ and $\left(\Sigma_{\tau}^{\mathrm{ps}}, \mathcal{A}_{\tau}\right)$ are two thermodynamic-kinetic conjugate pairs in the context of optimal transport

Thermodynamic interpretation of quantum Wasserstein distance

Corollary 3

The quantum Wasserstein distance can be expressed in terms of irreversible entropy production and dynamical activity as

$$
\begin{aligned}
\mathcal{W}_{q}\left(\varrho^{A}, \varrho^{B}\right) & =\min _{\mathcal{L}_{t}} \int_{0}^{\tau} \frac{\sigma_{t}}{2} \Phi\left(\frac{\sigma_{t}}{2 a_{t}}\right)^{-1} d t \\
& =\min _{\mathcal{L}_{t}} \frac{\Sigma_{\tau}}{2} \Phi\left(\frac{\Sigma_{\tau}}{2 \mathcal{A}_{\tau}}\right)^{-1}
\end{aligned}
$$

