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Optimal transport theory



Optimal transport

About the optimal planning and optimal cost of transporting distributions

3



Monge formulation of optimal transport

Monge formulation

Optimal transport cost with respect to a cost function c(x, y) ∶ Rd × Rd ↦ R≥0:

M(pA, pB) ∶=min
φ
∫ c(x,φ(x))pA(x)dx

φ ∶ Rd ↦ Rd: one-to-one map satisfying pA(x) = pB(φ(x))∣∇φ(x)∣
φ∗: optimal transport map

▸ Non-existence of a valid transport map: φ∗ might not exist in discrete cases because no mass

can be split

▸ Resolved by the relaxation of Kantorovich
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Kantorovich formulation of optimal transport

Kantorovich formulation

Optimal transport cost with respect to a cost function c(x, y) ∶ Rd × Rd ↦ R≥0:

K(pA, pB) ∶=min
π
∫ c(x, y)π(x, y)dxdy

π ∶ Rd × Rd ↦ R>0: coupling of pA and pB (a joint probability distribution function of x and y)

∫
Rd

π(x, y)dy = pA(x) and ∫
Rd

π(x, y)dx = pB(y)

π∗: optimal transport plan

▸ π(x, y): how much mass is moved from x to y

▸ π(x, y) = pA(x)δ(y − φ∗(x)) is a valid transport plan. In general,

K(pA, pB) ≤M(pA, pB)

▸ Two formulations are equivalent when distributions are absolutely continuous
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Wasserstein distances

Lα-Wasserstein distance

Optimal transport cost with respect to a cost function c(x, y) = ∥x − y∥α:

Wα(pA, pB)α ∶=min
π
∫ ∥x − y∥απ(x, y)dxdy

∥ ⋅ ∥: Euclidean norm

▸ Wα is a distance (satisfying the triangle inequality) for α ≥ 1
▸ Wα′ ≥Wα for any α′ ≥ α ≥ 1
▸ W1 and W2 are of interest
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Discrete Wasserstein distances

▸ Transport a N -dimensional distribution pA = [pAx ] to distribution pB = [pBx ] with respect to a

cost matrix C = [cxy]

▸ Discrete Lα-Wasserstein distances

Wα(pA, pB)α ∶= min
π∈Π(pA,pB)

∑
x,y

cαxyπxy

● cxy ≥ 0: cost of transporting a unit probability from pAy to pBx
● πxy ≥ 0: amount of probability transported from pAy to pBx

▸ L1-Wasserstein distance is of interest

● W1 satisfies the triangle inequality as long as cxy + cyz ≥ cxz

▸ Number of choices for the cost matrix C is infinite
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Generalized Wasserstein distances

▸ Optimal transport between two unbalanced states xa and xb [i.e., ∑i x
a
i ≠ ∑i x

b
i ]

▸ An infinitesimal mass δxa of xa can either be removed at cost λ∥δxa∥1 or moved from xa to

xb at cost W1(δxa, δxb)
▸ Generalized Wasserstein distance [Piccoli et al., ARMA (2013)]

W1,λ(xa,xb) ∶=min{λ(∥xa − x̃a∥1 + ∥xb − x̃b∥1) +W1(x̃a, x̃b)}

● Minimum is over all the states x̃a and x̃b such that ∥x̃a∥1 = ∥x̃b∥1
● For balanced states, W1,λ →W1 within the λ→ +∞ limit

● W1,λ satisfies the triangle inequality
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Optimal transport and stochastic

thermodynamics



Thermodynamics of continuous-variable optimal transport

Benamou–Brenier formula [Numer. Math. (2000)]

W2(pA, pB)2 =min
vt

τ ∫
τ

0
∫

Rd
∥vt(x)∥2pt(x)dxdt

the minimum is over all smooth paths {vt}0≤t≤τ subject to the continuity equation

ṗt(x) +∇ ⋅ [vt(x)pt(x)] = 0

with the initial and final conditions p0(x) = pA(x) and pτ(x) = pB(x)

▸ For overdamped Fokker–Planck dynamics, vt(x) = Ft(x) −D∇ lnpt(x) and

Στ =
1

D
∫

τ

0
∫

Rd
∥vt(x)∥2pt(x)dxdt

▸ Wasserstein distance in terms of dissipation

W2(pA, pB) =min
Ft

√
DτΣτ
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Essential applications of Benamou–Brenier formula

▸ Mandelstam-Tamm (MT) and Margolus-Levitin (ML) speed limits inspired by Heisenberg

uncertainty principle ∆t ×∆E ≳ h̵:

τ ≥ π

2
max{ h̵

∆H
,

h̵

⟨H⟩ −Eg
}

● Quantum speed limits (QSLs): universal limitation on the operational time of quantum processes

▸ Thermodynamic speed limit for overdamped Langevin dynamics [Aurell et al., JSP (2012)]

τ ≥ W2(p0, pτ)√
D ⟨σ⟩τ

⟨σ⟩τ ∶= τ−1Στ : time-average entropy production
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Essential applications of Benamou–Brenier formula

Landauer principle

Minimum heat dissipation required for erasing of one bit of information

Q ≥ kBT ln 2

T : the temperature of the environment

▸ Finite-time Landauer principle

βQ ≥ ln 2 + W2(p0, pτ)2

Dτ

● For 1D overdamped systems with double-well potentials [Proesman

et al., PRL (2020)]

βQ ≥ ln 2 + Var(x)
2Dτ

⋯ ∣ 0 ∣ 1 ∣ 1 ∣ 0 ∣ 1 ∣ 0 ∣ ⋯
⇓ Λ(input)

⋯ ∣ 0 ∣ 0 ∣ 0 ∣ 0 ∣ 0 ∣ 0 ∣ ⋯
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Motivation

BB formula
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Markov jump processes

▸ Discrete-state system with N states: ṗt =Wtpt, Wt = [wxy(t)]

▸ Microscopically reversible: wxy(t) > 0 whenever wyx(t) > 0
▸ Local detailed balance

ln
wxy(t)
wyx(t)

= sxy(t)

sxy(t): environmental entropy change associated with jump y → x

▸ Irreversible entropy production rate

σt ∶= ṡsys(t) + ṡenv(t) =
1

2
∑
x≠y
[axy(t) − ayx(t)] ln

axy(t)
ayx(t)

≥ 0

▸ Dynamical activity Aτ ∶= ∫
τ
0 at dt quantifies the total number of

jumps

at ∶= ∑
x≠y

axy(t)

heat bath

axy(t) ∶= wxy(t)py(t)
jxy(t) ∶= axy(t) − ayx(t)

fxy(t) ∶= ln
axy(t)
ayx(t)
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Dynamical state mobility

▸ Onsager kinetic coefficients at the transition level:

mxy(t) ∶=
axy(t) − ayx(t)

lnaxy(t) − lnayx(t)
=
jxy(t)
fxy(t)

● {mxy(t)} characterize the responses of the probability currents against the thermodynamic forces

Linear response regime Nonlinear regime

Jx = ∑y µxyFy jxy(t) =mxy(t)fxy(t)
σ = ∑x,y µxyFxFy σt = ∑x>y mxy(t)fxy(t)2

● √axyayx ≤mxy ≤ (axy + ayx)/2

▸ Dynamical state mobility

mt ∶= ∑
x>y

mxy(t)

● Kinetic costMτ ∶= ∫
τ

0 mt dt = τ ⟨m⟩τ
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Dynamical state mobility

▸ Analogy between the dynamical state mobility and macroscopic mobility

Macroscopic level Microscopic level

J = µF jxy =mxyfxy

Einstein relation ∣F ∣≪ 1 Einstein-like relation ∣fxy ∣≪ 1

µ = βD mxy = (axy + ayx)/2

▸ In general, mt ≤ at/2 orMτ ≤ Aτ /2
▸ In the continuous-state limit, mt → at/2 =D(∆x)−2

▸ Improved thermodynamic uncertainty relation [Gingrich et al., PRL (2016)]

⟨J⟩2

Var[J]
≤ ηΣτ

2
≤ Στ

2

η ∶= 2Mτ /Aτ ≤ 1
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Wasserstein distance based on connectivity of Markov jump processes

▸ G(V,E): graph characterizing topology of Markov jump process

● V : set of states

● (x, y) ∈ E if jump between x and y is allowed

▸ Shortest path distances {dyx} of graph G
▸ L1-Wasserstein distance [arXiv:1803.00567; Dechant, JPA (2022)]

W1(pA, pB) ∶= min
π∈Π(pA,pB)

∑
x,y

dxyπxy

▸ In the case of full connectivity (i.e., dxy = 1 for any x ≠ y),

W1(pA, pB) =
1

2
∑
x

∣pAx − pBx ∣ =∶ T (pA, pB)

▸ In general, W1(pA, pB) ≥ T (pA, pB)
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Thermodynamic interpretation of discrete Wasserstein distances

Theorem 1

The Wasserstein distance based on a topology G(V,E) can be written in variational forms as

W1(pA, pB) =min
Wt
∫

τ

0

√
σtmt dt

=min
Wt

√
ΣτMτ

the minimum is taken over all transition rate matrices {Wt}0≤t≤τ which satisfy the master

equation with the boundary conditions p0 = pA and pτ = pB and induce subgraphs of G(V,E)
for all times

Proof:

[step 1] Prove that W1(pA, pB) ≤ ∫
τ
0

√
σtmt dt ≤

√
ΣτMτ holds for all admissible Markovian

dynamics that transform pA into pB

[step 2] Construct a specific process that attains the equality
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Remarks of Theorem 1

▸ Analogous thermodynamic properties with the continuous L2-Wasserstein distance

W1(pA, pB) =min
Wt

√
D̄τΣτ [↔W2(pA, pB) =min

Ft

√
DτΣτ]

D̄ ∶= ⟨m⟩τ plays the same role as the diffusion coefficient D

● Bound on entropy production: Στ ≥W1(pA, pB)2/(D̄τ)
● Minimum entropy production:

min
⟨m⟩τ=D̄

Στ =
W1(pA, pB)2

D̄τ

▸ Tradeoff between irreversibility and state mobility: ΣτMτ ≥W1(p0, pτ)2

● Either the thermodynamic or kinetic cost must be sacrificed to achieve a feasible state

transformation

18
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Remarks of Theorem 1

▸ Theorem 1 immediately derives

W1(pA, pB) =min
Wt
∫

τ

0
∑
x>y
∣jxy(t)∣dt

● For one-dimensional nearest-neighbor topology (i.e., jump between x and y is admitted if and only

if ∣x − y∣ = 1), dxy = ∣x − y∣ and

W1(pA, pB) =min
Wt
∫

τ

0

N−1

∑
x=1

∣jx+1,x(t)∣dt

● Taking the continuum limit yields

W1(pA, pB) =min
jt
∫

τ

0
∫

R
∣jt(x)∣dxdt

Providing a unified generalization of the Benamou–Brenier formula for the L1-Wasserstein distance

19



Remarks of Theorem 1

▸ Theorem 1 immediately derives

W1(pA, pB) =min
Wt
∫

τ

0
∑
x>y
∣jxy(t)∣dt

● For one-dimensional nearest-neighbor topology (i.e., jump between x and y is admitted if and only

if ∣x − y∣ = 1), dxy = ∣x − y∣ and

W1(pA, pB) =min
Wt
∫

τ

0

N−1

∑
x=1

∣jx+1,x(t)∣dt

● Taking the continuum limit yields

W1(pA, pB) =min
jt
∫

τ

0
∫

R
∣jt(x)∣dxdt

Providing a unified generalization of the Benamou–Brenier formula for the L1-Wasserstein distance

19



Remarks of Theorem 1

▸ Theorem 1 immediately derives

W1(pA, pB) =min
Wt
∫

τ

0
∑
x>y
∣jxy(t)∣dt

● For one-dimensional nearest-neighbor topology (i.e., jump between x and y is admitted if and only

if ∣x − y∣ = 1), dxy = ∣x − y∣ and

W1(pA, pB) =min
Wt
∫

τ

0

N−1

∑
x=1

∣jx+1,x(t)∣dt

● Taking the continuum limit yields

W1(pA, pB) =min
jt
∫

τ

0
∫

R
∣jt(x)∣dxdt

Providing a unified generalization of the Benamou–Brenier formula for the L1-Wasserstein distance

19



Markovian open quantum dynamics

▸ Discrete-state dynamics obeying GKSL master equation

ϱ̇t = Lt(ϱt) ∶= −i[Ht, ϱt] +∑kD[Lk(t)]ϱt

▸ Local detailed balance Lk(t) = esk(t)/2Lk′(t)†

sk(t) = −sk′(t): entropy change in the environment

S

20
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Entropy production, dynamical activity, and dynamical state mobility

▸ Irreversible entropy production

Στ ∶=∆Ssys +∆Senv ≥ 0

∆Ssys ∶= S(ϱτ) − S(ϱ0): change in the von Neumann entropy

∆Senv ∶= ∫
τ
0 ∑k tr{Lk(t)ϱtL†

k(t)}sk(t)dt: environmental entropy production

▸ Dynamical activity Aτ ∶= ∫
τ
0 ∑k tr{Lk(t)ϱtL†

k(t)}dt
▸ Dynamical state mobility

mt ∶=
1

2
∑
k

e−sk(t)/2 ⟨Lk(t)†, JϱtKsk(t)(Pt[Lk(t)†])⟩

⟨X,Y ⟩ ∶= tr{X†Y }
Pt[X] ∶=X −∑x ⟨xt∣X ∣xt⟩ ∣xt⟩⟨xt∣
JϕKθ(X) ∶= e−θ/2 ∫

1
0 eθuϕuXϕ1−u du

ϱt = ∑x px(t) ∣xt⟩⟨xt∣: spectral decomposition of the density matrix ϱt

21
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Quantum Wasserstein distance

▸ Naive quantum extension

Wq(ϱA, ϱB) ∶= min
ϱAB∈Π(ϱA,ϱB)

tr{CϱAB}

Π(ϱA, ϱB): set of density matrices ϱAB satisfying trB ϱAB = ϱA and trA ϱAB = ϱB

C: cost matrix that must be properly chosen to guarantee that Wq is a distance

▸ Trace distance T (ϱA, ϱB) = ∥ϱA − ϱB∥1/2 cannot be expressed for any choice of C

[arXiv:1803.02673]

▸ Wq(ϱ0, ϱτ) > 0 even for unitary dynamics ϱτ = Uϱ0U
† with zero entropy production

● Relating dissipation to the optimal transport distances defined in the naive form is impossible

22
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† with zero entropy production

● Relating dissipation to the optimal transport distances defined in the naive form is impossible

22



Quantum Wasserstein distance

▸ Considering dissipative structure of Lindblad dynamics, we define

Wq(ϱA, ϱB) ∶=
1

2
min

V †V =1
∥V ϱAV † − ϱB∥1

the minimum is over all possible unitaries V

● Analytical expression

Wq(ϱA, ϱB) =
1

2
∑
x

∣pAx − pBx ∣ = T (pA, pB)

{pAx } and {pBx }: increasing eigenvalues of ϱA and ϱB , respectively
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Thermodynamic interpretation of quantum Wasserstein distance

Theorem 2

The quantum Wasserstein distance can be written in the following variational form:

Wq(ϱA, ϱB) =min
Lt
∫

τ

0

√
σtmt dt

=min
Lt

√
ΣτMτ

the minimum is taken over all super-operators {Lt}0≤t≤τ that satisfy the Lindblad master

equation with boundary conditions ϱ0 = ϱA and ϱτ = ϱB

24



Applications

▸ Thermodynamic speed limit: lower bound

on the operational time required for state

transformations

τ ≥ W1(p0, pτ)
⟨
√
σm⟩

τ

≥ W1(p0, pτ)√
⟨σ⟩τ ⟨m⟩τ

How fast?

▸ Finite-time Landauer principle: lower

bound on heat dissipation required for erasing

information

Q ≥ −T∆Ssys +
W1(p0, pτ)2

τβ ⟨m⟩τ
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Numerical demonstration

Pareto-optimal protocol in information erasure of qubit

Fq[{εt, θt}] ∶= λQ − (1 − λ)F (ϱτ , ϱ∗)
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Take-home message

Continuous Classical discrete Quantum

Wasserstein distance Wα (α ≥ 1) W1 Wq

Thermodynamic interpretation of
optimal transport

Benamou–Brenier formula
W2(pA, pB) =min

√
τDΣτ

W1(pA, pB) ≤min
√
τDΣτ

Theorem 1

W1(pA, pB) =min
√
τ ⟨m⟩τ Στ

Theorem 2

Wq(#A,#B) =min
√
τ ⟨m⟩τ Στ

Minimum dissipation minΣτ =
W2(pA, pB)2

τD
min
⟨m⟩τ=D

Στ =
W1(pA, pB)2

τD
min
⟨m⟩τ=D

Στ =
Wq(#A,#B)2

τD

Thermodynamic speed limit τ ≥
W2(1)(pA, pB)√

D ⟨σ⟩τ
τ ≥ W1(pA, pB)√

⟨m⟩τ ⟨σ⟩τ
τ ≥

Wq(#A,#B)√
⟨m⟩τ ⟨σ⟩τ
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Optimal transport and speed

limits



Motivation

▸ Interacting systems generally form spatial structures in their

dynamics

● Jump processs with dense connectivity may relax faster

● Systems with long-range interactions may propagate information

faster [J. Eisert et al., PRL (2013)]

▸ Conventional speed limits

τ ≥ L(x0,xτ)
v

L(x0,xτ) ≤ C (irrelevant to system size)

v: velocity generally being order of system size

▸ These speed limits generally become less tight as the system

increases in terms of size

τ ≥ L(x0,xτ)
v

→ 0 as system size increases

▸ Metrics that are scalable to system size should be considered
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General dynamics

▸ A physical state xt = [x1(t), . . . , xN(t)] described by

ẋi(t) = fi(t) + ∑
j∈Bi

fij(t)

fij(t) = −fji(t): flow exchange between i and j

fi(t): arbitrary external flow

▸ Examples include probability distributions of discrete systems, reactant

concentrations of chemical reaction networks, or physical observables

in quantum systems

▸ Time-dependent velocity

υt,λ ∶= λ∑
i

∣fi(t)∣ + ∑
(i,j)∈E

∣fij(t)∣

λ ≥ 0: weighting factor

29
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General result

Speed limit using generalized Wasserstein distance

The operational time required for transform x0 into xτ is lower bounded by the Wasserstein

distance divided by the average velocity:

τ ≥
W1,λ(x0,xτ)
⟨υt,λ⟩τ

∀λ ≥ 0

In the case that the external flows are absent [i.e., fi(t) = 0]

τ ≥ W1(x0,xτ)
⟨υt⟩τ

30



Applications

Quantitative

Qualitative

Alice Bob
Quantum state transfer

Bosonic transport
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Applications – Bosonic transport

▸ Model of bosons that hop on an arbitrary finite-dimensional lattice and interact with each other

H ∶= −γ ∑
(i,j)
(b†ibj + b

†
jbi) + ∑

Z⊆Λ
hZ

▸ Weakly coupled to a Markovian thermal reservoir and can exchange particles with the reservoir

ϱ̇t = −i[H,ϱt] +∑
i∈Λ
(D[Li,+] +D[Li,−])ϱt

Li,+ =
√
γi,+b

†
i and Li,− =

√
γi,−bi: jump operators that characterize the absorption and

emission of bosons at site i

▸ Vector of boson numbers occupied at each site, xi(t) = tr{n̂iϱt}, and Nt ∶= ∑i∈Λ xi(t)
▸ Time evolution of xi(t) can be expressed using fi(t) = tr{Li,+ϱtL

†
i,+} − tr{Li,−ϱtL

†
i,−} and

fij(t) = 2γI[tr{b†jbiϱt}]
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Applications – Bosonic transport

▸ Upper bound of velocity

υt,λ ≤ γdGNt + λ
σt

2
Φ( σt

2at
)
−1

dG: maximal vertex degree

▸ Thermodynamic speed limit

τ ≥
W1,λ(x0,xτ)

⟨γdGNt + λσt

2
Φ( σt

2at
)
−1
⟩
τ
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Applications – Bosonic transport

▸ In the vanishing coupling limit (i.e., when the system becomes isolated), σt = at = 0 and

Nt = N for all times

▸ Defining x̄i(t) ∶= N −1xi(t) [i.e., ∑i x̄i(t) = 1], we obtain a speed limit for bosonic transport

τ ≥ W1(x̄0, x̄τ)
γdG

▸ Transport bosons between two regions X and Y within a finite time τ

W1(x̄0, x̄τ) ≥ dist(X,Y )→ τ ≥ dist(X,Y )
γdG

● Transporting bosons always takes at least a time proportional to the distance between the two

regions

● This statement holds for arbitrary initial states, including the pure states considered in [Faupin et

al., PRL (2022)]
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Summary

▸ Speed limits that consider spatial structure lead to essential implications on speed of systems

▸ Applicable to a wide range of dynamics, from classical to quantum, from continuous time to

discrete time
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Thermodynamic interpretation of discrete Wasserstein distances

Corollary 1

The discrete Wasserstein distance can be expressed in terms of irreversible entropy production

and dynamical activity as

W1(pA, pB) =min
Wt
∫

τ

0

σt

2
Φ( σt

2at
)
−1

dt

=min
Wt

Στ

2
Φ( Στ

2Aτ
)
−1

Φ(x): inverse function of x tanh(x)
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Thermodynamic interpretation of discrete Wasserstein distances

Corollary 2

The discrete Wasserstein distance can be expressed in terms of pseudo entropy production and

dynamical activity as

W1(pA, pB) =min
Wt
∫

τ

0

√
σps
t at dt

=min
Wt

√
Σps

τ At

σps
t ∶= Σ̇

ps
t : the pseudo entropy production rate

▸ Pseudo entropy production rate

σps
t = ∑

m>n

(amn(t) − anm(t))2

amn(t) + anm(t)
≤ σt/2

▸ (Στ ,Mτ ) and (Σps
τ , Aτ ) are two thermodynamic-kinetic conjugate pairs in the context of

optimal transport
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Thermodynamic interpretation of quantum Wasserstein distance

Corollary 3

The quantum Wasserstein distance can be expressed in terms of irreversible entropy production

and dynamical activity as

Wq(ϱA, ϱB) =min
Lt
∫

τ

0

σt

2
Φ( σt

2at
)
−1

dt

=min
Lt

Στ

2
Φ( Στ

2Aτ
)
−1
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