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Monge formulation

Optimal transport cost with respect to a cost function ¢(z,y) : R x R? + Rsq:
M(p*,p%) =min [ e(,o())p? (x) da

@ :R% > R?: one-to-one map satisfying p?(z) = pZ(o(x))|Ve(z)]

©*: optimal transport map

» Non-existence of a valid transport map: ¢* might not exist in discrete cases because no mass
can be split

» Resolved by the relaxation of Kantorovich
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Kantorovich formulation of optimal transport

Kantorovich formulation

Optimal transport cost with respect to a cost function ¢(z,y) : R? x R? = Rsq:
K(p",p”) = min f c(a,y)m(z,y) dz dy
7:R%x R R,q: coupling of p* and p? (a joint probability distribution function of 2 and ¥)
Jor@dy=pi@) and [ w(@y)de=p ()

7*: optimal transport plan

» 7(x,y): how much mass is moved from x to y
» w(z,y) = p(2)d(y — ¢*(x)) is a valid transport plan. In general,
K@t p%) < M(p*,p")

» Two formulations are equivalent when distributions are absolutely continuous
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Wasserstein distances

L*-Wasserstein distance

Optimal transport cost with respect to a cost function ¢(x,y) = |z — y||*:

Wa(p*,p%)" =min [ o - y|°m(a,y) dudy

|- |: Euclidean norm

» W, is a distance (satisfying the triangle inequality) for oo > 1
» Wy 2 W, forany o’ >a>1

» W1 and Wy are of interest
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Discrete Wasserstein distances

» Transport a N-dimensional distribution p* = [p#] to distribution p® = [pZ] with respect to a
cost matrix C' = [¢gy ]

v

Discrete L“-Wasserstein distances

A | B\« . a
Wa(p™,p”)% = min E T
Tyt TY
rell(pA pP) o Y

® ¢,y >0: cost of transporting a unit probability from pj to pZ
e T,y >0: amount of probability transported from pﬁ to p?

v

L'-Wasserstein distance is of interest

o IV satisfies the triangle inequality as long as ¢y + Cy> > Ca-

v

Number of choices for the cost matrix C' is infinite
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Generalized Wasserstein distances

» Optimal transport between two unbalanced states z® and z° [i.e., ¥; 2¢ # ¥, 27]

» An infinitesimal mass dx® of % can either be removed at cost A|dx®||; or moved from z® to
x’ at cost W, (6x®, 5zb)

> Generalized Wasserstein distance [Piccoli et al., ARMA (2013)]
WL)\(ma,wb) = min{A(Hw“ &y + |2t - 21) + Wl(:b",:%b)}

o Minimum is over all the states % and &° such that |2%]; = | |1
e For balanced states, Wi, x» — W, within the A — +oo limit
o W ) satisfies the triangle inequality
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Thermodynamics of continuous-variable optimal transport

Benamou—Brenier formula [Numer. Math. (2000)]
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with the initial and final conditions po(z) = p*(z) and p,(z) = pZ(x)
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Thermodynamics of continuous-variable optimal transport

Benamou—Brenier formula [Numer. Math. (2000)]
T
Walp*,pP)? = mint [ [ ou(@)|pi(o) da e
vt 0 Rd
the minimum is over all smooth paths {v; }o<t<, Subject to the continuity equation

pe(x) + V- [ve(2)pe(x)] = 0
with the initial and final conditions po(z) = p*(z) and p,(z) = pZ(x)

» For overdamped Fokker-Planck dynamics, vi(z) = Fy(z) - DV Inp(x) and
1 pr
s B/(; ,/Rd |ve(2)|?pe () da dt

» Wasserstein distance in terms of dissipation

Wa(p™,p”) = min /D73,
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Essential applications of Benamou—Brenier formula

» Mandelstam-Tamm (MT) and Margolus-Levitin (ML) speed limits inspired by Heisenberg
uncertainty principle At x AE > h:

S B N
=2 AH’ (H)- E,

e Quantum speed limits (QSLs): universal limitation on the operational time of quantum processes
» Thermodynamic speed limit for overdamped Langevin dynamics [Aurell et al., JSP (2012)]
> W2(p03p7')
Do)

T

(o), =771%,: time-average entropy production
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Essential applications of Benamou—Brenier formula

Landauer principle
Minimum heat dissipation required for erasing of one bit of information

Q>kpTn?2

T': the temperature of the environment

> Finite-time Landauer principle

Wa(po,pr)® o HOPTILIO L0
pr I A(input)

= [0]0[O[O]O]O]-

BQ>1In2+

e For 1D overdamped systems with double-well potentials [Proesman
et al., PRL (2020)]
. Var(z)

>1n2
PR=In2+ =5
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Motivation

-

BB formula
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Markov jump processes

» Discrete-state system with IV states: p; = Wypy, Wy = [way(t)]

» Microscopically reversible: wg,,(t) > 0 whenever w,,(t) > 0

a8
> Local detailed balance (6)
Wy (¢ w.
In IU( ) :Szy(t) yz
wyr(t) ) Way e
Szy(t): environmental entropy change associated with jump y - z y o
» Irreversible entropy production rate heat bath
. . 1 Ay (1)
o= SSYS(t) +3env(l) = Z [awy(t) - ayw(t)] In >0
2 2%y ye (1)

axy(t) = ww(t)py(t)
Jay(t) = azy (1) — ay(t)

. azy(t)
fay(t) =1n -0
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Markov jump processes

» Discrete-state system with IV states: p; = Wypy, Wy = [way(t)]

» Microscopically reversible: wg,,(t) > 0 whenever w,,(t) > 0

9
» Local detailed balance (6)
Wy (T w
In 210 = Say(t) y (6)
Wy (1) ‘ Way
Szy(t): environmental entropy change associated with jump y - z ®
> Irreversible entropy production rate heat bath
. . 1 gy (T
01 = Seys () + Senv () = = Z [Qgy(t) — ayz(t)]In ey () >0
2 TEY ayr(t)
> Dynamical activity A, := [ a; dt quantifies the total number of  auy(t) = way (t)py ()
jumps 5 Jay(t) = aay (L) = aya (1)
ai = awy(t) a (t)
zy fuy (£) = In =2
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o= Zz,y HayFrFy Ot = Zz>y mwy(t)fw:u(t)2

o \SUzyUyz < Moy < (Aay + Aya ) /2

» Dynamical state mobility

My =y Mgy (t)

>y

e Kinetic cost M = fOT mydt =7 (m)

-
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Dynamical state mobility

> Analogy between the dynamical state mobility and macroscopic mobility

Macroscopic level Microscopic level
J=pF Juy = May fzy
Einstein relation |F| < 1 || Einstein-like relation |fy,| < 1
p=pBD Mgy = (agy + ayz)/2

» In general, my <ay/2 or M, < A, /2
» In the continuous-state limit, m; — a;/2 = D(Az)~2
> Improved thermodynamic uncertainty relation [Gingrich et al., PRL (2016)]

Jy @ » %
<np—=—< =
Var[J] 2 2

n=2M,[A; <1

15
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» G(V, E): graph characterizing topology of Markov jump process Graph G(V, E)

o V: set of states
e (z,y) € E if jump between x and y is allowed

» Shortest path distances {d,,} of graph G

» L'-Wasserstein distance [arXiv:1803.00567; Dechant, JPA (2022)]

A By ._ .
Wi (p®,p7) = ﬂnr(r;g}p[;)%dwmy

» In the case of full connectivity (i.e., dy, =1 for any z # y), Shortest-path distances {dzy}

1
Wip?,p%) = 5 Xl -7 | = T p")

0|12 (3|2

1|0 1]2]|1

> In general, Wi (p?,p®) > T(p*,p®) ol1lo0l1la
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Thermodynamic interpretation of discrete Wasserstein distances

Theorem 1

The Wasserstein distance based on a topology G(V, E) can be written in variational forms as
Wi p") = min [ /e d
- Hvlvi?\/m
the minimum is taken over all transition rate matrices {W, }o<i<- Which satisfy the master

equation with the boundary conditions py = p* and p, = p? and induce subgraphs of G(V, E)
for all times
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Thermodynamic interpretation of discrete Wasserstein distances

Theorem 1

The Wasserstein distance based on a topology G(V, E) can be written in variational forms as
Wi p") = min [ /e d
- Hvlvi?\/m
the minimum is taken over all transition rate matrices {W, }o<i<- Which satisfy the master

equation with the boundary conditions py = p* and p, = p? and induce subgraphs of G(V, E)
for all times

Proof:

[step 1] Prove that W, (p?,p®) < [OT Jormyg dt < /2 M holds for all admissible Markovian
dynamics that transform p? into p®

[step 2] Construct a specific process that attains the equality
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Remarks of Theorem 1

» Analogous thermodynamic properties with the continuous L?-Wasserstein distance
Wi ") = min VDrE, [ Wa(p* ") = min /DrE |
t t

D = (m)_ plays the same role as the diffusion coefficient D

e Bound on entropy production: X, > Wi (p?,p?)?/(D7)
e Minimum entropy production:
A B\2
min 3, = @27
(m), =D DT

» Tradeoff between irreversibility and state mobility: ¥, M, > Wi (po, p,)>

e Either the thermodynamic or kinetic cost must be sacrificed to achieve a feasible state
transformation

18



Remarks of Theorem 1

» Theorem 1 immediately derives

Wi p”) =min [ 5 1y (0] dt

>y
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e For one-dimensional nearest-neighbor topology (i.e., jump between x and y is admitted if and only
if |t —y|=1), dsy = |z —y| and

- N-1
Wi p™) = min [ oo (0] dt
t 0 =1
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Remarks of Theorem 1

» Theorem 1 immediately derives

Wi p”) =min [ 5 1y (0] dt

>y

e For one-dimensional nearest-neighbor topology (i.e., jump between x and y is admitted if and only
if |t —y|=1), dsy = |z —y| and

£ N-1
Wi p™) = min [ oo (0] dt
We 0 =1
e Taking the continuum limit yields
Wip*p®) =min [ [ |ji(@) dvdt
je Jo JR

Providing a unified generalization of the Benamou—Brenier formula for the L'-Wasserstein distance
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Markovian open quantum dynamics

» Discrete-state dynamics obeying GKSL master equation
b = Lu(0r) = ~i[Hy, 0] + £, DL (1)) rSECYAI.
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Markovian open quantum dynamics

» Discrete-state dynamics obeying GKSL master equation
b = Lu(0r) = ~i[Hy, 0] + £, DL (1)) rSECYAI.
» Local detailed balance Ly (t) = e3+(D/2 L, (1)t T i I
sk (t) = —sp/(t): entropy change in the environment h
T
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Entropy production, dynamical activity, and dynamical state mobility

> Irreversible entropy production
Y= ASsys + ASeny 20

ASgys = S(0-) — S(00): change in the von Neumann entropy
ASenv = [o S tr{Lk(t)gtLL(t)}sk(t) dt: environmental entropy production
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Entropy production, dynamical activity, and dynamical state mobility

> Irreversible entropy production
Y= ASsys + ASeny 20

ASgys = S(0-) — S(00): change in the von Neumann entropy
ASenv = [o S tr{Lk(t)gtLL(t)}sk(t) dt: environmental entropy production

> Dynamical activity A, = [ 3 tr{Lk(t)gtLL(t)}dt
> Dynamical state mobility

me= g SO L Loy (PULOT)

(X, V) =tr{XTY}

PulX] =X = 2, (we| Xlae) [ N

H¢H9(X) — 6—0/2 ]01 eeud)uXd)l—u du

0t = 20 D (t) |z {2¢]: spectral decomposition of the density matrix o;
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Quantum Wasserstein distance

> Naive quantum extension

Wq(QAa QB) = min tr{CgAB}

0ABell(04,0")

(0%, 0P): set of density matrices o7 satisfying trp 047 = o and try p*? = oP
C': cost matrix that must be properly chosen to guarantee that W, is a distance

22



Quantum Wasserstein distance
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Wq(QAa QB) = min tr{CgAB}

0ABell(04,0")

(0%, 0P): set of density matrices o7 satisfying trp 047 = o and try p*? = oP
C': cost matrix that must be properly chosen to guarantee that W, is a distance

» Trace distance T (0%, 0P) = |0® - 07 ]1/2 cannot be expressed for any choice of C
[arXiv:1803.02673]
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Quantum Wasserstein distance

> Naive quantum extension

Wq(QAa QB) = min tr{CgAB}

oA Bell(0”,0")
(0%, 0P): set of density matrices o7 satisfying trp 047 = o and try p*? = oP
C': cost matrix that must be properly chosen to guarantee that W, is a distance

» Trace distance T (0%, 0P) = |0® - 07 ]1/2 cannot be expressed for any choice of C
[arXiv:1803.02673]
» W, (00, 0-) >0 even for unitary dynamics o, = UooUT with zero entropy production
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Quantum Wasserstein distance

> Naive quantum extension

Wq(QAa QB) = min tr{CgAB}

oA Bell(0”,0")
(0%, 0P): set of density matrices o7 satisfying trp 047 = o and try p*? = oP
C': cost matrix that must be properly chosen to guarantee that W, is a distance

» Trace distance T (0%, 0P) = |0® - 07 ]1/2 cannot be expressed for any choice of C
[arXiv:1803.02673]
» W, (00, 0-) >0 even for unitary dynamics o, = UooUT with zero entropy production

e Relating dissipation to the optimal transport distances defined in the naive form is impossible

22



Quantum Wasserstein distance

> Considering dissipative structure of Lindblad dynamics, we define
1 .
Wale",0") = min [Vo'VT- 0P,
2vitv=a

the minimum is over all possible unitaries V'
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Quantum Wasserstein distance

> Considering dissipative structure of Lindblad dynamics, we define
Wale" %) =5 min [Vo'Vi-o"|,

the minimum is over all possible unitaries V'

e Analytical expression
A 1 A A
Wa(e",e”) = 5 X lpz —p2| = T("p")
x

{p2} and {pZ}: increasing eigenvalues of o and ¢”, respectively

23



Thermodynamic interpretation of quantum Wasserstein distance

Theorem 2

The quantum Wasserstein distance can be written in the following variational form:
T
A B :
Wy (0, 07) = n%lnfo Joymy dt
t
= nzin\/ETMT
t

the minimum is taken over all super-operators {L; }o<t<- that satisfy the Lindblad master
equation with boundary conditions gy = o and o, = o®

24



Applications

» Thermodynamic speed limit: lower bound
on the operational time required for state
transformations

N Wi (po, pr) N Wi (po,pr)
- (vom), o), (m),

P
00 How fast?

Or
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Applications

» Thermodynamic speed limit: lower bound * Finite-time Landauer principle: lower

on the operational time required for state bound on heat dissipation required for erasing
transformations information
Wi (po, pr)*
>-TASgyg+ —7——
. Wilpo,pr) . Wi(po,p-) v T rB(m),
(vom), (o) (m),
U1
N—>r |0>

L o ¥ /</'
00 How fast?

Un
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Numerical demonstration

Pareto-optimal protocol in information erasure of qubit

Fal{er, 03] = AQ - (1 - N F(er, 0+)
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Numerical demonstration

Pareto-optimal protocol in information erasure of qubit

Fal{er, 03] = AQ - (1 - N F(er, 0+)

(a)

Spin-1/2 qubit

2
ey

Nonoptimal

A L oo

. () 10 . @ 3 .
t— lg1-= tg2-- 7. Q— Qq1-- Qg2--
i il //’/ 2 L
. 5| et
.l <
) o0 £ g ) 0 el B
0 5 10 0 5 10 5 10
t t t
(f) 10 - (g) 3 .
t— tg1-- te2-- 7 Q— Qq1-- Qq2--
L - 2l e
—/,// 5+
1+
L 0 ke ) o Mo
0 5 10 0 5 10 5 10
t t t
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Take-home message

Continuous Classical discrete Quantum
Wasserstein distance Wo (a0 2 1) Wy W,
Th d e int tati ¢ Benamou-Brenier formula
ermooyﬁiinrzllctgfsrp;fta ton o Wa(p?,p?) = min /7D, Theorem 1 Theorem 2
P 3 Wi (p?, pP) < min\/7DX, Wl(pA,pB):min\/‘r(m)TE,. W,(0?, 0P) = min\/7 (m), =,
A B\2 A B2 A B2
Minimum dissipation minY, = —W2(p P”) min ¥, = 7)/\}1(1] 1P”) min X, = Wale",e7)
7D (m),=D 7D (m),=D 7D
W. A’ B A B A B
Thermodynamic speed limit > M > M > M
D(o), (m), (o), (m), (o),
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Optimal transport and speed
limits




> Interacting systems generally form spatial structures in their

dynamics
ATP

mx@ @x&

chemical reactions

e

bosonic transport
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> Interacting systems generally form spatial structures in their
dynamics

e Jump processs with dense connectivity may relax faster @00 .
e Systems with long-range interactions may propagate information X & X £ X d/j
=G0 G0 %
ADP

faster [J. Eisert et al., PRL (2013)]
chemical reactions

o

bosonic transport
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> Interacting systems generally form spatial structures in their
dynamics

e Jump processs with dense connectivity may relax faster g

e Systems with long-range interactions may propagate information X & X £ X d
-2 G0 00"

faster [J. Eisert et al., PRL (2013)]
chemical reactions

» Conventional speed limits

‘C(wOa w-,—) @
o B 7
L(xg,x,) < C (irrelevant to system size) ~Q—
v: velocity generally being order of system size bosonic transport
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> Interacting systems generally form spatial structures in their
dynamics

e Jump processs with dense connectivity may relax faster g

& 06 00, 88
e Systems with long-range interactions may propagate information Xé)( £ X d
o+ P E3
faster [J. Eisert et al., PRL (2013)] ADP 6‘0
. L chemical reactions
» Conventional speed limits
din) B
o & 7
L(xg,x,) < C (irrelevant to system size) ~Q—
v: velocity generally being order of system size bosonic transport
> These speed limits generally become less tight as the system
increases in terms of size
o ﬁ(a:(i, ;)
v

— 0 as system size increases
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> Interacting systems generally form spatial structures in their
dynamics
e Jump processs with dense connectivity may relax faster g

e Systems with long-range interactions may propagate information X & X £ X d
-2 G0 00"

faster [J. Eisert et al., PRL (2013)]
chemical reactions

D

v: velocity generally being order of system size bosonic transport

» Conventional speed limits
N E(w(i, ;)

7_71) 27
L T

L(xg,x,) < C (irrelevant to system size)

> These speed limits generally become less tight as the system
increases in terms of size
o ﬁ(a:(i, ;)

v
» Metrics that are scalable to system size should be considered

— 0 as system size increases
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General dynamics

» A physical state @; = [x1(t),...,zn(t)] described by ’ fz]
Fi(8) = fi(t) + 3 Fig(0) /
jeB;
fij(t) = =f;i(t): flow exchange between i and j Q

fi(t): arbitrary external flow \Q

@i(t) = fi(t)+ > fi; (1)

jeBi
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General dynamics

» A physical state @; = [x1(t),...,zn(t)] described by j, fij
@i (t) = fi(t) + > fi; (1) / @
jeB;
fij(t) = =f;i(t): flow exchange between i and j Q)(Q
fi(t): arbitrary external flow \ /
» Examples include probability distributions of discrete systems, reactant Q
concentrations of chemical reaction networks, or physical observables — #i(t) = fi(t) +j§i fii (t)

in quantum systems
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General dynamics

» A physical state @; = [x1(t),...,zn(t)] described by j, fij
@i (t) = fi(t) + > fi; (1) / @
jeB;
fij(t) = =f;i(t): flow exchange between i and j Q)(Q
fi(t): arbitrary external flow \ /
» Examples include probability distributions of discrete systems, reactant Q
concentrations of chemical reaction networks, or physical observables — #i(t) = fi(t) +j§i fii (t)

in quantum systems
> Time-dependent velocity
v = AL+ D |fi (@)
i (i.4)€€

A > 0: weighting factor
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General result

Speed limit using generalized Wasserstein distance
The operational time required for transform xq into x, is lower bounded by the Wasserstein
distance divided by the average velocity:
s Wi (o, )

VA0
<UM>T

In the case that the external flows are absent [i.e., f;(t) = 0]
> Wl(w(h w‘l’)

o (w),
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Applications

Quantitative
Reaction channels 5
k 7
2X1é‘X1+X2 T—— Ti= = Tg=i= T3 s
ko 4L 2
ky /
2Xo = Xo+ X3
ks 3t i
ks 2t ]
2Xg = Xo + X1o
Ky
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Applications

Quantitative Qualitative
Reaction channels 5 , . Quantum state transfer
2X; % X1+ X T—— Ti== Ta=i= Tyes s Alice Bob
; g A X N'“M’W‘W Y
2Xo = Xo+ X3
Ky 3l ]
X %, Yot X 2t 1 Bosonic transport
Graph G(V,€) ir I A A AV A / Y

T a7 1T
. By

10 T T T
(i) Y
il bﬁ;l n ] [ time o dist(X,Y) J
| PUAPN
e T T
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Applications — Bosonic transport

» Model of bosons that hop on an arbitrary finite-dimensional lattice and interact with each other

Hi=—y Y (blb; +blb;) + Y hz
(4,4) ZeA
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Applications — Bosonic transport

» Model of bosons that hop on an arbitrary finite-dimensional lattice and interact with each other

Hi=—y Y (blb; +blb;) + Y hz
(4,4) ZeA

» Weakly coupled to a Markovian thermal reservoir and can exchange particles with the reservoir

or = —i[H, 0] + Z%(D[L“] +D[Li- e

L; =, /’yi7+b;r and L; _ = /% ,-b;: jump operators that characterize the absorption and
emission of bosons at site 4
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Applications — Bosonic transport

» Model of bosons that hop on an arbitrary finite-dimensional lattice and interact with each other

Hi=—y Y (blb; +blb;) + Y hz
(4,4) ZeA

» Weakly coupled to a Markovian thermal reservoir and can exchange particles with the reservoir

or = —i[H, 0] + Z%(D[L“] +D[Li- e

L; =, /’yi7+b;r and L; _ = /% ,-b;: jump operators that characterize the absorption and
emission of bosons at site 4
» Vector of boson numbers occupied at each site, x;(t) = tr{n;0:}, and Nj = ¥ cp 7 (t)

» Time evolution of x;(¢) can be expressed using f;(t) = tr{Li,J,QtL;Jr} - tr{Li,_gtL;r’_} and
fij(t) = 273[tr{b}bi9t}]

32



Applications — Bosonic transport

» Upper bound of velocity
Ot Ot -1
'Ut})\ < ’YdG./\[t + )\?q)(i)

2(1,5

dg: maximal vertex degree
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Applications — Bosonic transport

» Upper bound of velocity
Ot Ot -1
'Ut})\ < ’YdG./\[t + )\?q)(i)

2(1,5
dg: maximal vertex degree
» Thermodynamic speed limit

Wi (o, @)
]
<deNt Paga( o) )

T 2>
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Applications — Bosonic transport

* In the vanishing coupling limit (i.e., when the system becomes isolated), oy = a; =0 and
N; =N for all times
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> Wi (Zo, Z-)
vda
» Transport bosons between two regions X and Y within a finite time 7
N dist(X,Y)

Wi (20, 2,) > dist(X,Y) -
vde

e Transporting bosons always takes at least a time proportional to the distance between the two
regions
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Applications — Bosonic transport

* In the vanishing coupling limit (i.e., when the system becomes isolated), oy = a; =0 and

N; =N for all times
» Defining Z;(t) = N"'a;(t) [i.e., ¥, Z:(t) = 1], we obtain a speed limit for bosonic transport

> Wi (Zo, Z-)
vde
» Transport bosons between two regions X and Y within a finite time 7
. dist(X,Y
Wi (o, @,) > dist(X,Y) > 7> dist(X, )
vde

e Transporting bosons always takes at least a time proportional to the distance between the two

regions
e This statement holds for arbitrary initial states, including the pure states considered in [Faupin et

al., PRL (2022)]
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» Speed limits that consider spatial structure lead to essential implications on speed of systems
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» Speed limits that consider spatial structure lead to essential implications on speed of systems

» Applicable to a wide range of dynamics, from classical to quantum, from continuous time to
discrete time
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Thermodynamic interpretation of discrete Wasserstein distances

Corollary 1
The discrete Wasserstein distance can be expressed in terms of irreversible entropy production
and dynamical activity as

Wi (p?,p”) —min/T Ut(I)(Ut)l dt
1p P - W 0 2 2at

®(x): inverse function of x tanh(x)

36



Thermodynamic interpretation of discrete Wasserstein distances

Corollary 2
The discrete Wasserstein distance can be expressed in terms of pseudo entropy production and
dynamical activity as

Wi (pA,pP) = mln/ oay dt
= Ilvlvin \V4 EgsAt

0P = 3P%: the pseudo entropy production rate
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Thermodynamic interpretation of discrete Wasserstein distances

Corollary 2
The discrete Wasserstein distance can be expressed in terms of pseudo entropy production and
dynamical activity as

Wl(pA,p E mln/ oay dt
= Ilvlvin \V4 EgsAt

0P = 3P%: the pseudo entropy production rate

» Pseudo entropy production rate

st _ Z (amn () _anm(t))2 < 0',5/2

m>n a"L'VI/ (t) + (‘l’!L’I'YL (t)
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Thermodynamic interpretation of discrete Wasserstein distances

Corollary 2
The discrete Wasserstein distance can be expressed in terms of pseudo entropy production and
dynamical activity as

Wl(pA,p E mln/ oay dt
= Ilvlvin \V4 EgsAt

0P = 3P%: the pseudo entropy production rate

» Pseudo entropy production rate

mn t) - nm t 2
st_ Z (@mn(t) — anm(t)) <02
m>n am'n,(t) + anm(t)

» (3,, M;) and (£P%, A.) are two thermodynamic-kinetic conjugate pairs in the context of

optimal transport
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Thermodynamic interpretation of quantum Wasserstein distance

Corollary 3
The quantum Wasserstein distance can be expressed in terms of irreversible entropy production
and dynamical activity as

- -1
W, (ot o) = f ﬁé(ﬁ) dt
dle ) = mim |- 2,

» o\
_ 5 77'@ T
o (2AT)
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