観測下の量子系における リャプノフスペクトル解析 と観測誘起相転移

Ken Mochizuki and Ryusuke Hamazaki, Physical Review Letters **134**, 010410 (2025).

ERATO 沙川情報エネルギー変換プロジェクト

Outline

□ Introduction:

entanglement, spectrum, phase transitions
 isolated systems without randomness
 random dynamics in monitored systems

□ Motivation and rough sketch of results

□ Our results:

measurement-induced spectral transition
 ground-state entanglement transition

Foundation of the Lyapunov spectral analysis
 Summary

Entanglement of quantum states

Ground-state entanglement in isolated quantum systems

the spectral gap $\Delta = \varepsilon_2 - \varepsilon_1$, $\varepsilon_i \leq \varepsilon_{i+1}$ transition of the gap \clubsuit ground-state phase transition

Monitored random dynamics

 U $\ket{\psi_t}$ 1/2 spin $|\psi_0
angle$ – independent **k** jump! M_{ω_x} $\cdot x$ M_{ω_x} $\bigstar \text{ measurement at } x \text{ with probability } q |\psi_t\rangle \rightarrow \frac{\mathsf{M}_{\omega_x} |\psi_t\rangle}{\sqrt{P_{\psi_t}(\omega_x)}}$ $\omega_x = \uparrow \downarrow: \text{ random measurement outcome}$ entangled e.g. projective measurement $M_{\omega_x} = \ket{\omega_x} \langle \omega_x | - M_{\uparrow_1} \frac{\ket{\uparrow_1\downarrow_2} + \ket{\downarrow_1\uparrow_2}}{\sqrt{2}} \propto \ket{\uparrow_1\downarrow_2}$ entangled Born probability: $P_{\psi_t}(\omega_x) = \langle \psi_t | \mathsf{M}_{\omega_x}^{\dagger} \mathsf{M}_{\omega_x} | \psi_t \rangle$ unitary gate $|\psi_t\rangle \rightarrow \mathsf{U}_x |\psi_t\rangle$ c.f. Hamiltonian dynamics: $|\psi_t\rangle = e^{-iHt} |\psi_0\rangle$ $e^{-iH\delta t} \sim e^{-iH_{\rm even}\delta t}e^{-iH_{\rm odd}\delta t}$ independent

Measurement-induced entanglement transition

Mutual information

- L = 32

- L = 64🔶 L = 128

🛨 L = 256

- *L* = 512

0.4

0.5

area

0.2

|A| = |B| = L/8

0.3

peak of $I_{AB}(\psi_t)$ entanglement transition

Comparison of isolated and monitored systems

Outline

Introduction:

entanglement, spectrum, phase transitions
 isolated systems without randomness

random dynamics in monitored systems

□ Motivation and rough sketch of results

□ Our results:

- measurement-induced spectral transition
 ground-state entanglement transition
- Foundation of the Lyapunov spectral analysis
 Summary

quantum measurements

 \Rightarrow entanglement transitions without static generator $|\psi_t\rangle \neq e^{-iHt} |\psi_0\rangle$

Outline

Introduction:

entanglement, spectrum, phase transitions
 isolated systems without randomness
 random dynamics in monitored systems

□ Motivation and rough sketch of results

□ Our results:

measurement-induced spectral transition
 ground-state entanglement transition

Foundation of the Lyapunov spectral analysis
 Summary

ModelKen Mochizuki
Ryusuke Hamazaki
PRL 134, 010410 (2025).random nonunitary dynamics
$$Q_{\omega_t}(\eta) = M_{\omega_t}(\eta)U_t$$

 $\omega_t = (\omega_t, \omega_{t-1}, \cdots, \omega_1)$
 \mathbf{M} generalized measurementBorn probability:
 $P_{\psi_{\omega_{t-1}}(\eta)}(\omega_t) = |Q_{\omega_t}(\eta)|\psi_{\omega_{t-1}}(\eta)\rangle|^2$ $M_{\omega_{t,x}=\pm}(\eta) = \frac{\sigma_x^0 \pm \eta \sigma_x^3}{\sqrt{2(1+\eta^2)}}$
 η : strength of measurement t $M_{\omega_{t-2}}(\eta)$
 $U_{t=2}$ $M_{\omega_t,x}(\eta)$
 $\omega_t = (\omega_{t,x=1}, \cdots, \omega_{t,x=L})$
 $U_{t=1}$ $U_{t=1}$ U_{t} U_{t} $U_{t=1}$ U_{t} U_{t} $U_{t=1}$ U_{t} U_{t} U_{t-1} U_{t} U_{t}

relaxation time:

analogy to ground-state transitions in isolated quantum systems

Ken Mochizuki

 $t \gg 1/\Delta_L(\eta) \to |\psi_{\boldsymbol{\omega}_t}(\eta)\rangle \simeq |\Psi_{\boldsymbol{\omega}_t}^1(\eta)\rangle$

Ground-state entanglement entropy

large $S_A(\psi)$ $\Rightarrow A$ and \overline{A} are highly entangled

 $|\Psi_{t,1}(\eta)\rangle_A$

system

K. Mochizuki and R. Hamazaki PRL 134, 010410 (2025).

Ground-state entanglement entropy

Coincidence of the thresholds

$$H_{\boldsymbol{\omega}_{t}}(\eta) \left| \Psi_{\boldsymbol{\omega}_{t}}^{i}(\eta) \right\rangle = \varepsilon_{\boldsymbol{\omega}_{t}}^{i,L}(\eta) \left| \Psi_{\boldsymbol{\omega}_{t}}^{i}(\eta) \right\rangle$$

gapless phase = volume-law phase $\Delta(\eta) = 0 \qquad S_{L/2}(\eta) \propto L$

gapped phase = area-law phase

$$\Delta(\eta) \neq 0$$
 $S_{L/2}(\eta) \propto L^0$

spectral transition \Leftrightarrow entanglement transition: ubiquitous in a wide range of quantum systems

> Ken Mochizuki, Ryusuke Hamazaki, Physical Review Letters **134**, 010410 (2025).

Outline

Introduction:

entanglement, spectrum, phase transitions
 isolated systems without randomness
 random dynamics in monitored systems

□ Motivation and rough sketch of results

□ Our results:

measurement-induced spectral transition
 ground-state entanglement transition

□ Foundation of the Lyapunov spectral analysis

Summary

Typical convergence of the Lyapunov spectrum

In the case of i.i.d outcomes

Ludwig Arnold, Random Dynamical Systems, Springer

shift of time: $\theta \boldsymbol{\omega}_t = (\omega_2, \omega_3, \cdots)$

random outcomes:

products of random non-unitary matrices:

$$V(\boldsymbol{\omega}_t) = Q(\omega_t)Q(\omega_{t-1})\cdots Q(\omega_1) \qquad \boldsymbol{\omega}_t = (\omega_1, \omega_2, \cdots, \omega_t)$$

 $\{\omega_t\}$ are independently and identically distributed \Rightarrow the probability of $\boldsymbol{\omega}_t \colon P(\boldsymbol{\omega}_t) = P(\omega_1)P(\omega_2)\cdots P(\omega_t)$

 Ω_t : a set of $\boldsymbol{\omega}_t$ e.g. $\Omega_{\infty} = \{ \boldsymbol{\omega}_{\infty} | \boldsymbol{\omega}_t = \uparrow \forall t \}$ (one spin) $\Rightarrow P(\Omega_{\infty}) = P^{\infty}(\uparrow) = 0$: neglected e.g. $\Omega_{\infty} = \{ \boldsymbol{\omega}_{\infty} | \boldsymbol{\omega}_3 = \downarrow \text{ and } \boldsymbol{\omega}_8 = \downarrow \}$ (one spin) $\Rightarrow P(\Omega_{\infty}) = P^2(\downarrow) \neq 0$

*Kingman's subadditive ergodic theorem

$$V(\boldsymbol{\omega}_t)V^{\dagger}(\boldsymbol{\omega}_t) \ket{\Psi_i(\boldsymbol{\omega}_t)} = \Lambda_i^2(\boldsymbol{\omega}_t) \ket{\Psi_i(\boldsymbol{\omega}_t)}$$

In the case of i.i.d outcomes

Ludwig Arnold, Random Dynamical Systems, Springer

products of random non-unitary matrices:

$$V(\boldsymbol{\omega}_t) = Q(\omega_t)Q(\omega_{t-1})\cdots Q(\omega_1) \qquad \boldsymbol{\omega}_t = (\omega_1, \omega_2, \cdots, \omega_t)$$

 $\{\omega_t\}$ are independently and identically distributed \Rightarrow the probability of $\omega_t \colon P(\omega_t) = P(\omega_1)P(\omega_2) \cdots P(\omega_t)$

 $\Omega_t : \text{a set of } \boldsymbol{\omega}_t \qquad \text{shift of time: } \boldsymbol{\theta}\boldsymbol{\omega}_t = (\omega_2, \omega_3, \cdots)$

invariant measure
$$P(\boldsymbol{\omega}_t \in \Omega_t) = P \circ \theta^{-1}(\Omega_t) = P(\theta \boldsymbol{\omega}_t \in \Omega_t)$$

ergodicity $\Omega_t = \theta^{-1}(\Omega_t) \Rightarrow P(\Omega_t) = 0, 1$ (roughly speaking)

e.g.
$$\Omega_t = \{ \boldsymbol{\omega}_t | \boldsymbol{\omega}_1 = \uparrow \text{ and } \boldsymbol{\omega}_t = \downarrow \} \Rightarrow P(\Omega_t) = P \circ \theta^{-1}(\Omega_t) = P(\uparrow)P(\downarrow)$$

goal:
$$\lim_{t\to\infty} -\frac{1}{t} \log [\Lambda_i(\boldsymbol{\omega}_t)] = \varepsilon_i$$

typically independent of $\boldsymbol{\omega}_{\infty}$

*Kingman's subadditive ergodic theorem

$$V(\boldsymbol{\omega}_t)V^{\dagger}(\boldsymbol{\omega}_t) |\Psi_i(\boldsymbol{\omega}_t)\rangle = \Lambda_i^2(\boldsymbol{\omega}_t) |\Psi_i(\boldsymbol{\omega}_t)\rangle$$

picture of ergodicity : θ covers the whole space of ω_t

random outcomes:

In the case of quantum measurements

$$V(\boldsymbol{\omega}_{t}) = Q(\boldsymbol{\omega}_{t})Q(\boldsymbol{\omega}_{t-1})\cdots Q(\boldsymbol{\omega}_{1}) \qquad \begin{array}{l} \boldsymbol{\omega}_{t} = (\boldsymbol{\omega}_{1}, \boldsymbol{\omega}_{2}, \cdots, \boldsymbol{\omega}_{t}) \\ \boldsymbol{\theta}\boldsymbol{\omega}_{t} = (\boldsymbol{\omega}_{2}, \boldsymbol{\omega}_{3}, \cdots) \end{array}$$
If $\{\boldsymbol{\omega}_{t}\}$ obey the Born rule $P_{\rho}(\boldsymbol{\omega}_{t}) = \operatorname{tr} \left[V(\boldsymbol{\omega}_{t})\rho V^{\dagger}(\boldsymbol{\omega}_{t})\right], \ \rho = \sum_{i} p_{i} |\phi_{i}\rangle \langle\phi_{i}|$

$$P(\boldsymbol{\omega}_{t}) = P(\boldsymbol{\omega}_{1})P(\boldsymbol{\omega}_{2})\cdots P(\boldsymbol{\omega}_{t}) \qquad \Omega_{t} : \text{a set of } \boldsymbol{\omega}_{t}$$
invariant measure $P(\boldsymbol{\omega}_{t} \in \Omega_{t}) = P \circ \boldsymbol{\theta}^{-1}(\Omega_{t}) = P(\boldsymbol{\theta}\boldsymbol{\omega}_{t} \in \Omega_{t})$
ergodicity $\Omega_{t} = \boldsymbol{\theta}^{-1}(\Omega_{t}) \Rightarrow P(\Omega_{t}) = 0, 1$ (roughly speaking)
$$q = \sum_{t \to \infty} -\frac{1}{t} \log [\Lambda_{i}(\boldsymbol{\omega}_{t})] = \varepsilon_{i}$$

$$P(\boldsymbol{\omega}_{t})V^{\dagger}(\boldsymbol{\omega}_{t}) |\Psi_{i}(\boldsymbol{\omega}_{t})\rangle = \Lambda_{i}^{2}(\boldsymbol{\omega}_{t}) |\Psi_{i}(\boldsymbol{\omega}_{t})\rangle$$

Condition for typical convergence

averaged dynamics:

$$\rho_{\tau+1} = \Gamma(\rho_{\tau}) = \sum_{\omega} Q(\omega)\rho_{\tau}Q^{\dagger}(\omega)$$

time-dependent measure:

$$P_{\rho_{\tau}}(\boldsymbol{\omega}_{t}) = \operatorname{tr} \left[V(\boldsymbol{\omega}_{t}) \rho_{\tau} V^{\dagger}(\boldsymbol{\omega}_{t}) \right]$$
$$P_{\rho_{\tau}}(\boldsymbol{\theta}\boldsymbol{\omega}_{t} \in \Omega_{t}) = P_{\rho_{\tau+1}}(\boldsymbol{\omega}_{t} \in \Omega_{t})$$
$$V(\boldsymbol{\omega}_{t}) = Q(\boldsymbol{\omega}_{t}) \cdots Q(\boldsymbol{\omega}_{1})$$

Condition for typical convergence

averaged dynamics:

time-dependent measure:

$$\rho_{\tau+1} = \Gamma(\rho_{\tau}) = \sum_{\omega} Q(\omega) \rho_{\tau} Q^{\dagger}(\omega)$$

 $P_{\rho_{\tau}}(\boldsymbol{\omega}_{t}) = \operatorname{tr}\left[V(\boldsymbol{\omega}_{t})\rho_{\tau}V^{\dagger}(\boldsymbol{\omega}_{t})\right]$ $P_{\rho_{\tau}}(\theta\boldsymbol{\omega}_{t}\in\Omega_{t}) = P_{\rho_{\tau+1}}(\boldsymbol{\omega}_{t}\in\Omega_{t})$

unique and positive-definite stationary state $\rho_{\infty} = \Gamma(\rho_{\infty}) > 0$ (present in our model)

 $V(\boldsymbol{\omega}_t) = Q(\omega_t) \cdots Q(\omega_1)$

T. Benoist et.al., Probability Theory and Related Fields 174, 307 (2019).

invariant measure
$$P_{\rho_{\infty}}(\boldsymbol{\omega}_t \in \Omega_t) = P_{\rho_{\infty}}(\boldsymbol{\theta}\boldsymbol{\omega}_t \in \Omega_t)$$

ergodicity $\Omega_t = \theta^{-1}(\Omega_t) \Rightarrow P_{\rho_{\infty}}(\Omega_t) = 0, 1$ (roughly speaking)

$$\lim_{t \to \infty} -\frac{1}{t} \log \left[\Lambda_i(\boldsymbol{\omega}_t) \right] = \varepsilon_i$$
typically independent of ω

$$\rho = \sum_{i} p_i \left| \phi_i \right\rangle \left\langle \phi_i \right|$$

Ergodicity

• unique, positive-definite stationary state
$$\rho_{\infty} = \Gamma(\rho_{\infty})$$

• ergodicity $\Omega_t = \theta^{-1}(\Omega_t) \Rightarrow P_{\rho_{\infty}}(\Omega_t) = 0, 1$
 $\rho_{\tau+1} = \Gamma(\rho_{\tau})$
 $P_{\rho_{\infty}} \left[(\omega_t \in \Omega_t) \cap (\theta^T \omega'_t \in \Omega'_t) \right] \qquad \omega_{\infty} = (\omega_t, \cdots, \omega'_t, \cdots)$
 $= \sum_{\omega_t \in \Omega_t} \sum_{\omega'_t \in \Omega'_t} \operatorname{tr} \left[V(\omega'_t) \Gamma^{T-t} [V(\omega_t) \rho_{\infty} V^{\dagger}(\omega_t)] V^{\dagger}(\omega'_t) \right]$
 $\rightleftharpoons \sum_{\omega_t \in \Omega_t} \operatorname{tr} \left[V(\omega_t) \rho_{\infty} V^{\dagger}(\omega_t) \right] \sum_{\omega'_t \in \Omega'_t} \operatorname{tr} \left[V(\omega'_t) \rho_{\infty} V^{\dagger}(\omega'_t) \right]$
 $= P_{\rho_{\infty}} (\Omega_t) P_{\rho_{\infty}} (\Omega'_t) \text{ for large } T$
 $\bigstar \Gamma^{T-t} [V(\omega_t) \rho_{\infty} V^{\dagger}(\omega_t)] \simeq \operatorname{tr} \left[V(\omega_t) \rho_{\infty} V^{\dagger}(\omega_t) \right] \rho_{\infty}$
 $\therefore \Omega'_t = \Omega_t \text{ and } \Omega_t = \theta^{-1}(\Omega_t) \Longrightarrow \frac{P_{\rho_{\infty}}(\Omega_t) = P_{\rho_{\infty}}^2(\Omega_t)}{P_{\rho_{\infty}}(\Omega_t)}$

T. Benoist et.al., Probability Theory and Related Fields 174, 307 (2019).

Typical convergence in arbitrary initial states

• unique and positive-definite stationary state $\rho_{\infty} = \Gamma(\rho_{\infty}) > 0$ (present in our model)

T. Benoist et.al., Probability Theory and Related Fields **174**, 307 (2019).

invariant measure
$$P_{\rho_{\infty}}(\boldsymbol{\omega}_t \in \Omega_t) = P_{\rho_{\infty}}(\boldsymbol{\theta}\boldsymbol{\omega}_t \in \Omega_t)$$

ergodicity
$$\Omega_t = \theta^{-1}(\Omega_t) \Rightarrow P_{\rho_{\infty}}(\Omega_t) = 0, 1$$
 (roughly speaking)

 $\lim_{t \to \infty} -\frac{1}{t} \log \left[\Lambda_i(\boldsymbol{\omega}_t) \right] = \varepsilon_i$ in typical trajectories from ρ_{∞} $\varepsilon_i \text{ dependent on } \boldsymbol{\omega}_{\infty}$

Typical convergence in arbitrary initial states

• unique and positive-definite stationary state $\rho_{\infty} = \Gamma(\rho_{\infty}) > 0$ (present in our model)

T. Benoist et.al., Probability Theory and Related Fields **174**, 307 (2019).

invariant measure
$$P_{\rho_{\infty}}(\boldsymbol{\omega}_t \in \Omega_t) = P_{\rho_{\infty}}(\boldsymbol{\theta}\boldsymbol{\omega}_t \in \Omega_t)$$

ergodicity
$$\Omega_t = \theta^{-1}(\Omega_t) \Rightarrow P_{\rho_{\infty}}(\Omega_t) = 0, 1$$
 (roughly speaking)

$$\rho_{\infty} > 0, \ P_{\rho}(\boldsymbol{\omega}_t) = \operatorname{tr}\left[V(\boldsymbol{\omega}_t)\rho V^{\dagger}(\boldsymbol{\omega}_t)\right]$$

absolute continuity : $P_{\rho_{\infty}}(\Omega_t) = 0$ leads to $P_{\rho}(\Omega_t) = 0$ for any ρ

 $\lim_{t \to \infty} -\frac{1}{t} \log \left[\Lambda_i(\boldsymbol{\omega}_t) \right] = \varepsilon_i$ in typical trajectories from any ρ

 $P_{\rho}(\Omega_t) = 0$

atypical, neglected

Outline

Introduction:

entanglement, spectrum, phase transitions
 isolated systems without randomness
 random dynamics in monitored systems

□ Motivation and rough sketch of results

□ Our results:

measurement-induced spectral transition
 ground-state entanglement transition

Foundation of the Lyapunov spectral analysis

□ Summary

Summary

Ken Mochizuki Ryusuke Hamazaki PRL **134**, 010410 (2025).

Spectrum in systems with no randomness

systems described by time-independent generators

$$\frac{d}{dt} |\psi(t)\rangle = -iH |\psi(t)\rangle, \quad \frac{d}{dt} \hat{\rho}(t) = \mathcal{L} \hat{\rho}(t), \cdots$$

$$|\psi(0)\rangle, \hat{\rho}(0) \longrightarrow t \qquad \qquad |\psi(t)\rangle, \hat{\rho}(t)$$
the spectrum of $K = -iH, \mathcal{L}$
essential information of the system

Spectral gap in open quantum systems

master equation in Markovian open quantum systems:

$$\frac{d}{dt}\hat{\rho}(t) = \mathcal{L}\hat{\rho}(t) \qquad \hat{\rho}(t) = e^{\mathcal{L}t}\hat{\rho}(0) = \sum_{i} c_{i}e^{\lambda_{i}t}\hat{\rho}_{i}$$
the spectral gap $\Delta = |\operatorname{Re}(\lambda_{2}) - \operatorname{Re}(\lambda_{1})|, \quad \operatorname{Re}(\lambda_{j}) \ge \operatorname{Re}(\lambda_{j+1})$
the relaxation time to the stationary state $1/\Delta$

$$\boxed{t \gg \frac{1}{\Delta} \to \hat{\rho}(t) \simeq \hat{\rho}_{1}}$$

$$\boxed{L\hat{\rho}_{i} = \lambda_{i}\hat{\rho}_{i}}$$

$$\boxed{L\hat{\rho}_{i} = \lambda_{i}\hat{\rho}_{i}}$$

Transition of purification timescale

Mutual information and Purification timescale

Spectral transition (pure-state) mixed-state dynamics: $\rho_{\boldsymbol{\omega}_{t+1}}(\eta) = \frac{Q_{\omega_{t+1}}(\eta)\rho_{\boldsymbol{\omega}_t}(\eta)Q_{\omega_{t+1}}^{\dagger}(\eta)}{P_{\rho_{\boldsymbol{\omega}_t}(\eta)}(\omega_{t+1})}$ **Born probability:** $P_{\rho_{\boldsymbol{\omega}_{t}}(\eta)}(\omega_{t+1}) = \operatorname{tr} \left| Q_{\omega_{t+1}}(\eta) \rho_{\boldsymbol{\omega}_{t}}(\eta) Q_{\omega_{t+1}}^{\dagger}(\eta) \right|$ $t \gg \tau_{\delta,L}(\eta) = 1/\Delta_L^{\text{mixed}}(\eta) \to \rho_{\boldsymbol{\omega}_t}(\eta) \propto V_{\boldsymbol{\omega}_t}(\eta) \rho_0 V_{\boldsymbol{\omega}_t}^{\dagger}(\eta) \simeq |\Psi_{\boldsymbol{\omega}_t}^1(\eta)\rangle \langle \Psi_{\boldsymbol{\omega}_t}^1(\eta)|$ \simeq rank-1 matrix \Rightarrow purification 10¹ constant if $\Delta_L^{\text{mixed}}(\eta) = \Delta_L^{\text{pure}}(\eta)$ 10^{0} $\Delta_{L=10}^{\rm pure/mixed} (10^{-1} \text{ for } 10^{-1} \text{ for } 10^{-2} \text{ fo$ 10⁻¹ gapless phase \Rightarrow mixed phase : $\Delta_L(\eta) = e^{-O(L)} \to \tau_{\delta,L}(\eta) = e^{O(L)}$ gapped phase \Rightarrow pure phase : exponentially $\Delta_L(\eta) = O(L^0) \to \tau_{\delta,L}(\eta) = O(L^0)$ decreasing 10⁻⁶ 10⁻⁷ 02 0.3 0.4 0.5 0.6 0.7 $\rho_0 = \frac{1}{2^L} \sum_{i} |\phi_i\rangle \langle \phi_i| = \frac{\mathbb{I}}{2^L}$ $|\psi_{\boldsymbol{\omega}_{t}}(\eta)\rangle$ n

K. Mochizuki and R. Hamazaki, PRL 134, 010410 (2025).

Comparison of transitions

Ken Mochizuki, Ryusuke Hamazaki, Physical Review Letters 134, 010410 (2025).

Irreducibility

Hironobu Yoshida PRA **109**, 022218 (2024).

averaged dynamics:
$$\rho_{\tau+1} = \Gamma(\rho_{\tau}) = \sum_{\omega} Q(\omega) \rho_{\tau} Q^{\dagger}(\omega)$$

irreducibility: any operator O can be constructed as $O = \sum_{t, \omega_t} c_{t, \omega_t} V(\omega_t)$ **positive-definite** (a) and **unique** (b) stationary state in averaged dynamics positive-**semi**-definite stationary state (always present): $\rho_{\infty} = \Gamma(\rho_{\infty}) \ge 0$ a. zero eigenvalue $\rho_{\infty} |\phi_0\rangle = 0 \implies \rho_{\infty} = 0$ b. positive-definite stationary states ρ_{∞}^1 , $\rho_{\infty}^2 \implies (\sum_i c_i \rho_{\infty}^i) |\phi_0(\boldsymbol{c})\rangle = 0$ proof-a: $\langle \phi_0 | \rho_\infty | \phi_0 \rangle = \langle \phi_0 | \Gamma^t(\rho_\infty) | \phi_0 \rangle$ $= \sum_{\boldsymbol{\omega}_t} \langle \phi_0 | V(\boldsymbol{\omega}_t) \rho_{\infty} V^{\dagger}(\boldsymbol{\omega}_t) | \phi_0 \rangle = \sum_{\boldsymbol{\omega}_t} \left| \sqrt{\rho_{\infty}} V^{\dagger}(\boldsymbol{\omega}_t) | \phi_0 \rangle \right|^2 = 0$ $\Rightarrow \rho_{\infty} V^{\dagger}(\boldsymbol{\omega}_t) | \phi_0 \rangle = 0 \text{ for any } t, \boldsymbol{\omega}_t \Rightarrow \rho_{\infty} O | \phi_0 \rangle = 0 \text{ for any } O$ proof-b: $\rho_{\infty}(y) = (1-y)\rho_{\infty}^{1} - y\rho_{\infty}^{2}$ $\lambda_i(y)$ 0 $\rightarrow \rho_{\infty}(y^*) |\phi_0(y^*)\rangle = 0$ $\rho_{\infty}(y) |\phi_i(y)\rangle = \lambda_i(y) |\phi_i(y)\rangle \quad y$