大域熱力学の統計力学に向けて

京大理 佐々真一 統計物理学懇談会 25/03/24 S.-i. Sasa and N. Nakagawa JSP. **192** (2), 1-33 (2025).

in collaboration with Naoko Nakagawa

Phase coexistence in nature

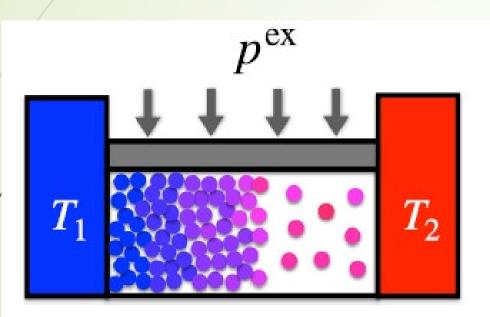
Boiling

Crystal growth

Cloud

Dynamic and complex

Phase coexistence in heat conduction



3

Example: Water at
$$p^{ex} = 1 \text{ atm}$$

 $T_1 = 95 \ ^{\circ}\text{C}$
 $T_2 = 105 \ ^{\circ}\text{C}$

Temperature at the interface: θ ?

What is your guess ?

Phase coexistence condition at equilibrium

Maxwell construction

4

- Continuity of pressure and chemical potential
- Variational principle for determining the equilibrium state

Well-established, but not so popular in textbooks

Phase coexistence condition at NESS?

Continuity of pressure and chemical potential
 Standard assumption, local equilibrium at the interface

✓ Variational principle for determining the NESS

No well-established thermodynamic framework....

⇒ consistent and unique extension of the thermodynamic relation and the variational principle

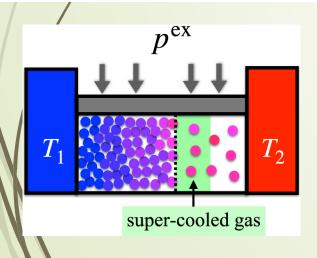
Global thermodynamics

A thermodynamic framework describing non-uniform local thermodynamic states of out of equilibrium systems in terms "global quantities"

Predict stabilization of metastable states due to heat flux: Linear response regime

$$heta - T_{
m c} = \left[|J| \left(rac{1}{\kappa^{
m G}} - rac{1}{\kappa^{
m L}}
ight) - |
abla T| rac{
ho^{
m L} -
ho^{
m G}}{ar
ho}
ight] rac{X(L-X)}{2L}$$

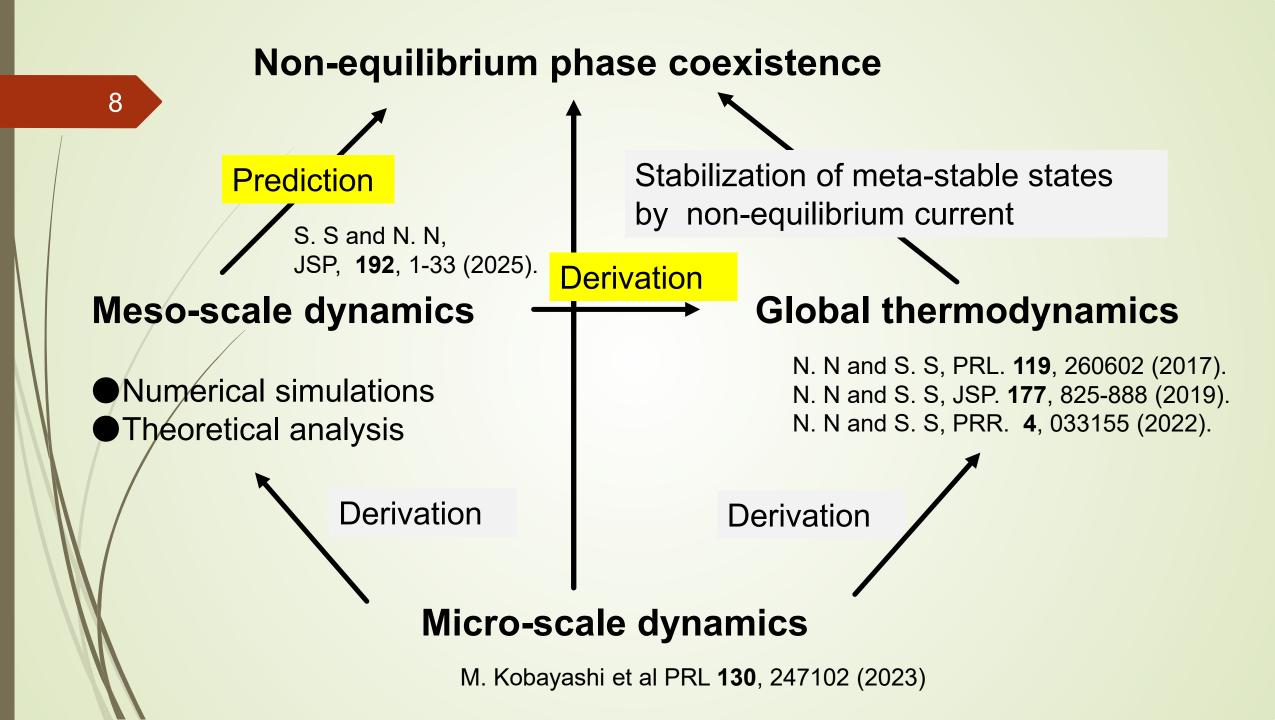
N. N and S. S, PRL. **119**, 260602 (2017). N. N and S. S, JSP. **177**, 825-888 (2019). N. N and S. S, PRR. **4**, 033155 (2022).



6

Example: Water at $p^{ex} = 1 \text{ atm}$ $T_1 = 95 \text{ °C}$ $T_2 = 105 \text{ °C}$ Temperature at the interface: θ ? $\theta = 95.3 \text{ °C}$

Many questions may arise..... 7 What about experimental results? What about molecular dynamic simulations? What about hydrodynamic descriptions ? What about other types of phase coexistence? What about the linear response theory? What about a simple stochastic model ?



Outline of my talk

1. Introduction

- 2. Basic issue on a technical side
- 3. Mesoscopic models
- 4. Phase coexistence conditions
- 5. Analysis
- 6. Results
- 7. Summary and remarks

Zubarev-Mclennan distribution

A collection of microscopic or mesoscopic variables

Equilibrium distribution (e.g. canonical distribution)

Steady-state distribution in the linear response regime

$$\Gamma$$

$$\rho_{\rm eq}(\Gamma) = \frac{1}{Z} e^{-\beta H(\Gamma)}$$

$$\rho_{\rm ss}(\Gamma) = \frac{1}{Z} e^{-\beta H_{\rm ss}(\Gamma)}$$

$$H_{\rm ss}(\Gamma) = H(\Gamma) + T \int_0^\infty dt \langle \sigma(\Gamma_t) \rangle_{\Gamma_0 = \Gamma}^{\rm eq}$$

 $\sigma(\Gamma_t)$: Entropy production rate at Γ_t

 Γ_t : phase space point at time t

How to use it

The expectation of $A(\Gamma)$ in the linear response regime is given by the time integration of the time correlation function between $A(\Gamma)$ and the entropy production rate \Rightarrow linear response formula (such as the Green-Kubo formula)

Choose "density fields" as Γ . "The variational function" is given by the Hamiltonian

⇒ fluctuating hydrodynamics; macroscopic fluctuation theory

Derivation of the "variational principle" for determining thermodynamic quantities in the linear response regime

Points of the argument

Explicitly calculate the correction term with the time integration

Study the simplest example as the first-step trial

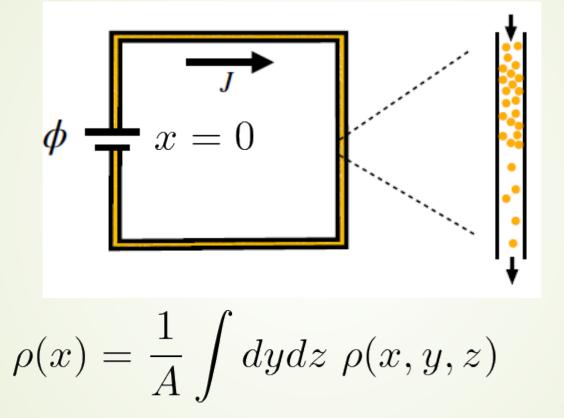
Consider a new class of "discrete fluctuating hydrodynamics"

Outline of my talk

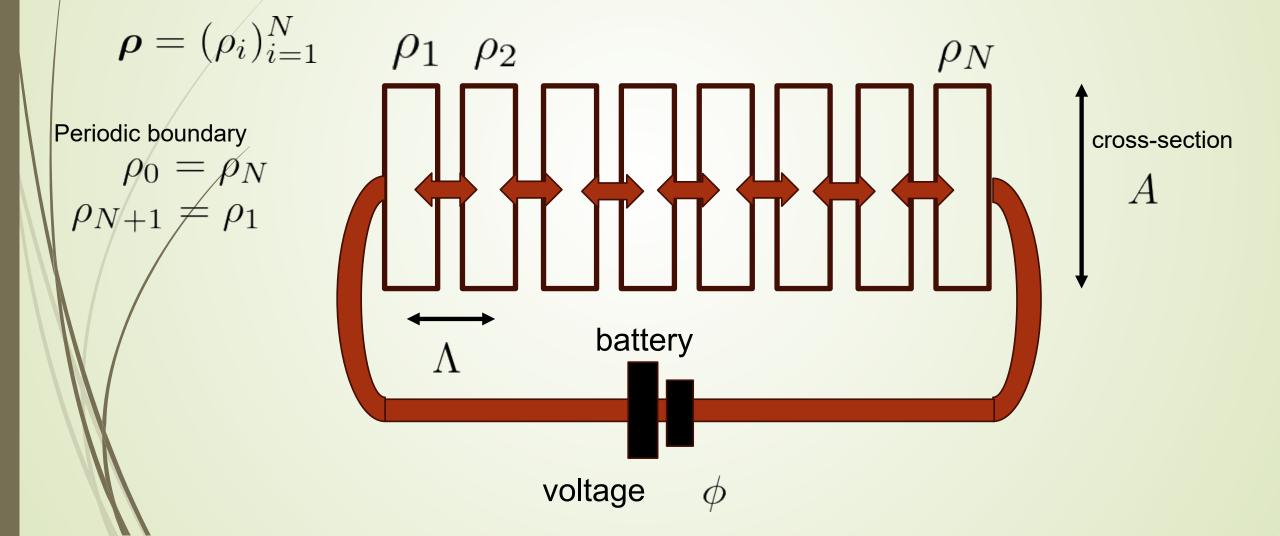
1. Introduction

- 2. Basic issue on a technical side
- 3. Mesoscopic models
- 4. Phase coexistence conditions
- 5. Analysis
- 6. Results
- 7. Summary and remarks

Particle diffusion driven by a battery



A the area of the cross-section of the tube



16 Thermodynamics
$$\phi = 0$$

Free energy functional $\mathcal{F}(\boldsymbol{\rho}) = \Lambda \sum_{i=1}^{N} \left[f(\rho_i) + \frac{\kappa}{2\Lambda^2} (\rho_{i+1} - \rho_i)^2 \right]$
Equilibrium distribution $\mathcal{P}_{eq}(\boldsymbol{\rho}) = \frac{1}{Z} e^{-\beta A \mathcal{F}(\boldsymbol{\rho})} \delta\left(\sum_i \rho_i - \bar{\rho}N\right)$

(Generalized) chemical potential

$$\tilde{\mu}_{i} \equiv \frac{1}{\Lambda} \frac{\partial \mathcal{F}}{\partial \rho_{i}}$$
$$= \mu(\rho_{i}) - \frac{\kappa}{\Lambda^{2}} (\rho_{i+1} + \rho_{i-1} - 2\rho_{i})$$

Non-equilibrium dynamics

$$\begin{split} \frac{d\rho_i}{dt} + \frac{j_i - j_{i-1}}{\Lambda} &= 0\\ j_i(t) = -\frac{\sigma(\rho_i^{\rm m})}{\Lambda} (\tilde{\mu}_{i+1} - \tilde{\mu}_i - \phi \delta_{i,N}) + \sqrt{\frac{2\sigma(\rho_i^{\rm m})T}{A\Lambda}} \cdot \xi_i(t)\\ \rho_i^{\rm m} &= (\rho_i + \rho_{i+1})/2 \end{split}$$

Detailed balance condition when $\phi = 0$

Non-equilibrium nature comes from only through the boundary condition

U

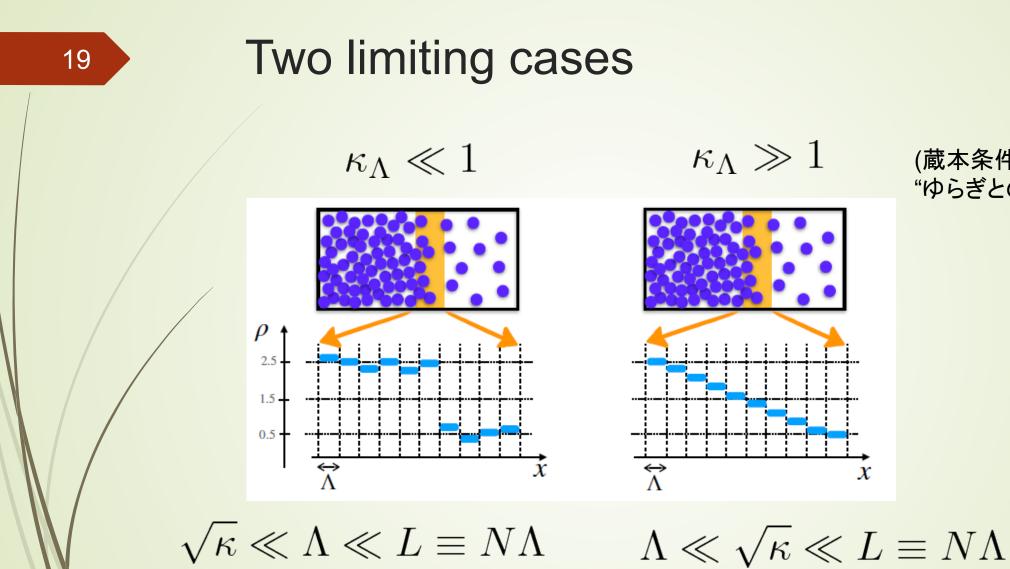
Independent parameters

Independent parameters (with $f(\rho)$ and $\sigma(\rho)$ fixed)

$$(\kappa_{\Lambda}, T_{\text{eff}}, \phi, \bar{\rho}, N) \qquad \kappa_{\Lambda} \equiv \frac{\kappa}{\Lambda^2} \qquad T_{\text{eff}} \equiv \frac{T}{A} \qquad \phi \ge 0$$

Steady state
$$N \to \infty \qquad T_{\text{eff}} \to 0$$

The length unit, energy unit, and time unit are fixed to be microscales in the forms of $f(\rho)$ and $\sigma(\rho)$



"standard" fluctuating hydrodynamics

х

(蔵本条件 1974)

"ゆらぎとの決別"

 $\partial_t \rho + \partial_x j = 0$

$$j(x,t) = -\sigma(\rho(x)) \left[\partial_x \frac{\delta \mathcal{F}}{\delta \rho(x)} - \phi \delta(x) \right] + \sqrt{\frac{2\sigma(\rho(x))T}{A}} \cdot \xi(x,t)$$
$$\mathcal{F}(\boldsymbol{\rho}) = \int_0^L dx \left[f(\rho(x)) + \frac{\kappa}{2} (\partial_x \rho)^2 \right] \quad \boldsymbol{\rho} = (\rho(x))_{0 \le x \le L}$$
$$\langle \xi(x,t)\xi(x',t') \rangle = \delta(x-x')\delta(t-t')$$

Outline of my talk

1. Introduction

- 2. Basic issue on a technical side
- 3. Mesoscopic models
- 4. Phase coexistence conditions
- 5. Analysis
- 6. Results
- 7. Summary and remarks

22

Equilibrium Thermodynamics

Phase coexistence occurs when $\ \bar{
ho}$ satisfies $\
ho_{
m c}^{
m G} \leq \bar{
ho} \leq
ho_{
m c}^{
m L}$

 $ho_{\rm c}^{\rm L}$ and $ho_{\rm c}^{\rm G}$ determined by $\mu(\rho_{\rm c}^{\rm L}) = \mu(\rho_{\rm c}^{\rm G})$ and $\mu_{\rm c}$ $\rho_{\rm c}^{\rm L}$ $ho_{
m c}^{
m G}$ x/LXeq

(equivalent to Maxwell's construction)

$$p(\rho_{\rm c}^{\rm L}) = p(\rho_{\rm c}^{\rm G})$$

 $p(\rho) \equiv \rho \mu(\rho) - f(\rho)$

$$\rho_c^{\rm L} X^{\rm eq} + \rho_c^{\rm G} (1 - X^{\rm eq}) = \bar{\rho}$$

Non-equilibrium system

Stationary solutions of the deterministic equation

$$\partial_x [f'(\rho) - \kappa \partial_x^2 \rho] = -\frac{J}{\sigma(\rho(x))}$$

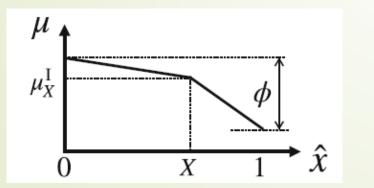
Unique existence of the phase coexistence solution when $\,\rho_c^G \leq \bar{\rho} \leq \rho_c^L$

$$\mu^{\rm I} = \mu_{\rm o}$$

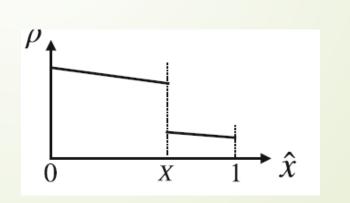
Non-equilibrium system $\kappa_{\Lambda} \ll 1$ $\frac{1}{\Lambda} (\mu_{i+1} - \mu_i + \phi \delta_{i,N}) = -\frac{J}{\sigma(\rho_i^{\rm m})}$

Many solutions (corresponding to metastable states)

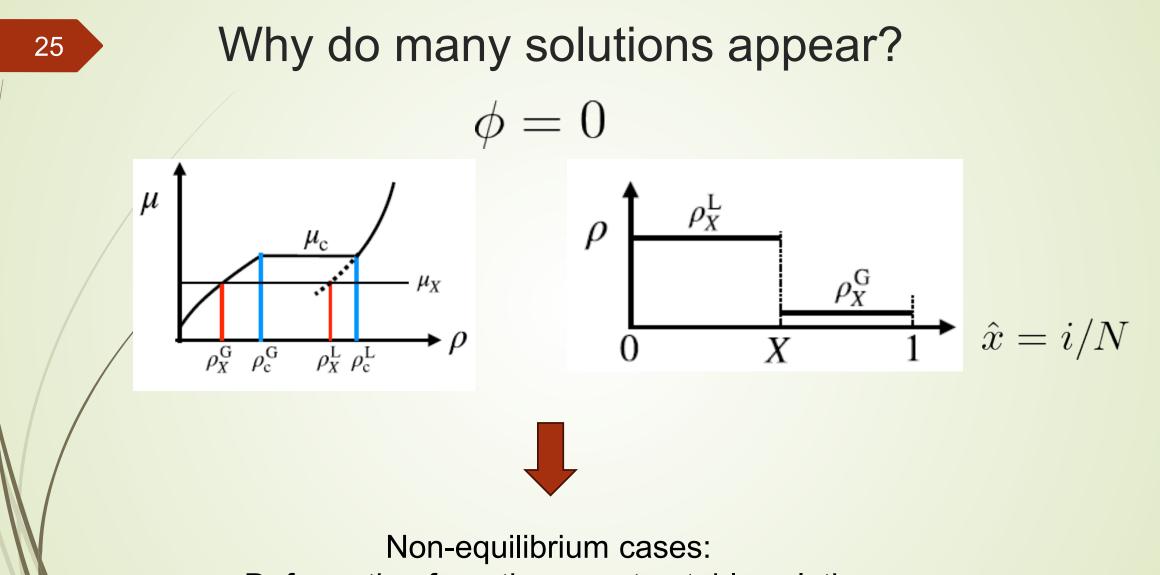
X interface position in the scaled coordinate



 $\rho_{_{Y}}^{\phi}$



 $\hat{x} = i/N$



Deformation from these meta-stable solutions

Determine the most probable solution among ρ_X^{ϕ}

Phase coexistence condition for $\kappa_{\Lambda} \ll 1$

Outline of my talk

1. Introduction

- 2. Basic issue on a technical side
- 3. Mesoscopic models
- 4. Phase coexistence conditions
- 5. Analysis
- 6. Results
- 7. Summary and remarks

Steady-state distribution

$$\mathcal{P}_{\rm ss}(\boldsymbol{\rho}) = \frac{1}{Z_{\rm ss}} e^{-\beta A \mathcal{F}_{\rm ss}(\boldsymbol{\rho})} \delta\left(\sum_{i} \rho_{i} - \bar{\rho}N\right)$$

$$\mathcal{F}_{\rm ss}(\boldsymbol{\rho}) = \mathcal{F}(\boldsymbol{\rho}) + \phi \langle Q \rangle_{\boldsymbol{\rho}}^{\rm eq} + O(\phi^2)$$

$$Q = \int_0^\infty dt \ j_N(t)$$

Variational principle for $\kappa_{\Lambda} \ll 1$

Variational function for determining

$$\begin{aligned} L\mathcal{V}_{\rm ss}(X) &\equiv \mathcal{F}_{\rm ss}(\rho_X^{\phi}) = \mathcal{F}(\boldsymbol{\rho}_X^{\phi}) + \phi \left\langle Q \right\rangle_{\boldsymbol{\rho}_X^{\phi}}^{\rm eq} + O(\phi^2) \\ &= \mathcal{F}(\boldsymbol{\rho}_X^{\phi}) + \phi \left\langle Q \right\rangle_{\boldsymbol{\rho}_X^{\phi=0}}^{\rm eq} + O(\phi^2) \end{aligned}$$

Variational principle

$$\mathcal{V}_{\rm ss}(X_*) = \min_X \mathcal{V}_{\rm ss}(X)$$
$$\boldsymbol{\rho}_{X_*}^{\phi}$$

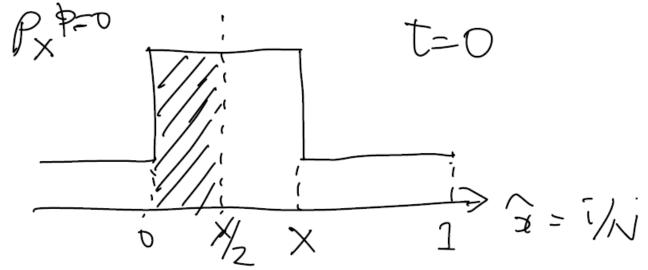
Steady state profile

Chemical potential at the interface

Calculation of $\langle Q \rangle_{\rho_X^{\phi=0}}^{\mathrm{eq}}$ (by H. Tasaki, 24/12/16)

Equilibrium stochastic dynamics

$$\boldsymbol{\rho}_X^{\phi=0} \to \boldsymbol{\rho}(t)$$



Continuity equation

$$\Lambda \frac{d}{dt} \sum_{i=1}^{NX/2} \rho_i(t) = -j_{NX/2} + j_0$$

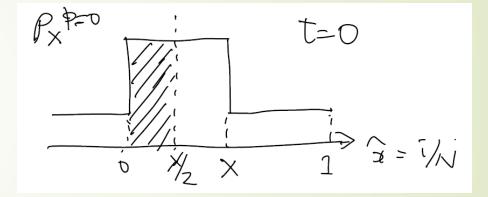
Time-integration

31

 J_0

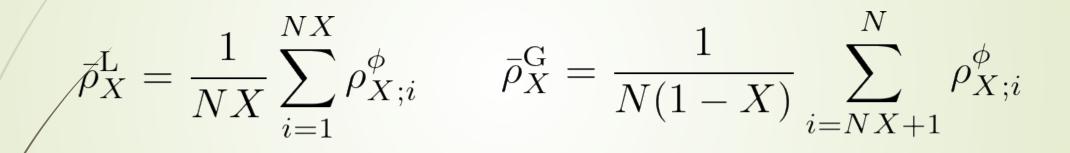
$$\Lambda \sum_{i=1}^{NX/2} \left(\rho_i(\infty) - \rho_i(0) \right) = -\int_0^\infty dt j_{NX/2}(t) + \int_0^\infty dt j_0(t)$$

$$\int dt \left\langle j_{NX/2}(t) \right\rangle_{\rho_X^{\phi=0}}^{\text{eq}} = 0$$



$$\begin{split} \langle Q \rangle_{\boldsymbol{\rho}_X^{\phi=0}}^{\mathrm{eq}} &= \Lambda (\bar{\rho} - \rho_X^{\mathrm{L}}) \frac{NX}{2} \\ &= -L(\rho_X^{\mathrm{L}} - \rho_X^{\mathrm{G}}) \frac{X(1-X)}{2} \end{split}$$

 $\mathcal{V}_{\rm ss}(X) = Xf\left(\bar{\rho}_X^{\rm L}\right) + (1-X)f\left(\bar{\rho}_X^{\rm G}\right) - \frac{\phi}{2}\left(\bar{\rho}_X^{\rm L} - \bar{\rho}_X^{\rm G}\right)X(1-X)$



This variational function was first calculated by using a method of global thermodynamics.

Outline of my talk

1. Introduction

- 2. Basic issue on a technical side
- 3. Mesoscopic models
- 4. Phase coexistence conditions
- 5. Analysis
- 6. Results
- 7. Summary and remarks

Result for $\kappa_{\Lambda} \ll 1$

$$\mu^{\mathrm{I}} = \mu_{\mathrm{c}} + \frac{\phi}{2} \frac{(\sigma^{\mathrm{L}} - \sigma^{\mathrm{G}}) X^{\mathrm{eq}} (1 - X^{\mathrm{eq}})}{\sigma^{\mathrm{G}} X^{\mathrm{eq}} + \sigma^{\mathrm{L}} (1 - X^{\mathrm{eq}})}$$

Perfect agreement with the prediction by global thermodynamics!

$$\sigma^{\rm L} = \sigma(\rho^{\rm L}_{\rm c}) \quad \sigma^{\rm G} = \sigma(\rho^{\rm G}_{\rm c})$$

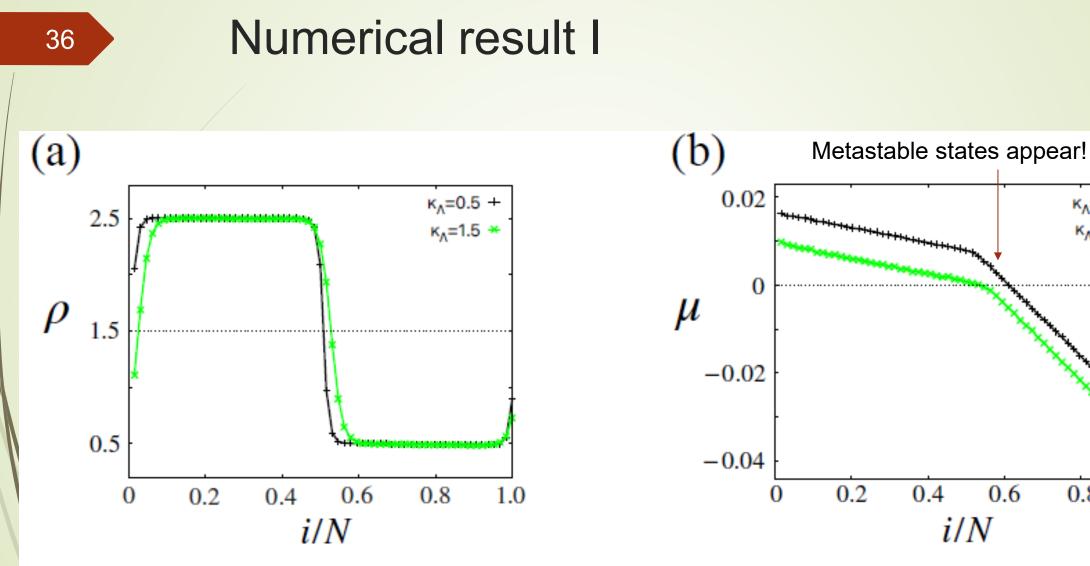
$$\mu^{\mathrm{I}} = \mu_{\mathrm{c}} - \frac{JLX^{\mathrm{eq}}(1 - X^{\mathrm{eq}})}{2} \left(\frac{1}{\sigma^{\mathrm{L}}} - \frac{1}{\sigma^{\mathrm{G}}}\right)$$

The pressure is **discontinuous** at the interface

$$f(\rho) = -\frac{1}{2}(\rho - 1.5)^2 + \frac{1}{4}(\rho - 1.5)^4$$
$$\rho_{\rm c}^{\rm L} = 2.5 \qquad \rho_{\rm c}^{\rm G} = 0.5 \qquad \mu_{\rm c} = 0$$
$$\sigma(\rho) = \rho$$
$$\sigma^{\rm L} = 2.5 \qquad \sigma^{\rm G} = 0.5$$

 $(T_{\text{eff}}, \phi, \bar{\rho}, N) = (0.002, 0.05, 1.5, 64) \longrightarrow X^{\text{eq}} = 1/2$

Unfixed parameter κ_{Λ}



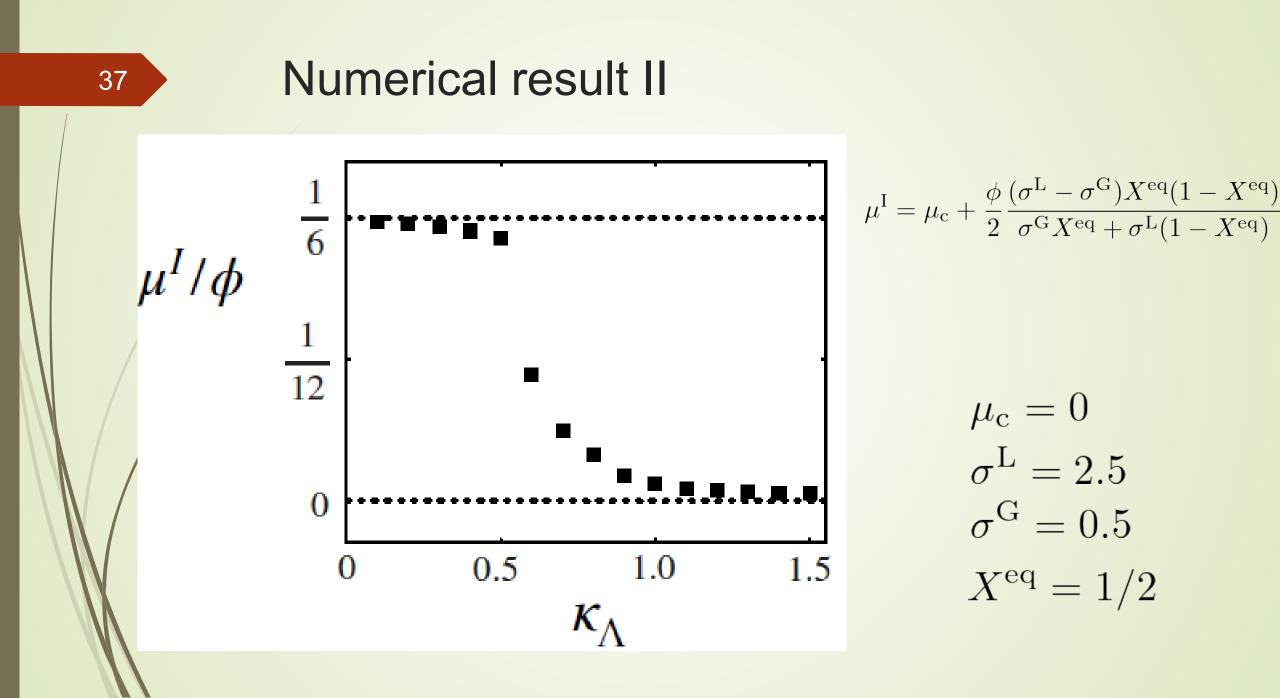
κ_Λ=0.5 +

κ_Λ=1.5 ×

0.8

 $\mu_{\rm c}$

1.0



Outline of my talk

- 1. Introduction
- 2. Basic issue on a technical side
- 3. Mesoscopic models
- 4. Phase coexistence conditions
- 5. Analysis
- 6. Results
- 7. Summary and remarks

Liquid-gas phase coexistence in boundary-driven diffusion systems

Discrete fluctuating dynamics (model B)

When the interface width is smaller than the cut-off length, the chemical potential at the interface deviates from the equilibrium

$$\mu^{\mathrm{I}} = \mu_{\mathrm{c}} + \frac{\phi}{2} \frac{(\sigma^{\mathrm{L}} - \sigma^{\mathrm{G}}) X^{\mathrm{eq}} (1 - X^{\mathrm{eq}})}{\sigma^{\mathrm{G}} X^{\mathrm{eq}} + \sigma^{\mathrm{L}} (1 - X^{\mathrm{eq}})}$$

Metastable states stably appear near the interface !

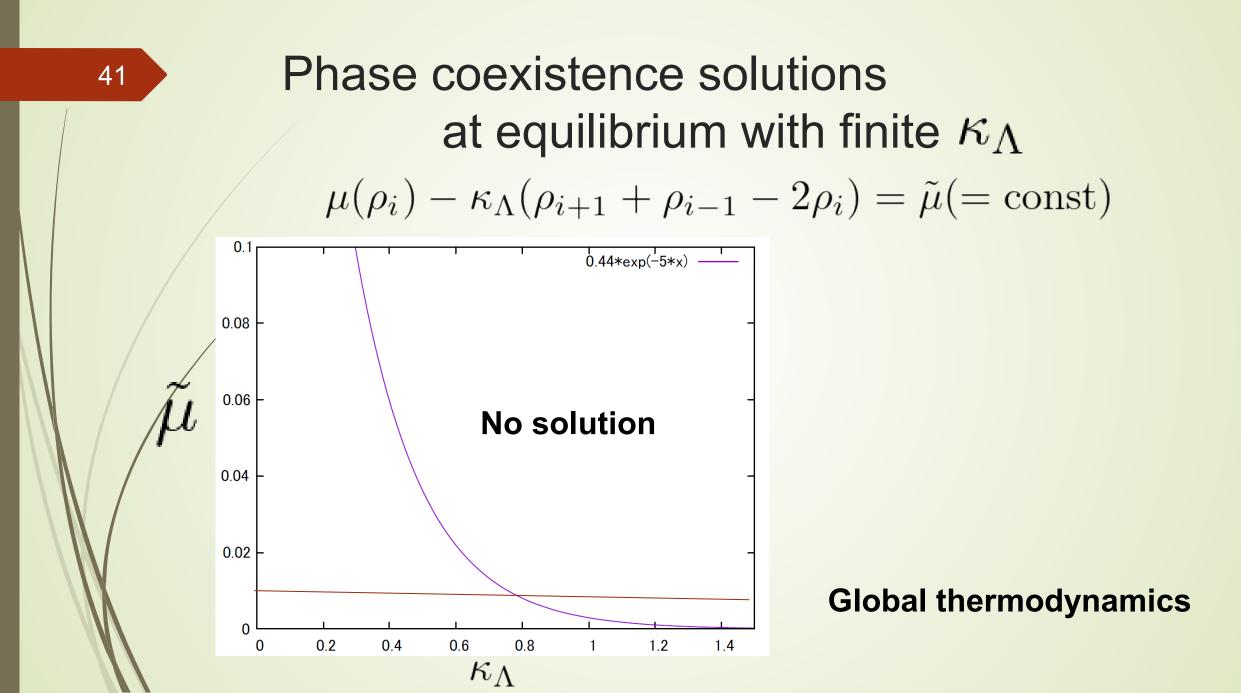
Global thermodynamics predicts the same formula without analyzing stochastic models Analysis of the system with finite κ_{Λ}

 \Rightarrow Phase transition or not?

Microscopic view of "discrete" fluctuating hydrodynamics?

Liquid-gas coexistence in heat conduction?

Theoretical understanding of (entropic) dynamics? cf. "Attractor crowding" (1989)



"discrete fluctuating hydrodynamics" for energy density, momentum density, and mass density

> Too hard to have a consistent and robust model, Recently, we have fixed troubles.... (A. Yoshida et al, in preparation)

Numerical simulation and theoretical analysis show similar behavior to Model B